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1 Introduction

In our paper we study the following fractional differential equation

(Dα,β
a+y)(t) = g(t, y(t)), t ∈ [a, b] a.e. (1.1)

with the initial condition

(I1−γ
a+ y)(a) = c, (1.2)

where 0 < α < 1, 0 6 β 6 1, γ = α + β− αβ, c ∈ Rn, g : [a, b]×Rn → Rn and Dα,β
a+ denotes

the generalized Riemann–Liouville derivative operator introduced by Hilfer in [8]. It is easy
to see that the Dα,β

a+ derivative is considered as an interpolator between the Riemann–Liouville
and Caputo derivative (cf. [7]).

In paper [7] the existence and uniqueness of a solution to such problem in a some weighted
space of continuous functions has been investigated. The main idea of the proof relies on
the change of such problem over to the equivalent integral equation and next, using the
constructive method based on the Banach fixed point theorem, solving this equation.

We also investigate the question of the existence and uniqueness of a solution to problem
(1.1)–(1.2) but in a different space of solutions, namely in the space so called “γ-absolutely con-
tinuous functions” denoted by ACγ

a+([a, b], Rn) (generally this is the space of non-continuous
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functions). In our opinion such space of solutions is more useful in applications than the space
of continuous functions (for example in the fields of control theory or calculus of variations).
Similarly as in paper [7] we use the Banach contraction principle and additionally a notion of
the Bielecki norm in the space of solutions. Such approach makes the proofs of our results not
complicated and rather short.

Detailed description of our method is the following. First we consider a homogeneous
problem (with zero initial condition). We prove that such problem is equivalent to integral
equation (3.2). Next, in order to prove the existence of a solution to this integral equation,
we use mentioned notion of the Bielecki norm in the space Iα

a+(L1([a, b], Rn)) and the Banach
fixed point theorem. The point of existence of a solution to nonhomogeneous problem reduces
to point of existence of a solution to homogeneous problem.

In the second part of this work we consider the linear problem given by{
(Dα,β

a+ x)(t) = Ax(t) + w(t), t ∈ [a, b] a.e.

(I1−γ
a+ x)(a) = c,

(1.3)

where A ∈ Rn×n, c ∈ Rn and w ∈ Iβ(1−α)
a+ (L1([a, b], Rn)).

Using a constructive method, provided by the Banach fixed point theorem, we obtain
existence of a solution to such problem under different (less complicated) assumptions than
in the case of the nonlinear problem. Moreover we give a formula for this solution. For the
linear problem involving the Riemann–Liouville derivative such formula was derived in paper
[10].

Problems of a type (1.1)–(1.2) involving the Riemann–Liouville and Caputo derivatives
(the special cases β = 0 and β = 1, respectively) were investigated very well in many papers
(cf. [10,12–14]). Generally fractional differential equations with such derivatives are a topic of
research of many scientists (cf. [1, 3–6, 11, 19]). The equations can be applied in various fields
of science such as: physics, electronics, mechanics, calculus of variations, control theory, etc.
(cf. [2, 8, 14–17]).

The paper is organized as follows. Section 2 contains some notions and facts concerning
the fractional integrals and derivatives. In section 3, we prove theorems on the existence
and uniqueness of a solution to problem (1.1) with zero and nonzero initial conditions (1.2).
Results of a such type, for the linear problem (1.3), were obtained in Section 4. Moreover, a
formula for the solution to such problem is given.

2 Preliminaries

In this section we recall some basic definitions and results concerning the fractional calculus,
that we will use in the next sections (cf. [7, 14, 17]).

Let α > 0 and f ∈ L1([a, b], Rn). The functions

(Iα
a+ f )(t) :=

1
Γ(α)

∫ t

a

f (τ)
(t− τ)1−α

dτ,

(Iα
b− f )(t) :=

1
Γ(α)

∫ b

t

f (τ)
(τ − t)1−α

dτ

defined for almost every t ∈ [a, b] are called the left-sided Riemann–Liouville integral and the
right-sided Riemann–Liouville integral of the function f of order α, respectively.
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Remark 2.1. In view of convergence (cf. [17, Theorem 2.7])

lim
α→0+

(Iα
a+ f )(t) = f (t), t ∈ [a, b] a.e.

it is natural to put
(I0

a+ f )(t) = f (t), t ∈ [a, b] a.e.

Similarly, we put
(I0

b− f )(t) = f (t), t ∈ [a, b] a.e.

We have the following semigroup properties (cf. [17, formula 2.21])

Lemma 2.2. If α1 > 0, α2 > 0 and f ∈ L1([a, b], Rn) then

(Iα1
a+ Iα2

a+ f )(t) = (Iα1+α2
a+ f )(t), t ∈ [a, b] a.e.

(Iα1
b− Iα2

b− f )(t) = (Iα1+α2
b− f )(t), t ∈ [a, b] a.e.

The following rule of fractional integration by parts holds (cf. [17, formula 2.20]).

Theorem 2.3. Let α > 0, p ≥ 1, q ≥ 1 and 1
p +

1
q ≤ 1+ α (if 1

p +
1
q = 1+ α then p 6= 1 and q 6= 1).

If f ∈ Lp([a, b], Rn) and g ∈ Lq([a, b], Rn) then∫ b

a
f (t)(Iα

a+g)(t)dt =
∫ b

a
g(t)(Iα

b− f )(t)dt.

Now, let α ∈ (0, 1) and f ∈ L1([a, b], Rn). We say that the function f possesses the left-sided
Riemann–Liouville derivative Dα

a+ f of order α, if the function I1−α
a+ f is absolutely continuous on

[a, b] and

(Dα
a+ f )(t) :=

d
dt
(I1−α

a+ f )(t), t ∈ [a, b] a.e.

In view of Remark 2.1, we put

(D1
a+ f )(t) := f ′(t), t ∈ [a, b] a.e.

By Iα
a+(L1) we denote the set (cf. [14])

Iα
a+(L1) :=

{
f : [a, b]→ Rn; f = Iα

a+g a.e. on [a, b], g ∈ L1([a, b], Rn)
}

.

In [17, Theorem 2.3] the following characterization of the space Iα
a+(L1) is proved.

Proposition 2.4. Let f ∈ L1([a, b], Rn) and 0 < α < 1. Then

f ∈ Iα
a+(L1) ⇐⇒ I1−α

a+ f ∈ AC([a, b], Rn) and (I1−α
a+ f )(a) = 0.

From the above proposition it follows that if f ∈ Iα
a+(L1) then f possesses the left-sided

Riemann–Liouville derivative Dα
a+ f = g, where g is the function from the definition of Iα

a+(L1).
Let us introduce in the space Iα

a+(L1) the norm given by

‖ f ‖Iα
a+(L1) := ‖Dα

a+ f ‖L1 (2.1)

We have the following theorem.

Theorem 2.5. The space Iα
a+(L1) with the norm (2.1) is complete, i.e. it is a Banach space.
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Proof. Let (uk)k∈N ⊂ Iα
a+(L1) be a Cauchy sequence. So,

∀ε > 0 ∃N ∈N ∀m, n > N ‖un − um‖Iα
a+(L1) < ε.

From the definition of the norm in the space Iα
a+(L1) and a linearity of the operator Dα

a+ it
follows that for m, n > N we have

‖Dα
a+un − Dα

a+um‖L1 = ‖Dα
a+(un − um)‖L1 = ‖un − um‖Iα

a+(L1) < ε.

This means that the sequence (Dα
a+uk)k∈N is a Cauchy sequence in the space L1([a, b], Rn).

Consequently, since the space L1([a, b], Rn) is complete, so there exists a function x ∈
L1([a, b], Rn) such that

‖Dα
a+uk − x‖L1 −→

k→∞
0.

Let us put
u = Iα

a+x.

Of course, u ∈ Iα
a+(L1). Moreover, from Proposition 2.7 (a), we have

‖uk − u‖Iα
a+(L1) = ‖Dα

a+(uk − u)‖L1 = ‖Dα
a+uk − Dα

a+u‖L1

= ‖Dα
a+uk − Dα

a+ Iα
a+x‖L1 = ‖Dα

a+uk − x‖L1 −→
k→∞

0.

This means that Iα
a+(L1) is complete.

We shall prove the following lemma.

Lemma 2.6. Let 0 < α1 < α2 < 1. Then

Iα2
a+(L1) ⊂ Iα1

a+(L1).

Proof. Let f ∈ Iα2
a+(L1). Then there exists a function ϕ ∈ L1([a, b], Rn) such that f (t) =

(Iα2
a+ϕ)(t) for a.e. t ∈ [a, b]. Let us put

ψ(t) = (Iα2−α1
a+ ϕ)(t), t ∈ [a, b] a.e.

From [14, Lemma 2.1(a)] it follows that ψ ∈ L1([a, b], Rn). Moreover, from Lemma 2.2, we
obtain

f (t) = (Iα2
a+ϕ)(t) = (Iα1

a+ Iα2−α1
a+ ϕ)(t) = (Iα1

a+ψ)(t), t ∈ [a, b] a.e.

The proof is completed.

We have the following composition properties.

Proposition 2.7 ([14, Lemmas 2.4, 2.5 (a)]). Let 0 < α < 1.

(a) If f ∈ L1([a, b], Rn) then

(Dα
a+ Iα

a+ f )(t) = f (t), t ∈ [a, b] a.e.;

(b) if f ∈ Iα
a+(L1) then

(Iα
a+Dα

a+ f )(t) = f (t), t ∈ [a, b] a.e.
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Let α ∈ (0, 1), β ∈ [0, 1] and f ∈ L1([a, b], Rn). We say that the function f possesses the
left-sided generalized Riemann–Liouville derivative (so called Hilfer derivative) Dα,β

a+ f of order α and
type β, if the function I(1−α)(1−β)

a+ f is absolutely continuous on [a, b] and then

(Dα,β
a+ f )(t) :=

(
Iβ(1−α)
a+

d
dt

I(1−α)(1−β)
a+ f

)
(t), t ∈ [a, b] a.e. (2.2)

The operator Dα,β
a+ f , given by (2.2), was introduced by Hilfer in [8].

We have the following comments (cf. [7, Remark 19]).

Remark 2.8.

1. The Hilfer derivative Dα,β
a+ f can be written as

(Dα,β
a+ f )(t) :=

(
Iβ(1−α)
a+

d
dt

I1−γ
a+ f

)
(t) = (Iβ(1−α)

a+ Dγ
a+ f )(t) = (Iγ−α

a+ Dγ
a+ f )(t)

for a.e. t ∈ [a, b], where γ = α + β− αβ.

2. The Dα,β
a+ f derivative is considered as an interpolator between the Riemann–Liouville

and Caputo derivative since (cf. Remark 2.1)

Dα,β
a+ f =

{
Dα

a+ f , β = 0
CDα

a+ f , β = 1.

3. The parameter γ satisfies

0 < γ 6 1, γ > α, γ > β, 1− γ < 1− β(1− α).

Now, we shall prove the following composition properties for the Hilfer derivative.

Lemma 2.9. Let α ∈ (0, 1), β ∈ [0, 1], γ = α + β− αβ and f ∈ Iγ
a+(L1). Then

(Iα
a+Dα,β

a+ f )(t) = f (t), t ∈ [a, b] a.e., (2.3)

(Dα,β
a+ Iα

a+ f )(t) = f (t), t ∈ [a, b] a.e. (2.4)

Proof. First, let us note that since f ∈ Iγ
a+(L1), therefore I1−γ

a+ f ∈ AC([a, b], Rn), so the deriva-
tive Dα,β

a+ f exists and belongs to L1([a, b], Rn). From Proposition 2.7 (a) it follows that

(Iα
a+Dα,β

a+ f )(t) = (Iγ
a+Dγ

a+ f )(t) = f (t), t ∈ [a, b] a.e.

Moreover, since γ > β(1− α), therefore, using Lemma 2.6, we assert that Iγ
a+(L1) ⊂ Iβ(1−α)

a+ (L1).
Consequently, the derivative Dβ(1−α)

a+ f , so also Dα,β
a+ Iα

a+ f , exist and belong to L1([a, b], Rn).
Using once again Proposition 2.7 (a) we conclude

(Dα,β
a+ Iα

a+ f )(t) = (Iβ(1−α)
a+ Dβ(1−α)

a+ f )(t) = f (t), t ∈ [a, b] a.e.

The proof is completed.
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3 Cauchy problem

In this section we investigate the problem (1.1)–(1.2). First, we consider it with zero initial
condition. We shall prove a theorem on the existence and uniqueness of a solution to such
problem. Next, using obtained result, we shall prove the result of a such type for problem
(1.1) with nonzero initial condition (1.2).

3.1 Homogenous Cauchy problem

Let us consider the following Cauchy problem{
(Dα,β

a+ x)(t) = h(t, x(t)), t ∈ [a, b] a.e.

(I1−γ
a+ x)(a) = 0,

(3.1)

where 0 < α < 1, 0 6 β 6 1, γ = α + β− αβ and h : [a, b]×Rn −→ Rn.
By a solution to this problem we shall mean a function x ∈ Iγ

a+(L1) satisfying the above
equation almost everywhere on [a, b] (from proposition 2.4 it follows that each function be-
longing to Iγ

a+(L1) satisfies the initial condition).
We have the following theorem.

Theorem 3.1. Let 0 < α < 1, 0 6 β 6 1, γ = α + β− αβ and h(·, x(·)) ∈ L1([a, b], Rn) for any
function x ∈ Iα

a+(L1). If x ∈ Iγ
a+(L1) then x is a solution to problem (3.1) if and only if x satisfies the

following integral equation

x(t) = (Iα
a+h(·, x(·))(t), t ∈ [a, b] a.e. (3.2)

Proof. Let x ∈ Iγ
a+(L1) be a solution to problem (3.1). Applying the operator Iα

a+ to both sides
of equation (3.1) and using equality (2.3) we assert that x is a solution to integral equation
(3.2).

Now, let assume that x ∈ Iγ
a+(L1) satisfies (3.2). Then there exists the derivative Dγ

a+x =

ϕ almost everywhere on [a, b], where ϕ ∈ L1([a, b], Rn) is a function such that x = Iγ
a+ϕ.

Consequently, there exists the derivative Dα,β
a+ x and

(Dα,β
a+ x)(t) = (Iγ−α

a+ ϕ)(t), t ∈ [a, b] a.e. (3.3)

Moreover, from (3.2), it follows that

(Iγ
a+ϕ)(t) = x(t) = (Iα

a+h(·, x(·)))(t), t ∈ [a, b] a.e.

So
(Iα

a+ Iγ−α
a+ ϕ)(t)− (Iα

a+h(·, x(·)))(t) = 0, t ∈ [a, b] a.e.

Applying the operator Dα
a+ to both sides of the last equality and using Proposition 2.7 (a) we

obtain
(Iγ−α

a+ ϕ)(t) = h(t, x(t)), t ∈ [a, b] a.e.

Hence and from equality (3.3) we conclude that x satisfies equation (3.1). Since x ∈ Iγ
a+(L1),

therefore the inital condition is satisfied.
The proof is completed.
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Remark 3.2. It is easy to verify that the condition: h(·, x(·)) ∈ L1([a, b], Rn) for any function
x ∈ Iα

a+(L1) is satisfied if h is measurable on [a, b], satisfies the Lipschitz condition with respect
to the second variable and the function [a, b] 3 t→ h(t, 0) ∈ Rn is summable on [a, b].

Now, we prove the following theorem.

Theorem 3.3. Let 0 < α < 1, 0 6 β 6 1 and γ = α + β− αβ. If

(1h) h(·, x(·)) ∈ Iβ(1−α)
a+ (L1) for any function x ∈ Iα

a+(L1)

(2h) there exists a constant N > 0 such that

|h(t, x1)− h(t, x2)| ≤ N|x1 − x2|, t ∈ [a, b] a.e., x1, x2 ∈ Rn,

then problem (3.1) possesses a unique solution x ∈ Iγ
a+(L1).

Proof. Let us consider the operator S : Iα
a+(L1)→ Iα

a+(L1) given by

S(x)(t) = (Iα
a+h(·, x(·))) (t) = 1

Γ(α)

t∫
a

h(s, x(s))
(t− s)1−α

ds, t ∈ [a, b] a.e.

It is easy to check that S is well defined. Now, let us consider in Iα
a+(L1) the Bielecki norm

given by

‖x‖k :=
∫ b

a
e−kt|Dα

a+x(t)|dt,

where k > 0 is a fixed constant. We shall show that S is contractive.
Using Proposition 2.7 (b), assumption (2h) and Theorem 2.3 we obtain

‖S(x)− S(y)‖k =
∫ b

a
e−kt|h(t, x(t))− h(t, y(t))|dt ≤ N

∫ b

a
e−kt|x(t)− y(t)|dt

= N
∫ b

a
e−kt|Iα

a+Dα
a+(x(t)− y(t))|dt ≤ N

∫ b

a
e−kt(Iα

a+|Dα
a+(x− y)|)(t)dt

= N
∫ b

a
|Dα

a+(x− y)(t)|(Iα
b−e−k·)(t)dt

= N
∫ b

a
|Dα

a+(x− y)(t)|
(

1
Γ(α)

∫ b

t

e−kτ

(τ − t)1−α
dτ

)
dt.

Let us note that (cf. [10, proof of Theorem 3.1])∫ b

t

e−kτ

(τ − t)1−α
dτ 6 Γ(α)e−ktk−α.

Consequently

‖S(ϕ)− S(ψ)‖k ≤ N
∫ b

a
|Dα

a+(x− y)(t)|
(

1
Γ(α)

Γ(α)e−ktk−α

)
dt

= Nk−α
∫ b

a
e−kt|Dα

a+(x− y)(t)|dt = Nk−α‖x− y‖k.

Since Nk−α ∈ (0, 1) for sufficiently large k, therefore the operator S has a unique fixed point.
It means that integral equation (3.2) possesses a unique solution x∗ ∈ Iα

a+(L1).
From assumption (1h) it follows that there exists a function ψ ∈ L1([a, b], Rn) such that for

any x ∈ Iα
a+(L1) h(·, x(·)) = Iβ(1−α)

a+ ψ(·) almost everywhere on [a, b]. Thus

x∗(t) =
(

Iα
a+h(·, x∗(·))

)
(t) =

(
Iα
a+ Iβ(1−α)

a+ ψ)(t) = (Iγ
a+ψ)(t) ∈ Iγ

a+(L1).

The proof is completed.
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3.2 Nonhomogenous Cauchy problem

Now, we consider the Cauchy problem (1.1)–(1.2) with c 6= 0.
By a solution to such problem we shall mean a function y ∈ ACγ

a+([a, b], Rn), where (cf. [9])

ACγ
a+([a, b], Rn) =

{
f : [a, b]→ Rn : f (t) =

c̃
Γ(γ)

(t− a)γ−1 + (Iγ
a+ϕ)(t),

t ∈ [a, b] a.e., ϕ ∈ L1([a, b], Rn), c̃ ∈ Rn
}

.

It is easy to show that if x∗(·) ∈ Iγ
a+(L1) is a solution to problem (3.1) with the function h of

the form

h(t, x) = g
(

t, x +
c

Γ(γ)
1

(t− a)1−γ

)
, (3.4)

then the function

y∗(·) = x∗(·) +
c

Γ(γ)
1

(· − a)1−γ
(3.5)

is a solution to problem (1.1)–(1.2). Conversely, if y∗(·) ∈ ACγ
a+([a, b], Rn) is a solution to

problem (1.1)–(1.2) with the function g of the form

g(t, y) = h
(

t, y− c̃
Γ(γ)

1
(t− a)1−γ

)
,

then c̃ = c and

x∗(·) = y∗(·)−
c

Γ(γ)
1

(· − a)1−γ

is a solution to problem (3.1).
So, using Theorem 3.3, we can prove the following

Theorem 3.4. Let 0 < α < 1, 0 6 β 6 1 and γ = α + β− αβ. If

(1g) g
(
·, y(·) + c

Γ(γ)
1

(·−a)1−γ

)
∈ Iβ(1−α)

a+ (L1) for any function y ∈ Iα
a+(L1),

(2g) there exists a constant Ñ > 0 such that

|g(t, y1)− g(t, y2)| ≤ Ñ|y1 − y2|, t ∈ [a, b] a.e., y1, y2 ∈ Rn,

then problem (1.1)–(1.2) possesses a unique solution y ∈ ACγ
a+([a, b], Rn).

Proof. In order to prove the existence part of the above theorem it suffices to show that if g
satisfies assumptions (1g), (2g), then the function h given by (3.4) satisfies conditions (1h), (2h)

from Theorem 3.3. Indeed, the fact that h satisfies the Lipschitz condition with respect to the
second variable is obvious. Moreover, for any x ∈ Iα

a+(L1) we have

h(·, x(·)) = g
(
·, x(·) + c

Γ(γ)
1

(· − a)1−γ

)
∈ Iβ(1−α)

a+ (L1).

A uniqueness of the solution to problem (1.1)–(1.2) follows from the uniqueness of the solution
to homogeneous problem.

The proof is completed.
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4 Linear Cauchy problem

In the previous section we obtained the existence of a unique solution to nonlinear Cauchy
problem (1.1)–(1.2). Similarly as in paper [7] our method relies on the change of such problem
over to the equivalent integral equation and next, using the Banach fixed point theorem,
solving this equation. The obtained solution belongs to the space ACγ

a+([a, b], Rn) (generally,
in contrast to the paper [7], this is the space of non-continuous functions). An advantage
of our paper is the fact that proofs of main results are not complicated and rather short.
Unfortunately, the existence results were proved under the key assumption (1h) ((1g)), which
generally is difficult to check (except the case β = 0 – cf. Remark 3.2).

In this section we shall consider the linear Cauchy problem of a type (1.1)–(1.2). We shall
show that in this case the mentioned assumption reduces to a condition, which is easier to
verify. Moreover, we give the formula for a solution to such problem.

In our opinion the obtained results concerning the linear problem are useful in applications
– for example in linear control systems involving the Hilfer derivative.

4.1 Homogenous problem

Let us consider the following linear Cauchy problem{
(Dα,β

a+ x)(t) = Ax(t) + v(t), t ∈ [a, b] a.e.

(I1−γ
a+ x)(a) = 0,

(4.1)

where 0 < α < 1, 0 6 β 6 1, γ = α + β− αβ and A ∈ Rn×n.
If β(1− α) < α and v ∈ Iβ(1−α)

a+ (L1), then Lemma 2.6 guarantees satisfying assumption (1h)

from Theorem 3.3. Consequently, there exists a unique solution x ∈ Iγ
a+(L1) to such problem.

Now, we shall show that the existence result can be obtained for any 0 < α < 1 and
0 6 β 6 1. Indeed, from the proof of Theorem 3.3 it follows that the operator S : Iα

a+(L1) →
Iα
a+(L1) given by

S(x)(t) = A(Iα
a+x)(t) + (Iα

a+v)(t), t ∈ [a, b] a.e.

has a unique fixed point x∗ ∈ Iα
a+(L1). So there exists a function ϕ∗ ∈ L1([a, b], Rn) such that

x∗(t) = S(x∗)(t) = A(Iα
a+x∗)(t) + (Iα

a+v)(t)

= Am(Imα
a+ x∗)(t) + Am−1(Imα

a+ v)(t) + · · ·+ A
(

I2α
a+v
)
(t) + (Iα

a+v)(t)

= Am(I(m+1)α
a+ ϕ∗)(t) + Am−1(Imα

a+ v)(t) + · · ·+ A
(

I2α
a+v
)
(t) + (Iα

a+v)(t) (4.2)

for all m ∈N and t ∈ [a, b] a.e.
Let us note that since v ∈ Iβ(1−α)

a+ (L1), therefore there exists a function ψ ∈ L1([a, b], Rn)

such that

(Imα
a+ v)(t) = (Imα

a+ Iβ(1−α)
a+ ψ)(t) = (I(m−1)α

a+ Iγ
a+ψ)(t) = (Iγ

a+ I(m−1)α
a+ ψ)(t), t ∈ [a, b] a.e., m ∈N.

From [17, Theorem 2.6] it follows that I(m−1)α
a+ ψ ∈ L1([a, b], Rn) for all m ∈ N. It means that

Am−1 Imα
a+ v ∈ Iγ

a+(L1) for all m ∈N. Moreover, there exists m ∈N such that (m + 1)α > γ and
δ := (m + 1)α− γ ∈ (0, 1). Consequently

Am(I(m+1)α
a+ ϕ∗)(t) = Am(Iγ

a+ Iδ
a+ϕ∗)(t), t ∈ [a, b] a.e.
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Using once again Theorem 2.6 from [17] we assert that Am I(m+1)α
a+ ϕ∗ ∈ Iγ

a+(L1). So we showed
that all terms of the equality (4.2) belong to the space Iγ

a+(L1). Thus and from Theorem 3.1 we
conclude that there exists a unique solution x∗ to problem (4.1) belonging to Iγ

a+(L1).
Using the Laplace transform one can prove that a formula for this solution is the following

(cf. [18, Lemma 7]):

x∗(t) =
∫ t

a
Φα(t− s)v(s)ds, t ∈ [a, b] a.e., (4.3)

where Φα(t) = ∑∞
k=0

Akt(k+1)α−1

Γ((k+1)α) .

4.2 Nonhomogeneous problem

Now, let us consider the following linear nonhomogeneous Cauchy problem{
(Dα,β

a+y)(t) = Ay(t) + v(t), t ∈ [a, b] a.e.

(I1−γ
a+ y)(a) = c,

(4.4)

where c ∈ Rn is a fixed point.
It is easy to check that if x ∈ Iγ

a+(L1) is a solution to homogeneous problem of the form{
(Dα,β

a+ x)(t) = Ax(t) + Ac
Γ(γ)

1
(t−a)1−γ + v(t), t ∈ [a, b] a.e.

(I1−γ
a+ x)(a) = 0,

(4.5)

then
y(·) = x(·) + c

Γ(γ)
1

(· − a)1−γ
∈ ACγ

a+([a, b], Rn) (4.6)

is a solution to problem (4.4).
Since (

I1−β(1−α)
a+ (· − a)γ

)
(t) =

Γ(γ)
Γ(α + 1)

(t− a)α ∈ AC([a, b], Rn) for t ∈ [a, b]

and (I1−β(1−α)
a+ (· − a)γ)(a) = 0, therefore I1−β(1−α)

a+ (· − a)γ ∈ Iβ(1−α)
a+ (L1) (cf. Proposition 2.4).

Consequently if v ∈ Iβ(1−α)
a+ (L1), then problem (4.5) has a unique solution x ∈ Iγ

a+(L1). Thus
and from (4.6) it follows that there exists a unique solution y ∈ ACγ

a+([a, b], Rn) to problem
(4.4). Moreover, it is given by (cf. [18, Lemma 7])

y(t) = Ψα,γ(t− a)c +
∫ t

a
Φα(t− s)v(s)ds, t ∈ [a, b] a.e., (4.7)

where Φα(t) = ∑∞
k=0

Akt(k+1)α−1

Γ((k+1)α) and Ψα,γ(t) = ∑∞
k=0

Aktγ+kα−1

Γ(γ+kα)
.

Corollary 4.1.

1. If β = 0, then γ = α, Φα = Ψα,γ and

y(t) = Φα(t− a)c +
∫ t

a
Φα(t− s)v(s)ds ∈ Iα

a+(L1), t ∈ [a, b] a.e. (4.8)

is a solution to the following linear Cauchy problem involving the Riemann–Liouville derivative
(cf. [10, Theorem 4.2]) {

(Dα
a+y)(t) = Ay(t) + v(t), t ∈ [a, b] a.e.

(I1−α
a+ y)(a) = c;
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2. if β = 1, then γ = 1, Ψα,γ = E(Atα), where E(z) = ∑∞
k=0

zk

Γ(kα+1) , z > 0 is the Mittag-Leffler
function and

y(t) = E(A(t− a)α)c +
∫ t

a
Φα(t− s)v(s)ds ∈ AC([a, b], Rn), t ∈ [a, b] (4.9)

is a solution to the following linear Cauchy problem involving the Caputo derivative{
(CDα

a+y)(t) = Ay(t) + v(t), t ∈ [a, b] a.e.

y(a) = c;

3. if we put I0
a+y = y, then we can consider the following Cauchy problem of order α = 1{

y′(t) = Ay(t) + v(t), t ∈ [a, b] a.e.

y(a) = c.

Then all formulas for the solution: (4.7), (4.8) and (4.9) reduce to the classical one

y(t) = eA(t−a)c +
∫ t

a
eA(t−s)v(s)ds ∈ AC([a, b], Rn), t ∈ [a, b].

5 Conclusion

In this work we have proved existence and uniqueness solution for fractional Cauchy problems
involving Hilfer’s derivative. Results of such a type in a some weighted space of continuous
functions have been obtained by Furati at al. [7]. Here we consider a different space of solu-
tions (generally the space of non-continuous functions), which is, in our opinion, more useful
in applications. In proofs of our results, similarly as in paper [7], we apply the Banach con-
traction principle. Besides we use a notion of the Bielecki norm and due to such approach our
argument is different than in [7] (we do not need to partition the interval [a, b]).
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