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A PRIORI ESTIMATE FOR
DISCONTINUOUS SOLUTIONS OF A
SECOND ORDER LINEAR HYPERBOLIC
PROBLEM

S. S. Akhiev
(Azerbaijan State Pedagogical University)

Abstract. In the paper we investigate a non-local contact-boundary value problem
for a system of second order hyperbolic equations with discontinuous solutions. Under
some conditions on input data a priori estimate is obtained for the solution of this

problem.

In the paper we consider the following hyperbolic system:

(L2) (t,z) = z1g (t, ) + 2 (t,2) Ao (t,2) +
+z¢ (t,2) Ao (6, 2) 4+ 25 (8, 2) Ao (T, 2) = (¢, x), (1)

(t,l’) e G=Gy UG, Gy = (O,T) X (0,0é), G, = (O,T) X (Oé,l),

where z (t,z) = (21 (t,2),...., 2n (t, x)) is the desired vector-function; A; ; (¢, x),
i,7 = 0,1 are the given n x n-matrices on G; ¢ (t,x) is the given n-dimensional
vector-function on G; « is a fixed point from (0,1) .

For the system (1) we give the following non-local contact boundary condi-

tions
(Lkz) (t) =z (t, 0) ﬁO,k (t) +z (t, o — 0) ﬁl,k (t) +z (t, o+ O) ﬁg,k (t) +

+2(8,1) Bk (1) + 2 (£,0) gok (1) + 2¢ (T, 0 = 0) g1,k () + 2¢ (£, 0+ 0) g2k (8) +
2 (80 gsw (t) =i (t), t€(0,T), k=1,2; (2)
(L32) () = 22 (0,2) = @3 () , z € (0,1); (3)
Loz = 2(0,0) = go. (4)

Here: Bik (t), gix (1), 1=0,1,2,3; k = 1,2 are the given n X n matrices on
(0,T7); ¢r (t),k = 1,2 are the given n-dimensional vector-functions on (0,7');
3 (x) is the given n-dimensional vector-function on (0,1); ¢o is the given con-

stant n-dimensional vector.
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We assume that the following conditions are satisfied:

1) The matrices A; j (t,z) are measurable on G, Ao € Lpnxn (G); there
exit the functions AY ; € £, (0,1) and Af ; € £, (0,T), such that || Ay o (t,2)|| <
AL o (), [[Aoa (t, )| < Af, (t) almost everywhere on G, where Ly xn (G),
1 < p < oo is a Banach space of n x n matrices g = (g;;) with elements

9ij € Lp(G), wherein the norm is determined by the equality [lg]; = ) =

n
HgOHLP(G) , moreover ¢° = ||g|| = ”221 |gij] is the norm of the matrix g;

2) ﬁi,k S £p,n><n (OaT) and 9i,k S Eoo,nxn (OaT) 5
3) ZBS Ep,n (G) y P € Ep,n (OvT)a p3 € Ep,n (0, l), where Ep,n (G)7 1<p<
00, is a space of n-dimensional vector-functions ¢ = (¢1, ..., ¢, ) with elements

from L, (G); norm of ¢ € Ly, (G) is defined as [¢ll, () = ||<p0||£p(G) and

OOt ) = ||o(t,z)|| = 3 |@i(t,x)| is norm of n-vectors ¢(t,x) € R™ for fixed
i=1

(t,z) € G. R™ is the space of all vectors p = (p1,...,pn) with norm ||p|| =

n

_Zl il
1=
Non-local boundary value problems for integro-differential equations with

continuous coefficients were studied in the paper [2].

We‘ll consider the solution of problem (1)-(4) in the space me (G),1 <
p < oo, [4] (p. 52) of all n-dimensional vector-functions z (¢,2), which on
each domain Gy (k = 0, 1) belong to W), ,, (G) and are continuous at the point
(0,c). Here W, , (Gk) is a space of all n-dimensional vector-functions z €
Ly (Gr), possessing generalized in S.L.Sobolev’s sense derivatives z, z, and
2zt from L, (Gi), k = 0,1. We'll define the norm in the space me (G) by
the equality [4] (p. 54)

1
120, ) = 2 1lw, @
k=0
where

12w, . co) = 12llz, ) T 122, iy + 122llz, ) T 1222, L -
Since the operator Nz = (z(0,0),2: (¢£,0),2¢ (t,a +0), 2, (0,2) , zez. (¢, )),
brings about isomorphism from W, ,, (G) to @pm =R"XLp, n (0, T)XLp.r (0,T) %
Lyn(0,1) X Ly, (G), [1], we can reduce problem (1) - (4) to the following
operator equation
Lz =g,
where L = (Lo, L1,Lo,Ls, L),z € /Wp,n (G) is desired solution and
© = (po,¢1, P2, 93,9) € @pm is the given element. This equation is equiva-
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lent to the system of integro-algebraic equations with respect to elements of five
components

b= (bo, b1 (), ba (), bs (x),b(t,z)) =
= (2(0,0), 2 (t,0), 2t (t,a + 0) , 25 (0, ) , 2e5, (£, ))

of the space @p,ni

t x
b(t,z) + / / b(7,0) @1 (G %) Avo (+, z) drd(-+
0 0
x t
+ / b(t,0) a1 (C,) Avo (t, ) dC + / b(r,2) Ao (t7) dr+
0 0

+ (/Otb1 (T)H(ozx)dT+/()tb2(T)9(xa)dT) Ao (t, ) +
+ (01 (t)0 (v —x) + b2 (t) 0 (x — ) A1 o (t, ) + bg (x) A1 (t, ) +
+ /0 “ s (€) Ao (t, ) dC + boAgo (t,2) = p(t,z), (t,z) € G (5)
by (t) (9o.k (1) + g1,k (1)) + b2 (1) (92,5 () + g,k (1)) +

+ / by (7) (Bous (£) + Bu (1)) dr+
0

+/O b2 (T) (ﬁQ,k (t)+ﬁ3,k (t))dT:(Pg(t)’ te (O’T)’ k=1,2; (6)

where

O (t) = @r(t) — bo(Box(t) + Brr(t) + Bor(t) + Bar(t))—

[e% l
- / b3(O)(Bu k(1) + ok (t))dC — / b3(0) Bk (£)dC — o (1):

0

t Io% t l
on(t) = /0 /0 b(r, €)1 (£)drdC + /0 / b(r, €) B () drd(+
@ l

+ /O b(t, C)gr w(£)dC + / b(t, C)gax ()dC. € (0,T); (6")
bs (2) = s (), z € (0,1) (7)
bo = o, (8)

where 6 (y) is one —dimensional Heaviside function on R = R' and ¢ ({,z) =

0(¢C—a)lf(x—a)+0(a—u1).
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If we succeed to estimate the components bg, b1 (t),be (t), b3 (x),b(t,z) of
the vector b, on the basis of [1] we get a priori estimate for the solution z €
Wi (G) of problem (1)-(4)

z(t,x):bo—l—@(a—x)/o by (T)0 (t — 7)dr+
T l
(e —a) /O bo(r)6 (t — 7) dr + /0 bs(C)0 (@ — €) dC+
[ [oe-n06-0nCaun o, () €6 )

The components by (t),b2 (t),b(t,x) are determined from the system of
equations (5),(6), since the components by, bs (x) are explicitly given by con-
ditions (7), (8), therefore, it remains to estimate only by (t),b2 (t),b (¢, ).

It is obvious that by means of the matrix

go1(t) +g11(t)  go2(t) +g1,2(t)
A(t) =
g2,1(t) +g31(t)  g2.2(t) + g32(t)

we can write the equality (6) in the compact form
t
(b1(t), b2(t)) A(t) +/ (b1(7), b2(7)) B(t)dr = (2(t), 3(t)), t € (0,T), (10)
0
where
Po.a(t) + Bra(t)  Boa2(t) + Pr2(t)
B(t) =
B2,1(t) + B31(t)  Ba22(t) + B32(t)
Assume that almost for all ¢ € (0,7) the matrix A(t) is invertible and it

holds
[A@)] < My, ||[ATH@)]| < My (11)

in the sense of almost everywhere on (0,7). Then, from (10) we have

(b1(t), ba(t)) + /O (b1(7),b2(7)) By (t)dr = (91 (1), 5 (1)) AT (t),t € (0,T), (12)

where

Passing in (12) to the vector norm we have

alt) < /Ot a(P)i(t)dr + SO(t), t € (0,T), (13)
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where

a(t) = 1@ + Iz,

[(t) = 1B:(0)] < My [[B@)I[,

S(t) = [ (@1 (1), 2N AT )| < Mu([| A (]| + [J02(B)[]);
here and below M; are constants independent on @ = (®o, ¥1, Y2, 3, P).

Let the point 7 € (0,T) be fixed and ¢t € (0, 7). Then integrating (13) with
respect to t on (0,7) we get

R(r) < / " RWIW)dE+ S (7). € (0,T), (14)
where

SH(r) = /OT SO(t)dt,

R(r) = / at)dt.
0
We write the inequality (14) in the form
R(r) < RY(7) +S'(7) +¢, (15)

where € > 0 is an arbitrary number and

R\(r) = /O " ROt

H
ence R(7)

RI(r)+ 5 (1) +e

<1,7€(0,7).

Therefore

R(r)l(r)
RU(T)+ ST (r) +¢ <I(r),7 €(0,T),

or

R (1)
R (1) + 51 (1) +¢ <I(r),7€(0,T), (16)

where the sign of point over some function of one argument means its first
derivative.

The function S*(7) is a monotonically increasing function.Therefore, if ¢ is
fixed and 7 € (0,t), then S*(7) < S1(t). Therefore from (16) we have

R . R@
RI(r)+S () +ec~ R (1) +5 (1) +¢

<I(r),7 € (0,1),
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integrating it with respect to 7 on (0,t) we get

RY () + S (t) + ¢ ¢
RI(0) £S5 (1) + ¢ S/0 L) dr

In

or

RY(t) + S'(t) + & < (S'(t) + £)elo (D7,
Taking this into account in (15) we get
R(t) < S (t)edo 1T (17)
Writing (13) in the form
alt) < R()I(t) + S°(t)

and using (17) we get

alt) < I(t)els Hrdr / t SO(r)dr + S°(t) (18)
0

Thus, we have proved

Lemma 1. If, for some non-negative functions a,1,S° € £,(0,T), the inequal-
ity (13) holds, then the function a(t) also satisfies the condition (18).

Taking into account the expression of the function [(t) in (18) we get

alt) < My | B@)| /0 SO(r)dr + S°(t), £ < (0,T), (19)

T
My = M exp <M1/ | B(T)]| dT) .
0

Notice that from the conditions imposed on the matrix functions §; x(t) it
follows that ||B(-)|| € £,(0,T"). Therefore My < +oc.
Now by means of this lemma for the sum a(t) = ||by(¢)|| + ||b2(t)]] we have

where

the estimate
t
a(t) = [[br ()] + [[b2(B)]] < Mz/o SU(r)dr | B#)| + S°(t),t € (0,T).
Therefore, using the Holder inequality, we obtain

1
b ()] < S°(t) + MaT'a || S° W IB@It € (0,T), k=1,2,

H £,(0,T

here and below ¢ = p/(p — 1) denotes the number conjugate to p.
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Here, passing to the norm, by Minkowsky inequality we get

1
okl z, .0 < HSOHLP,(OVT) (L+MT7||Bllz, s on0m) =

:Mg k=1,2,

15° 2,079

1
Mz =14 MyT4q ||B||£p,2n><2n(01T) ’

Obviously

1z, 0.0y < Ml 2, oy + 192112, 0,
Therefore

||bk||[,pyn(0,T) S M4(H<'0(1)H£p,n(0,T) + Hcngﬁpm(O,T))’ k= 17 25 (20)

where My = M3M;.

Now, let’s estimate the norms Hcpg HLP,TL(O,T)’ k =1,2. Obviously if the vector
z € Wpn(G) satisfies the conditions (1)-(4), then its independent elements
b= (2(0,0), z:(t,0), 2 (t, a+0), 220, ), 2 (£, 2))= (bo, b1(t), ba(t), bs(x), b(t, x))
satisfy the equalities (5)-(8) and therewith

Ioll < 1l .

Ibslz, . op < 121, . 1)
where

Lz =
Qp.n

= lleoll + llerllz, 0.y + N2l 2, 0 +

LV 6))|

el , = Wpon(G)

+ ”(P?’Hcpm,(o,l) + ||50||mey(g) , &= N~1'b.

Therefore, from the expressions (6%) of the vectors 9 (¢) we have

12| < llw )l + lboll (180, (Il + 1B (t)]| +
1
+ 182 O + 185k ) + 151l oy @7 %

1
X(1Br k@O + 1821 @) + 19 b3l 2, 0,09 |1 F31DI + lerp @I k=1, 2.

Hence by means of the Minkowsky inequality allowing for (20) we have
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3
9]l o) < Neklle, womy + 1Bl D 1Bk, oy +
1=0
12
183l 00 @4 D NBikllz, 0y

i=1

1
+1bsllz, 00 L9 1Bs.kllz, 0y T+

3
Fllonsle, om <l2lo, . 0+3 1Bl . om+
1=0
12 1
tad Z ||/8i’k||£p,n><n(07T) + 14 Hﬁ?’ﬁkHLPYan(O,T)) + ||<Pk,b||gpyn(o,T)
i=1
or
1620z o < Msliglo, . + lioeolle, .o (22)
where

3 L2
Ms =1+ |IBikllc, ..o+ @0 DBkl om) +
1=0 =1

1
9 1B kllz, 01 -

Now let’s estimate the norm of the vector ¢y (). Obviously

1
lorolll < (Ta)7 181kl . o Ibllc, e+

1
+HTU =) Bskllz, .0 1P, )+

1
+ad [|b(t, ')Hz:p,n(o,l) ||gl’k||£'oo,n><n(07T) +

1
+(l—a)a |b(t, ')”prn(o,z) ||g3vk||£oo,an(0,T) .
Therefore

lorallz, .om < ¢ Ble, -k =1.2 (23)
1 1
& = (@) 1Billy, .oy + (A=) 1Bsille o+

1 1
+ad ||91,k||g 0,1) +(—a)d Hg?’ﬁk”lloo,an(O,T) . (24)

co,mXn
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Then using (23) we get from (22)

Il om < Mslléla, , + & bllz, o) k=12 (2
Now, equation (5) is written in the form

Q) (t, ) = L (t,x), (t,z) € G, (26)

where

(QB)(t, 2) = b(t, ) + /0 /0 C b, g1 (¢, 2) Ao o t, 2)drdc+

Jr/ox b(t, ()@ (C,x)Alyo(t,x)ngr/O b(r,z)Ap,1(t, x)dr, (27)
@O(ta T) = (PO’O(ta T) + 90071(15’ 'T);
90010(1% :C) = @(tﬂ 1') - bS(x)Aoyl(tﬂ 1')7

—boAo,o(t, x) —/ b3(¢)Ao,o(t, x)dC;
0

OO (t,z) = — (/0 b1 (7)0(a — z)dr + /0 ba(7)0(x — a)dr) Agolt,z)—
—(b1(t)0(ac — ) + b2(t)0(x — @) A1,0(t, ).

In the expression of the vector ¢°(¢, z) there are the vectors (¢, z), bz(z), by
and the given matrices Ag 1 (¢, z), Ao,0(¢,z). Above we have estimated the norms
of the vectors ¢(t,x),bs(x),by by H¢||prn. Therefore, from the expression of
the vector ¢%°(¢, ) by means of the Holder and Minkowsky inequalities we can

easily get the estimate

16"l ¢, ) = Me 12l - .

where Mg > 0 is a suitable constant.

Further, from the expression of the vector %! (¢, ) it is seen that

1
" ()| < (@7 [bull,, o) Ol — )+

1
+T7 oo, 0. O — )| Ao (t, )]+

+(llball, 0,1 Ol =) + b2l 0.1y O(x — @) AT o (@)

Hence we get
1
H‘Po’le:p,n(G) <(Ta ||A0,0||5,,,nm(0)+
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+ HA?,OHZ;p(OJ))(Hbl”gp,n(o,T) + b2l . 01)) =

= Mr(|lbrllz, .oy + 102z, . 0.1)); (29)

where

M, =Ti ||A0,0||1;p,nxn(c) + ||A(1),0||z:p(07l) ’

The operator €2, defined by the equality (27) acts in £, ,(G), is bounded

and has a bounded inverse in it [3]. Therefore from (26) we have

Ibllz, ) < 127 %N, -

Hence by (28) and (29) we get

1Bz, e < 11971 M6 lIllg, .+ Mrlbillz, . o + Ibslle, o) (30)

Take into account, (25) in (20) and get

1b1llz, o) + 2l 0.7y < 2Ma(2Ms [[Bllg, , + (' + ) [Bllg, ) (31)
Hence substituting (31) into (30) we get
Blle, e < 19741 (M5 12l , + 2Ma0n(et +) b, )

where Mg = Mg + 4M4MsM7 > 0.

If we assume

3= aMay [0 (¢4 e?) < 1, )

then we can obtain

1Blle, < Mo llgllg, . (32)

with constant
My = (1— )"t ||| M.

Taking into account (32) in (31) we have

1Blle, oy + IBalle, oy < 2Ma(2Ms + My(e' + ) 6l - (33)

Now, summing up the inequalities (21), (32), (33) for the totality
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b= (bo,b1(t),ba(t), bs(z), b(t,z)) we have the estimate

= llboll + lIb1llz, . 0,7y + 102l 2, . o,y T 031l £, 0.0y

bl ) < Mo I8l = Mio || L2

where
Mg = 2M4(2M5 + Mg(Cl + C2>) >0

and

)

Lz=0

Using the last inequality we get

)
,n

2l @ < MulIN2lg < MM HLz

with suitable constant M;; > 0 independent on z. Hence the following theorem

is true.

Theorem 1. Let the matriz A (t) be invertible for almost all t € (0,T) and
conditions (11) and (*) be fulfilled, where My and My are the constants defined
above by using the number My, the constants c* (k = 1,2) are given by the
formula (24), and the operator Q) is given by the relation (27). Then, for every

solution z of problem (1)-(4), the a priori estimate | z||5 (o <M HLz 5
p,n
holds, where M > 0 is a positive constant independent on z. "

The operator L is a linear and bounded operator from /an( G) to Q\p,n'
Therefore, there exists a bounded, conjugated operator L* (Qp n) (Ap n (G)) *.
Using general forms of linear bounded functional determined on me and
/Wp,n (G) we can prove that L* is a bounded vector operator of the form L* =
(wo, w1, wa, w3, w) acting in the space Qq,n, where 1/p+ 1/q = 1. Therefore, we
can consider the equation L* f 7,/) as a conjugated equation for problem(1)-(4),

where f is a desired solution, 1/1 is an element from (me (G)) It follows from

Theorem 1 that the following theorem is true.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then problem (1)-

(4) may have at most one solution z € /an (@), and the conjugated equation

f 12)\ for any right hand side 1/) € (Apn (G)) has at least one solution
G

k) h)
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