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HIGHER ORDER MULTI-POINT BOUNDARY VALUE PROBLEMS

WITH SIGN-CHANGING NONLINEARITIES AND

NONHOMOGENEOUS BOUNDARY CONDITIONS

J. R. GRAEF, L. KONG, Q. KONG, AND J. S. W. WONG

Abstract. We study classes of nth order boundary value problems consisting of an
equation having a sign-changing nonlinearity f(t, x) together with several different
sets of nonhomogeneous multi-point boundary conditions. Criteria are established
for the existence of nontrivial solutions, positive solutions, and negative solutions
of the problems under consideration. Conditions are determined by the behavior
of f(t, x)/x near 0 and ±∞ when compared to the smallest positive characteristic
values of some associated linear integral operators. This work improves and extends
a number of recent results in the literature on this topic. The results are illustrated
with examples.

1. Introduction

Throughout this paper, let m ≥ 1 be an integer, and for any x = (x1, . . . , xm),

y = (y1, . . . , ym) ∈ R
m, we write x =

∑m
i=1 |xi| and 〈x, y〉 =

∑m
i=1 xiyi. Let

α = (α1, . . . , αm), β = (β1, . . . , βm), γ = (γ1, . . . , γm) ∈ R
m
+ ,

and

ξ = (ξ1, . . . , ξm) ∈ (0, 1)m

be fixed, where R+ = [0,∞) and ξi, i = 1, . . . , m, satisfy 0 < ξ1 < ξ2 < . . . < ξm < 1.

To clarify our notation, we wish to point out that while u(t) is a scalar valued function,

u(ξ) = (u(ξ1), . . . , u(ξm)) is a vector. In this paper, we are concerned with the

existence of nontrivial solutions of boundary value problems (BVPs) consisting of the

scalar nth order differential equation

u(n) + g(t)f(t, u) = 0, t ∈ (0, 1), (1.1)

and one of the three nonhomogeneous multi–point boundary conditions (BCs)










u(i)(0) = 〈α, u(i)(ξ)〉 + λi, i = 0, . . . , n− 3,

u(n−1)(0) = 〈β, u(n−1)(ξ)〉 − λn−2,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉 + λn−1,

(1.2)
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









u(i)(0) = 〈α, u(i)(ξ)〉 + λi, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉 + λn−2,

u(n−1)(1) = 〈γ, u(n−1)(ξ)〉 + λn−1,

(1.3)

and










u(i)(0) = 〈α, u(i)(ξ)〉 + λi, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉 + λn−2,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉 + λn−1,

(1.4)

where n ≥ 2 is an integer, f : [0, 1] × R → R and g : (0, 1) → R+ are continuous,

g 6≡ 0 on any subinterval of (0, 1), λi ∈ R+, and u(i)(ξ) =
(

u(i)(ξ1), . . . , u
(i)(ξm)

)

for

i = 0, . . . , n − 1. By a nontrivial solution of BVP (1.1), (1.2), we mean a function

u ∈ Cn−1[0, 1] ∩ Cn(0, 1) such that u(t) 6≡ 0 on (0, 1), u(t) satisfies Eq. (1.1) and BC

(1.2). If u(t) > 0 on (0, 1), then u(t) is a positive solution. Similar definitions also

apply for BVPs (1.1), (1.3) and (1.1), (1.4) as well as for negative solutions of these

problems.

We remark that in case n = 2, the first equations in BCs (1.2), (1.3), and (1.4)

vanish, and BVPs (1.1), (1.2) and (1.1), (1.3) and (1.1), (1.4) now reduce to the

second order BVPs consisting of the equation

u′′ + g(t)f(t, u) = 0, t ∈ (0, 1), (1.5)

one of the BCs

u′(0) = 〈β, u′(ξ)〉 − λ0, u(1) = 〈γ, u(ξ)〉+ λ1, (1.6)

u(0) = 〈β, u(ξ)〉+ λ0, u
′(1) = 〈γ, u′(ξ)〉 + λ1, (1.7)

and

u(0) = 〈β, u(ξ)〉+ λ0, u(1) = 〈γ, u(ξ)〉+ λ1. (1.8)

When f is positone (i.e., f ≥ 0), existence of solutions of the above second order

BVPs, or some of their variations, has been extensively investigated in recent years.

For instance, papers [10, 21, 22, 23, 25, 26, 29, 41, 42] studied BVPs with one–

parameter BCs and [13, 14, 15, 16, 17] studied BVPs with two–parameter BCs. In

particular, for one–parameter problems, Ma [25] studied BVP (1.5), (1.8) with m = 1

and β = λ0 = 0. Under certain assumptions, he showed that there exists λ∗1 > 0 such

that BVP (1.5), (1.8) has at least one positive solution for 0 < λ1 < λ∗1 and has no

positive solution for λ1 > λ∗1; later, Sun et al. [29] proved similar results for BVP

(1.5), (1.6) with β = (0, . . . , 0) and λ0 = 0; Kwong and Wong [21] further significantly
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improved the results in [29] and also constructed a counterexample to point out

that one of the main results in [29] is actually false; Zhang and Sun [41] recently

obtained results, similar to those in [25], for BVP (1.5), (1.7) with λ0 = 0. Paper [21]

does contain some optimal existence criteria. As for the second order two–parameter

problems, Kong and Kong [13, 14, 15, 16] studied BVPs (1.5), (1.6) and (1.5), (1.8)

with λ0, λ1 ∈ R and established many existence, nonexistence, and multiplicity results

for positive solutions of the problems. Moreover, under some conditions, they proved

that there exists a continuous curve Γ separating the (λ0, λ1)–plane into two disjoint

connected regions ΛE and ΛN with Γ ⊆ ΛE such that BVPs (1.5), (1.6) and (1.5),

(1.8) have at least two solutions for (λ0, λ1) ∈ ΛE \ Γ, have at least one solution for

(λ0, λ1) ∈ Γ, and have no solution for (λ0, λ1) ∈ ΛN . The uniqueness of positive

solutions and the dependence of positive solutions on the parameters λ0 and λ1 are

investigated in [17] for BVP (1.5), (1.8). Recently, higher order positone BVPs with

nonhomogeneous BCs have also been studied in the literature, for example, in [7, 8,

18, 19, 20, 28, 31, 32, 37]. In particular, paper [20] studied BVPs (1.1), (1.2) and

(1.1), (1.3) and proved several optimal existence criteria for positive solutions of these

problems under the assumption that f is nonnegative. In the present paper, we allow

f to change sign.

However, very little has been done in the literature on BVPs with nonhomogeneous

BCs when the nonlinearities are sign–changing functions. As far as we know, the

only work to tackle this situation is the recent paper [6], where BVP (1.5), (1.8) is

considered with m = 2, β = (β1, 0), and γ = (0, γ2), and where sufficient conditions

for the existence of nontrivial solutions are obtained. Motivated partially by the recent

papers [6, 12, 18, 20, 24], here we will derive several new criteria for the existence

of nontrivial solutions, positive solutions, and negative solutions of BVPs (1.1), (1.2)

and (1.1), (1.3) and (1.1), (1.4) when the nonlinear term f is a sign-changing function

and not necessarily bounded from below. The proof uses topological degree theory

together with a comparison between the behavior of the quotient f(t, x)/x for x near

0 and ±∞ and the smallest positive characteristic values (given by (3.1) below) of

some related linear operators L, L̃, and L̂ (defined by (2.31)–(2.33) in Section 2).

These characteristic values are known to exist by the Krein–Rutman theorem. Our
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results extend and improve many recent works on BVPs with nonhomogeneous BCs,

especially those in papers [6, 10, 13, 14, 15, 16, 18, 19, 20, 25, 29, 41, 42]. We

believe that our results are new even for homogeneous problems, i.e., when λi = 0,

i = 0, . . . , n−1, in BCs (1.2), (1.3), and (1.4). For other studies on optimal existence

criteria on BVPs with homogeneous BCs, we refer the reader to [2, 3, 11, 27, 30, 33,

34, 35, 36, 38, 40] and the references therein. In particular, Webb and Infante [35]

studied some higher order problems and obtained sharp results for the existence of

one positive solution. They gave some non-existence results as well. The nonlocal

boundary conditions in [35] are different from the ones studied here. Webb and Infante

were mainly concerned with homogeneous boundary conditions but nonhomogeneous

boundary conditions were also treated.

We assume the following condition holds throughout without further mention:

(H) 0 ≤ α < 1, 0 ≤ β < 1, 0 ≤ γ < 1, and
∫ 1

0
g(s)ds <∞.

The rest of this paper is organized as follows. Section 2 contains some preliminary

lemmas, Sections 3 contains the main results of this paper and several examples, and

the proofs of the main results are presented in Section 4.

2. Preliminary results

In this section, we present some preliminary results that will be used in the state-

ments and the proofs of the main results. In the rest of this paper, the bold 0 stands

for the zero element in any given Banach space. We refer the reader to [9, Lemma

2.5.1] for the proof of the following well known lemma.

Lemma 2.1. Let Ω be a bounded open set in a real Banach space X with 0 ∈ Ω and

T : Ω → X be compact. If

Tu 6= τu for all u ∈ ∂Ω and τ ≥ 1,

then the Leray-Schauder degree

deg(I − T,Ω, 0) = 1.

Let (X, ||·||) be a real Banach space and L : X → X be a linear operator. We recall

that λ is an eigenvalue of L with a corresponding eigenfunction ϕ if ϕ is nontrivial
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and Lϕ = λϕ. The reciprocals of eigenvalues are called the characteristic values of

L. Recall also that a cone P in X is called a total cone if X = P − P .

The following Krein-Rutman theorem can be found in either [1, Theorem 19.2] or

[39, Proposition 7.26].

Lemma 2.2. Assume that P is a total cone in a real Banach space X. Let L : X → X

be a compact linear operator with L(P ) ⊆ P and the spectral radius, rL, of L satisfy

rL > 0. Then rL is an eigenvalue of L with an eigenfunction in P .

Let X∗ be the dual space of X, P be a total cone in X, and P ∗ be the dual cone

of P , i.e.,

P ∗ = {l ∈ X∗ : l(u) ≥ 0 for all u ∈ P}.

Let L,M : X → X be two linear compact operators such that L(P ) ⊆ P and

M(P ) ⊆ P . If their spectral radii rL and rM are positive, then by Lemma 2.2, there

exist ϕL, ϕM ∈ P \ {0} such that

LϕL = rLϕL and MϕM = rMϕM . (2.1)

Assume there exists h ∈ P ∗ \ {0} such that

L∗h = rMh, (2.2)

where L∗ is the dual operator of L. Choose δ > 0 and define

P (h, δ) = {u ∈ P : h(u) ≥ δ||u||}. (2.3)

Then, P (h, δ) is a cone in X.

In the following, Lemma 2.3 is a generalization of [12, Theorem 2.1] and it is proved

in [24, Lemma 2.5] for the case when L and M are two specific linear operators, but

the proof there also works for any general linear operators L and M satisfying (2.1)

and (2.2). Lemma 2.4 generalizes [4, Lemma 3.5] and it is proved in [5, Lemma 2.5].

From here on, for any R > 0, let B(0, R) = {u ∈ X : ||u|| < R} be the open ball of

X centered at 0 with radius R.

Lemma 2.3. Assume that the following conditions hold:

(A1) There exist ϕL, ϕM ∈ P \{0} and h ∈ P ∗ \{0} such that (2.1) and (2.2) hold

and L(P ) ⊆ P (h, δ);
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(A2) H : X → P is a continuous operator and satisfies

lim
||u||→∞

||Hu||

||u||
= 0;

(A3) F : X → X is a bounded continuous operator and there exists u0 ∈ X such

that Fu+Hu+ u0 ∈ P for all u ∈ X;

(A4) There exist v0 ∈ X and ǫ > 0 such that

LFu ≥ r−1
M (1 + ǫ)Lu− LHu− v0 for all u ∈ X.

Let T = LF . Then there exists R > 0 such that the Leray-Schauder degree

deg(I − T,B(0, R), 0) = 0.

Lemma 2.4. Assume that (A1) and the following conditions hold:

(A2)∗ H : X → P is a continuous operator and satisfies

lim
||u||→0

||Hu||

||u||
= 0;

(A3)∗ F : X → X is a bounded continuous operator and there exists r1 > 0 such

that

Fu+Hu ∈ P for all u ∈ X with ||u|| < r1;

(A4)∗ There exist ǫ > 0 and r2 > 0 such that

LFu ≥ r−1
M (1 + ǫ)Lu for all u ∈ X with ||u|| < r2.

Let T = LF . Then there exists 0 < R < min{r1, r2} such that the Leray-Schauder

degree

deg(I − T,B(0, R), 0) = 0.

Now let

G(t, s) =

{

1 − s, 0 ≤ t ≤ s ≤ 1,

1 − t, 0 ≤ s ≤ t ≤ 1,
(2.4)

G̃(t, s) =

{

t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1,
(2.5)

and

Ĝ(t, s) =

{

t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1 − t), 0 ≤ s ≤ t ≤ 1,
(2.6)

EJQTDE, 2010 No. 28, p. 6



Then, it is well known that G(t, s) is the Green’s function of the BVP

−u′′ = 0 on (0, 1), u′(0) = u(1) = 0,

G̃(t, s) is the Green’s function of the BVP

−u′′ = 0 on (0, 1), u(0) = u′(1) = 0,

and Ĝ(t, s) is the Green’s function of the BVP

−u′′ = 0 on (0, 1), u(0) = u(1) = 0.

Recall that the characteristic function χ on an interval I is given by

χI(t) =

{

1, t ∈ I,

0, t /∈ I.

In the sequel, we write

G(ξ, s) =
(

G(ξ1, s), . . . , G(ξm, s)
)

,

χ[0,ξ](s) =
(

χ[0,ξ1](s), . . . , χ[0,ξm](s)
)

,

ξ(1 − ξ) =
(

ξ1(1 − ξ1), . . . , ξm(1 − ξm)
)

,

and for any v ∈ C[0, 1], we let

v(ξ) = (v(ξ1), . . . , v(ξm)) .

We also use some other similar notations that will be clear from the context and will

not be listed here.

Define

H1(t, s) =
〈α, χ[0,ξ](s)〉

1 − α
+ χ[0,t](s), (2.7)

H0(t, s) = G(t, s) +
〈γ,G(ξ, s)〉

1 − γ
+

[1 − 〈γ, ξ〉 − (1 − γ)t]〈β, χ[0,ξ](s)〉

(1 − β)(1 − γ)
, (2.8)

H̃0(t, s) = G̃(t, s) +
〈β, G̃(ξ, s)〉

1 − β
+

[〈β, ξ〉 + (1 − β)t]〈γ, χ[ξ,1](s)〉

(1 − β)(1 − γ)
, (2.9)

Ĥ0(t, s) = Ĝ(t, s) +
t

ρ
[(1 − β)〈γ, Ĝ(ξ, s)〉 − (1 − γ)〈β, Ĝ(ξ, s)〉]

+
1

ρ
[(1 − 〈γ, ξ〉)〈β, Ĝ(ξ, s)〉 + 〈β, ξ〉〈γ, Ĝ(ξ, s)〉], (2.10)

where

ρ = (1 − β)(1 − 〈γ, ξ〉) + (1 − γ)〈β, ξ〉 > 0. (2.11)
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For i = 1, . . . , n− 1, define Ki(t, s), K̃i(t, s), and K̂i(t, s) recursively as follows

K1(t, s) = H0(t, s), Ki(t, s) =

∫ 1

0

H1(t, τ)Ki−1(τ, s)dτ, i = 2, . . . , n− 1, (2.12)

K̃1(t, s) = H̃0(t, s), K̃i(t, s) =

∫ 1

0

H1(t, τ)K̃i−1(τ, s)dτ, i = 2, . . . , n− 1,

and

K̂1(t, s) = Ĥ0(t, s), K̂i(t, s) =

∫ 1

0

H1(t, τ)K̂i−1(τ, s)dτ, i = 2, . . . , n− 1.

Remark 2.1. It is easy to see that, for i = 1, . . . , n − 1, Ki(t, s) ≥ 0, K̃i(t, s) ≥ 0,

K̂i(t, s) ≥ 0 for t, s ∈ [0, 1], and Ki(t, s) > 0, K̃i(t, s) > 0, K̂i(t, s) > 0 for t, s ∈ (0, 1).

The following lemma provides the equivalent integral forms for some BVPs.

Lemma 2.5. Let k ∈ L(0, 1) ∩ C(0, 1). Then we have the following:

(a) The function u(t) is a solution of the BVP consisting of the equation

u(n) + k(t) = 0, t ∈ (0, 1), (2.13)

and the BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−1)(0) = 〈β, u(n−1)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,

if and only if

u(t) =

∫ 1

0

Kn−1(t, s)k(s)ds.

(b) The function u(t) is a solution of the BVP consisting of Eq. (2.13) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−1)(1) = 〈γ, u(n−1)(ξ)〉,

if and only if

u(t) =

∫ 1

0

K̃n−1(t, s)k(s)ds.

(c) The function u(t) is a solution of the BVP consisting of Eq. (2.13) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,
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if and only if

u(t) =

∫ 1

0

K̂n−1(t, s)k(s)ds.

Parts (a) and (b) of Lemma 2.5 were proved in [20, Lemma 2.2], and part (c) can

be proved similarly. We omit the proof of part (c) of the lemma.

Lemma 2.6 below obtains some useful estimates for Kn−1(t, s), K̃n−1(t, s), and

K̂n−1(t, s).

Lemma 2.6. We have the following:

(a) The function Kn−1(t, s) satisfies

µ(t)(1 − s) ≤ Kn−1(t, s) ≤ ν(1 − s) for t, s ∈ [0, 1], (2.14)

where

µ(t) =















1 − t+
γ − 〈γ, ξ〉

1 − γ
, n = 2,

∫ t

0

(t− τ)n−3

(n− 3)!

(

1 − τ +
γ − 〈γ, ξ〉

1 − γ

)

dτ, n ≥ 3,

(2.15)

and

ν =

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm

1

(1 − α)n−2
, (2.16)

(b) The function K̃n−1(t, s) satisfies

µ̃(t)s ≤ K̃n−1(t, s) ≤ ν̃s for t, s ∈ [0, 1],

where

µ̃(t) =



















t+
〈β, ξ〉

1 − β
, n = 2,

∫ t

0

(t− τ)n−3

(n− 3)!

(

τ +
〈β, ξ〉

1 − β

)

dτ, n ≥ 3,

(2.17)

and

ν̃ =

(

1

1 − β
+

〈β, ξ〉+ 1 − β

(1 − β)(1 − γ)

)

ξ1 + γ

ξ1

1

(1 − α)n−2
, (2.18)

(c) The function K̂n−1(t, s) satisfies

µ̂(t)s(1 − s) ≤ K̂n−1(t, s) ≤ ν̂s(1 − s) for t, s ∈ [0, 1],
EJQTDE, 2010 No. 28, p. 9



where

µ̂(t) =











t(1 − t) + min
{

â, b̂
}

, n = 2,
∫ t

0

(t− τ)n−3

(n− 3)!

(

τ(1 − τ) + min
{

â, b̂
}

)

dτ, n ≥ 3,
(2.19)

and

ν̂ =
(

1 + max
{

ĉ, d̂
}

) 1

(1 − α)n−2
, (2.20)

with

â =
1

ρ
[(1 − 〈γ, ξ)〉)〈β, ξ(1− ξ)〉 + 〈β, ξ〉〈γ, ξ(1− ξ)〉], (2.21)

b̂ =
1

ρ
[(1 − β + 〈β, ξ)〉)〈γ, ξ(1− ξ)〉 + (γ − 〈γ, ξ〉)〈β, ξ(1− ξ)〉], (2.22)

ĉ =
1

ρ
[(1 − 〈γ, ξ〉)β + 〈β, ξ〉γ], (2.23)

d̂ =
1

ρ
[(1 − β + 〈β, ξ)〉)γ + (γ − 〈γ, ξ〉)β], (2.24)

and ρ is defined by (2.11).

Proof. We first prove part (a). From (2.4), it is clear that

(1 − t)(1 − s) ≤ G(t, s) ≤ (1 − s) for t, s ∈ [0, 1].

Then, from (2.8), it is easy to see that

H0(t, s) ≥ (1 − t)(1 − s) +
〈γ,G(ξ, s)〉

1 − γ
≥

(

1 − t+
γ − 〈γ, ξ〉

1 − γ

)

(1 − s) (2.25)

and

H0(t, s) ≤ 1 − s+
γ

1 − γ
(1 − s) +

1 − 〈γ, ξ〉

(1 − β)(1 − γ)
βχ[0,ξm](s)

=
1

1 − γ
(1 − s) +

1 − 〈γ, ξ〉

(1 − β)(1 − γ)
βχ[0,ξm](s)

≤

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

(1 − s + βχ[0,ξm](s)) (2.26)

for t, s ∈ [0, 1]. For s ∈ [0, ξm], since
(

1 − s+ β

1 − s

)′

=
β

(1 − s)2
≥ 0,

we see that (1 − s+ β)/(1 − s) is nondecreasing on [0, ξm], and so

1 − s+ β

1 − s
≤

1 − ξm + β

1 − ξm
for s ∈ [0, ξm].
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This in turn implies

1 − s + βχ[0,ξm](s) = 1 − s+ β ≤
1 − ξm + β

1 − ξm
(1 − s) for s ∈ [0, ξm].

Note that

1 − s + βχ[0,ξm](s) = 1 − s ≤
1 − ξm + β

1 − ξm
(1 − s) for s ∈ (ξm, 1].

Then,

1 − s+ βχ[0,ξm](s) ≤
1 − ξm + β

1 − ξm
(1 − s) for s ∈ [0, 1].

Combing the above inequality with (2.26) yields

H0(t, s) ≤

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm
(1 − s). (2.27)

When n = 2, note from (2.12) that Kn−1(t, s) = H0(t, s), and by (2.15) and (2.16),

µ(t) = 1 − t+
γ − 〈γ, ξ〉

1 − γ
and ν =

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm
.

Then, (2.14) follows from (2.25) and (2.27).

Now we assume that n ≥ 3. For t, s ∈ [0, 1], from (2.7),

χ[0,t](s) ≤ H1(t, s) ≤
α

1 − α
+ 1 =

1

1 − α
. (2.28)

Then, from (2.12), (2.25), (2.27), (2.28), it follows that

K2(t, s) ≥

∫ t

0

(

1 − τ +
γ − 〈γ, ξ〉

1 − γ

)

dτ (1 − s)

and

K2(t, s) ≤

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm

1

1 − α
(1 − s).

Combining the above inequalities with (2.12) and (2.28), we see that

K3(t, s) ≥

∫ t

0

∫ v

0

(

1 − τ +
γ − 〈γ, ξ〉

1 − γ

)

dτdv (1 − s)

=

∫ t

0

(t− τ)

(

1 − τ +
γ − 〈γ, ξ〉

1 − γ

)

dτ (1 − s)

and

K3(t, s) ≤

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm

1

(1 − α)2
(1 − s).

An induction argument easily shows that

Kn−1(t, s) ≥

∫ t

0

(t− τ)n−3

(n− 3)!

(

1 − τ +
γ − 〈γ, ξ〉

1 − γ

)

dτ (1 − s) = µ(t)(1 − s)
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and

Kn−1(t, s) ≤

(

1

1 − γ
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)

)

1 − ξm + β

1 − ξm

1

(1 − α)n−2
(1 − s)

= ν(1 − s)

for t, s ∈ [0, 1]. Thus, (2.14) holds. This prove part (a).

Next, we show part (b). From (2.5), we have

ts ≤ G̃(t, s) ≤ s for t, s ∈ [0, 1].

Then, from (2.9), it is easy to see that

H̃0(t, s) ≥ ts+
〈β, G̃(ξ, s)〉

1 − β
≥

(

t+
〈β, ξ〉

1 − β

)

s

and

H̃0(t, s) ≤ s+
β

1 − β
s+

〈β, ξ〉 + 1 − β

(1 − β)(1 − γ)
γχ[ξ1,1](s)

=
1

1 − β
s+

〈β, ξ〉+ 1 − β

(1 − β)(1 − γ)
γχ[ξ1,1](s)

≤

(

1

1 − β
+

〈β, ξ〉+ 1 − β

(1 − β)(1 − γ)

)

(s+ γχ[ξ1,1](s)) (2.29)

for t, s ∈ [0, 1]. Note that (s+ γ)/s is nonincreasing on [ξ1, 1]. Then,

s+ γ

s
≤
ξ1 + γ

ξ1
for s ∈ [ξ1, 1].

Thus,

s+ γχ[ξ1,1](s) = s+ γ ≤
ξ1 + γ

ξ1
s for s ∈ [ξ1, 1].

Since

s+ γχ[ξ1,1](s) = s ≤
ξ1 + γ

ξ1
s for s ∈ [0, ξ1),

we have

s+ γχ[ξ1,1](s) ≤
ξ1 + γ

ξ1
s for s ∈ [0, 1].

Then, from (2.29),

H̃0(t, s) ≤

(

1

1 − β
+

〈β, ξ〉+ 1 − β

(1 − β)(1 − γ)

)

ξ1 + γ

ξ1
s.

The rest of the proof is similar to the latter part of the one used in showing (2.14),

and hence is omitted.
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Finally, we prove part (c). From (2.6), we have

t(1 − t)s(1 − s) ≤ Ĝ(t, s) ≤ s(1 − s) for t, s ∈ [0, 1].

Let â, b̂, ĉ, and d̂ be defined by (2.21)–(2.24), and define

p(t) =
t

ρ
[(1 − β)〈γ, Ĝ(ξ, s)〉 − (1 − γ)〈β, Ĝ(ξ, s)〉]

+
1

ρ
[(1 − 〈γ, ξ〉)〈β, Ĝ(ξ, s)〉+ 〈β, ξ〉〈γ, Ĝ(ξ, s)〉].

Then,

âs(1 − s) =
1

ρ
[(1 − 〈γ, ξ〉)〈β, ξ(1− ξ)〉 + 〈β, ξ〉〈γ, ξ(1− ξ)〉]s(1 − s)

≤ p(0) =
1

ρ
[(1 − 〈γ, ξ〉)〈β, Ĝ(ξ, s)〉 + 〈β, ξ〉〈γ, Ĝ(ξ, s)〉]

≤
1

ρ
[(1 − 〈γ, ξ〉)β + 〈β, ξ〉γ]s(1 − s)

= ĉs(1 − s)

and

b̂s(1 − s) =
1

ρ
[(1 − β + 〈β, ξ)〉)〈γ, ξ(1− ξ)〉 + (γ − 〈γ, ξ〉)〈β, ξ(1− ξ)〉]s(1 − s)

≤ p(1) =
1

ρ
[(1 − β + 〈β, ξ〉)〈γ, Ĝ(ξ, s)〉 + (γ − 〈γ, ξ〉)〈β, Ĝ(ξ, s)〉]

≤
1

ρ
[(1 − β + 〈β, ξ)〉)γ + (γ − 〈γ, ξ〉)β]s(1 − s)

= d̂s(1 − s),

i.e.,

âs(1 − s) ≤ p(0) ≤ ĉs(1 − s) and b̂s(1 − s) ≤ p(1) ≤ d̂s(1 − s).

Moreover, from (2.10), we see that Ĥ0(t, s) = Ĝ(t, s) + p(t). Thus,

Ĥ0(t, s) ≥ t(1 − t)s(1 − s) + min{p(0), p(1)}

≥ t(1 − t)s(1 − s) + min{â, b̂}s(1 − s)

=
(

t(1 − t) + min{â, b̂}
)

s(1 − s)
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and

Ĥ0(t, s) ≤ s(1 − s) + max{p(0), p(1)}

≤ s(1 − s) + max{ĉ, d̂}s(1 − s)

=
(

1 + max{ĉ, d̂}
)

s(1 − s).

The rest of the proof is similar to the latter part of the one used in showing (2.14),

and hence is omitted. This completes the proof of the lemma. �

In the remainder of the paper, let X = C[0, 1] be the Banach space of continuous

functions equipped with the norm ||u|| = maxt∈[0,1] |u(t)|. Define a cone P in X by

P = {u ∈ X : u(t) ≥ 0 on [0, 1]} . (2.30)

Let the linear operators L,M, L̃, M̃ , L̂, M̂ : X → X be defined by

Lu(t) =

∫ 1

0

Kn−1(t, s)g(s)u(s)ds, Mu(t) =

∫ 1

0

Kn−1(s, t)g(s)u(s)ds, (2.31)

L̃u(t) =

∫ 1

0

K̃n−1(t, s)g(s)u(s)ds, M̃u(t) =

∫ 1

0

K̃n−1(s, t)g(s)u(s)ds, (2.32)

and

L̂u(t) =

∫ 1

0

K̂n−1(t, s)g(s)u(s)ds, M̂u(t) =

∫ 1

0

K̂n−1(s, t)g(s)u(s)ds. (2.33)

Remark 2.2. When g ≡ 1, and the pair L and M are considered as operators in

the space L2(0, 1), then L and M are adjoints of each other, so rL and rM would be

equal. Since the function g is present, they are not adjoints of each other. However,

for g as in this paper, as can be seen from Proposition 5.1 in the Appendix, the proof

of which is provided by J. R. L. Webb, we do have that rL and rM are equal. Similar

statements hold for the other pairs of operators as well.

From here on, let rL, rM , rL̃, rM̃ , rL̂, and rM̂ be the spectral radii of L, M , L̃, M̃ ,

L̂, and M̂ , respectively. The next lemma provides some information about the above

operators.

Lemma 2.7. The operators L,M, L̃, M̃ , L̂, M̂ map P into P and are compact. More-

over, we have

(a) rL > 0 and rL is an eigenvalue of L with an eigenfunction ϕL ∈ P ;
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(b) rM > 0 and rM is an eigenvalue of M with an eigenfunction ϕM ∈ P ;

(c) rL̃ > 0 and rL̃ is an eigenvalue of L̃ with an eigenfunction ϕL̃ ∈ P ;

(d) rM̃ > 0 and rM̃ is an eigenvalue of M̃ with an eigenfunction ϕM̃ ∈ P ;

(e) rL̂ > 0 and rL̂ is an eigenvalue of L̂ with an eigenfunction ϕL̂ ∈ P ;

(f) rM̂ > 0 and rM̂ is an eigenvalue of M̂ with an eigenfunction ϕM̂ ∈ P .

The proof of the compactness and cone invariance for these operators is standard.

By virtue of Lemma 2.2, part (a) was proved in [20, Lemma 2.6] and parts (b)–(f)

can be proved essentially by the same way. We omit the proof of the lemma.

3. Main results

For convenience, we will use the following notations.

f0 = lim inf
x→0+

min
t∈[0,1]

f(t, x)

x
, f ∗

0 = lim inf
x→0

min
t∈[0,1]

f(t, x)

x
,

f∞ = lim inf
x→∞

min
t∈[0,1]

f(t, x)

x
, f ∗

∞ = lim inf
|x|→∞

min
t∈[0,1]

f(t, x)

x
,

F0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

, F∞ = lim sup
|x|→∞

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

.

Let rM , rM̃ , rM̂ , ϕM , ϕM̃ , and ϕM̂ be given as in Lemma 2.7. Define

µM =
1

rM

, µM̃ =
1

rM̃

, and µM̂ =
1

rM̂

. (3.1)

Clearly, µM is the smallest positive characteristic value of M and satisfies ϕM =

µMMϕM . Similar statements hold for µM̃ and µM̂ .

We need the following assumptions.

(H1) There exist three nonnegative functions a, b ∈ C[0, 1] and c ∈ C(R) such that

c(x) is even and nondecreasing on R+,

f(t, x) ≥ −a(t) − b(t)c(x) for all (t, x) ∈ [0, 1] × R, (3.2)

and

lim
x→∞

c(x)

x
= 0. (3.3)

EJQTDE, 2010 No. 28, p. 15



(H2) There exist a constant r ∈ (0, 1) and two nonnegative functions d ∈ C[0, 1]

and e ∈ C(R) such that e is even and nondecreasing on R
+,

f(t, x) ≥ −d(t)e(x) for all (t, x) ∈ [0, 1] × [−r, 0], (3.4)

and

lim
x→0

e(x)

x
= 0. (3.5)

(H3) xf(t, x) ≥ 0 for (t, x) ∈ [0, 1] × R.

Remark 3.1. Here, we want to emphasize that, in (H1), we assume that f(t, x) is

bounded from below by −a(t) − b(t)c(x) for all (t, x) ∈ [0, 1] × R; however in (H2),

we only require that f(t, x) is bounded from below by −d(t)e(x) for t ∈ [0, 1] and x

in a small left-neighborhood of 0.

We first state our existence results for BVP (1.1), (1.2).

Theorem 3.1. Assume that (H1) holds and F0 < µM < f∞. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one nontrivial

solution.

Theorem 3.2. Assume that (H2) holds and F∞ < µM < f0. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one nontrivial

solution.

Theorem 3.3. Assume that (H3) holds, F0 < µM < f ∗
∞, and λi = 0 for i = 0, . . . , n−

1. Then BVP (1.1), (1.2) has at least one positive solution and one negative solution.

Theorem 3.4. Assume that (H3) holds, F∞ < µM < f ∗
0 , and λi = 0 for i =

0, . . . , n−1. Then BVP (1.1), (1.2) has at least one positive solution and one negative

solution.

Remark 3.2. If the nonlinear term f(t, x) is separable, say f(t, x) = f1(t)f2(x), then

conditions such as µM < f∞ and µM < f0 imply that f1(t) > 0 on [0, 1]. However,

the function g(t) in Eq. (1.1) may have zeros on (0, 1).

We now present some applications of the above theorems. To this end, let
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A =
1

ν
∫ 1

0
(1 − s)g(s)ds

and B =
ν

µ
∫ 1

0
(1 − s)g(s)µ(s)ds

, (3.6)

where µ(t) and ν are defined by (2.15) and (2.16), respectively, and µ = mint∈[θ1,θ2] µ(t)

with 0 < θ1 < θ2 < 1 being fixed constants.

The following corollaries are immediate consequences of Theorems 3.1–3.4.

Corollary 3.1. Assume that (H1) holds and F0/A < 1 < f∞/B. Then the conclusion

of Theorem 3.1 holds.

Corollary 3.2. Assume that (H2) holds and F∞/A < 1 < f0/B. Then the conclusion

of Theorem 3.2 holds.

Corollary 3.3. Assume that (H3) holds, F0/A < 1 < f ∗
∞/B, and λi = 0 for i =

0, . . . , n− 1. Then the conclusion of Theorem 3.3 holds.

Corollary 3.4. Assume that (H3) holds, F∞/A < 1 < f ∗
0 /B, and λi = 0 for i =

0, . . . , n− 1. Then the conclusion of Theorem 3.4 holds.

Replacing µM by µM̃ and µM̂ gives the following results for BVPs (1.1), (1.3)

and (1.1), (1.4), respectively, that are analogous to Theorems 3.1–3.4 and Corollary

3.1–3.4 for BVP (1.1), (1.2).

Theorem 3.5. Assume that (H1) holds and F0 < µM̃ < f∞. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.3) has at least one nontrivial

solution.

Theorem 3.6. Assume that (H2) holds and F∞ < µM̃ < f0. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.3) has at least one nontrivial

solution.

Theorem 3.7. Assume that (H3) holds, F0 < µM̃ < f ∗
∞, and λi = 0 for i = 0, . . . , n−

1. Then BVP (1.1), (1.3) has at least one positive solution and one negative solution.

Theorem 3.8. Assume that (H3) holds, F∞ < µM̃ < f ∗
0 , and λi = 0 for i =

0, . . . , n−1. Then BVP (1.1), (1.3) has at least one positive solution and one negative

solution.
EJQTDE, 2010 No. 28, p. 17



Let

Ã =
1

ν̃
∫ 1

0
sg(s)ds

and B̃ =
ν̃

µ̃
∫ 1

0
sg(s)µ̃(s)ds

, (3.7)

where µ̃(t) and ν̃ are defined by (2.17) and (2.18), respectively, and µ̃ = mint∈[θ1,θ2] µ̃(t)

with 0 < θ1 < θ2 < 1 being fixed constants.

Corollary 3.5. Assume that (H1) holds and F0/Ã < 1 < f∞/B̃. Then the conclusion

of Theorem 3.5 holds.

Corollary 3.6. Assume that (H2) holds and F∞/Ã < 1 < f0/B̃. Then the conclusion

of Theorem 3.6 holds.

Corollary 3.7. Assume that (H3) holds, F0/Ã < 1 < f ∗
∞/B̃, and λi = 0 for i =

0, . . . , n− 1. Then the conclusion of Theorem 3.7 holds.

Corollary 3.8. Assume that (H3) holds, F∞/Ã < 1 < f ∗
0 /B̃, and λi = 0 for i =

0, . . . , n− 1. Then the conclusion of Theorem 3.8 holds.

Theorem 3.9. Assume that (H1) holds and F0 < µM̂ < f∞. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.4) has at least one nontrivial

solution.

Theorem 3.10. Assume that (H2) holds and F∞ < µM̂ < f0. Then, for (λ0, . . . , λn−1)

∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.4) has at least one nontrivial

solution.

Theorem 3.11. Assume that (H3) holds, F0 < µM̂ < f ∗
∞, and λi = 0 for i =

0, . . . , n−1. Then BVP (1.1), (1.4) has at least one positive solution and one negative

solution.

Theorem 3.12. Assume that (H3) holds, F∞ < µM̂ < f ∗
0 , and λi = 0 for i =

0, . . . , n−1. Then BVP (1.1), (1.4) has at least one positive solution and one negative

solution.

Let

Â =
1

ν̂
∫ 1

0
s(1 − s)g(s)ds

and B̂ =
ν̂

µ̂
∫ 1

0
s(1 − s)g(s)µ̂(s)ds

, (3.8)

EJQTDE, 2010 No. 28, p. 18



where µ̂(t) and ν̂ are defined by (2.19) and (2.20), respectively, and µ̂ = mint∈[θ1,θ2] µ̂(t)

with 0 < θ1 < θ2 < 1 being fixed constants.

Corollary 3.9. Assume that (H1) holds and F0/Â < 1 < f∞/B̂. Then the conclusion

of Theorem 3.9 holds.

Corollary 3.10. Assume that (H2) holds and F∞/Â < 1 < f0/B̂. Then the conclu-

sion of Theorem 3.10 holds.

Corollary 3.11. Assume that (H3) holds, F0/Â < 1 < f ∗
∞/B̂, and λi = 0 for

i = 0, . . . , n− 1. Then the conclusion of Theorem 3.11 holds.

Corollary 3.12. Assume that (H3) holds, F∞/Â < 1 < f ∗
0 /B̂, and λi = 0 for

i = 0, . . . , n− 1. Then the conclusion of Theorem 3.12 holds.

Although not explicitly discussed in this paper since we ask that m ≥ 1, it is

interesting to examine our results in the case of two-point boundary conditions, that

is, if α = β = γ = 0. All theorems and corollaries stated in this section remain valid

in this case. Notice that the quantities ξ1 and ξm do not affect the values in (2.16)

and (2.18).

Remark 3.3. We wish to point out that the optimal existence results given in this

section, Theorems 3.1–3.12, are all related to the smallest positive characteristic values

of the operators M , M̃ , and M̂ as given by (3.1). In [20], the authors proved optimal

existence results for positive solutions of BVPs (1.1), (1.2) and (1.1), (1.3), in terms of

the smallest positive characteristic values of the operators L and L̃ as defined by (2.31)

and (2.32). In that paper it was assumed that f was nonnegative. Other optimal type

results for existence of positive solutions under different types of boundary conditions

from the ones used in this paper can be found in [2, 35, 38].

Remark 3.4. In this paper, we do not study the multiplicity and nonexistence of

solutions of the problems under consideration. Since this paper is somewhat long, we

will leave such investigations to future work. Other papers investigating these kinds

of questions for different boundary conditions include [34, 38].
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Remark 3.5. In Theorems 3.1 and 3.2 (as well as Theorems 3.5, 3.6, 3.9, 3.10), we

have the requirement that
∑n−1

i=0 λi be sufficiently small. It is worth mentioning that

this “smallness” can be estimated. For example, for n = 2, m = 3, β = (β1, 0), and

γ = (0, γ2), this was described in the paper [6] (see [6, Remark 3.2 and Example 3.2]).

We conclude this section with several examples.

Example 3.1. In equations (1.1) and (1.2), let m = 1, n = 3, α = β = γ = ξ = 1/2,

g(t) ≡ 1 on [0, 1],

f(t, x) =

{

∑k
i=1 ai(t)x

i, x ∈ [−1,∞),
∑k

i=1(−1)iai(t) − b̄(t)|x|κ + b̄(t), x ∈ (−∞,−1),
(3.9)

where k > 1 is an integer, ai, b̄ ∈ C[0, 1] with 0 ≤ ||a1|| < 1/10 and ak(t) > 0 on [0, 1],

and 0 ≤ κ < 1. Then, for (λ0, . . . , λn−1) ∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP

(1.1), (1.2) has at least one nontrivial solution.

To see this, we first note that f ∈ C([0, 1] × R) and assumption (H) is satisfied.

Let

a(t) =
k
∑

i=1

|ai(t)| + |b̄(t)|, b(t) = |b̄(t)|, and c(x) = |x|κ.

Then, it is easy to see that (H1) holds.

From (3.6) with θ1 = 1/4 and θ2 = 3/4, and by a simple calculation, we have

A = 1/10 and B = 3072/11.

Moreover, (3.9) implies that

F0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f(t, x)

x

∣

∣

∣

∣

= ||a1|| <
1

10
and f∞ = lim inf

x→∞
min
t∈[0,1]

f(t, x)

x
= ∞.

Hence, F0/A < 1 < f∞/B. The conclusion then follows from Corollary 3.1.

Example 3.2. In equations (1.1)–(1.4), let m ≥ 1 and n ≥ 2 be any integers,

ξ = (ξ1, . . . , ξm) ∈ (0, 1)m with 0 < ξ1 < . . . < ξm < 1, α, β, γ ∈ R
m
+ with 0 ≤ α,

β, γ < 1. Also let g : (0, 1) → R+ be continuous, g 6≡ 0 on any subinterval of (0, 1),
∫ 1

0
g(s)ds <∞, and

f(t, x) =











−16t2 + 13 + (|x|1/2 − 2)x1/3, x < −4,

−t2x2 + 3|x| + 1, −4 ≤ x ≤ 0,

1 − tx1/2, x > 0.

(3.10)
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Then, for (λ0, . . . , λn−1) ∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, we have

(i) BVP (1.1), (1.2) has at least one nontrivial solution.

(ii) BVP (1.1), (1.3) has at least one nontrivial solution.

(iii) BVP (1.1), (1.4) has at least one nontrivial solution.

To see this, we first note that f ∈ C([0, 1] × R) and assumption (H) is satisfied.

Now with d(t) = t2 and e(x) = x2, from (3.10), we see that (3.4) and (3.5) hold

for any r ∈ (0, 1), and so (H2) holds. Moreover, from (3.10), we have f0 = ∞ and

F∞ = 0. Thus,

F∞ < µM < f0, F∞ < µM̃ < f0, and F∞ < µM̂ < f0,

where µM , µM̃ , and µM̂ are defined in (3.1). The conclusions (i), (ii), and (iii) then

follow from Theorems 3.2, 3.6, and 3.10, respectively.

Example 3.3. In equations (1.1)–(1.4), let m ≥ 1 and n ≥ 2 be any integers, λi = 0

for i = 0, . . . , n − 1, ξ = (ξ1, . . . , ξm) ∈ (0, 1)m with 0 < ξ1 < . . . < ξm < 1, α, β,

γ ∈ R
m
+ with 0 ≤ α, β, γ < 1. Also let f(t, x) = x3 and g(t) = t−1/2. Then, we have

(i) BVP (1.1), (1.2) has at least one positive solution and one negative solution.

(ii) BVP (1.1), (1.3) has at least one positive solution and one negative solution.

(iii) BVP (1.1), (1.4) has at least one positive solution and one negative solution.

To see this, we first note that assumptions (H) and (H3) are satisfied. Moreover,

we have F0 = 0 and f ∗
∞ = ∞. Thus,

F0 < µM < f ∗
∞, F0 < µM̃ < f ∗

∞, and F0 < µM̂ < f ∗
∞,

where µM , µM̃ , and µM̂ are defined in (3.1). The conclusions (i), (ii), and (iii) then

follow from Theorems 3.3, 3.7, and 3.11, respectively.

Additional examples may also be readily given to illustrate the other results. We

leave the details to the interested reader.

4. Proofs of the main results

Let φ(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),
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u′(0) = 〈β, u′(ξ)〉 − 1, u(1) = 〈γ, u(ξ)〉,

and let ψ(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

u′(0) = 〈β, u′(ξ)〉, u(1) = 〈γ, u(ξ)〉+ 1.

Then,

φ(t) = −
t

1 − β
+

1 − 〈γ, ξ〉

(1 − β)(1 − γ)
and ψ(t) =

1

1 − γ
on [0, 1].

Let φ̃(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

u(0) = 〈β, u(ξ)〉, u′(1) = 〈γ, u′(ξ)〉 + 1,

and let ψ̃(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

u(0) = 〈β, u(ξ)〉+ 1, u′(1) = 〈γ, u′(ξ)〉.

Then, we have

φ̃(t) =
t

1 − γ
+

〈β, ξ〉

(1 − β)(1 − γ)
and ψ̃(t) =

1

1 − β
on [0, 1].

Similarly, let φ̂(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

u(0) = 〈β, u(ξ)〉, u(1) = 〈γ, u(ξ)〉 + 1,

and let ψ̂(t) be the unique solution of the BVP

u′′ = 0, t ∈ (0, 1),

u(0) = 〈β, u(ξ)〉+ 1, u(1) = 〈γ, u(ξ)〉.

Then, we have

φ̂(t) =
1

ρ
[(1 − β)t+ 〈β, ξ〉] and ψ̂(t) =

1

ρ
[(γ − 1)t+ (1 − 〈γ, ξ〉)] on [0, 1].

Clearly, φ(t), ψ(t), φ̃(t), ψ̃(t), φ̂(t), and ψ̂(t) are nonnegative on [0, 1].
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Let J1(t, s) = H1(t, s), where H1(t, s) is defined by (2.7). If n ≥ 4, then we

recursively define

Jk(t, s) =

∫ 1

0

H1(t, τ)Jk−1(τ, s)dτ, k = 2, . . . , n− 2.

We now define several functions yi(t), ỹi(t), and ŷi(t), i = 0, . . . , n− 1, as follows:

when n = 2, let

y0(t) = φ(t) and y1(t) = ψ(t), (4.1)

ỹ0(t) = φ̃(t) and ỹ1(t) = ψ̃(t),

ŷ0(t) = φ̂(t) and ŷ1(t) = ψ̂(t);

and when n ≥ 3, let

y0(t) =
1

1 − α
, yk(t) =

1

1 − α

∫ 1

0

Jk(t, s)ds, k = 1, . . . , n− 3, (4.2)

yn−2(t) =

∫ 1

0

Jn−2(t, s)φ(s)ds, (4.3)

yn−1(t) =

∫ 1

0

Jn−2(t, s)ψ(s)ds, (4.4)

and

ỹk(t) = yk(t), k = 0, . . . , n− 3,

ỹn−2(t) =

∫ 1

0

Jn−2(t, s)φ̃(s)ds,

ỹn−1(t) =

∫ 1

0

Jn−2(t, s)ψ̃(s)ds,

and

ŷk(t) = yk(t), k = 0, . . . , n− 3,

ŷn−2(t) =

∫ 1

0

Jn−2(t, s)φ̂(s)ds,

ŷn−1(t) =

∫ 1

0

Jn−2(t, s)ψ̂(s)ds.

Clearly, yi(t) ≥ 0, ỹi(t) ≥ 0, and ŷi(t) ≥ 0 for t ∈ [0, 1] and i = 0, . . . , n− 1.

The following lemma gives some properties of yi(t), ỹi(t), and ŷi(t) when n ≥ 3.

Lemma 4.1. Assume that n ≥ 3. Then, we have the following:
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(a) For any k ∈ {0, . . . , n− 3}, yk(t) is the unique solution of the BVP consisting

of the equation

u(n) = 0, t ∈ (0, 1), (4.5)

and the BC






















u(k)(0) = 〈α, u(k)(ξ)〉 + 1,

u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3, i 6= k,

u(n−1)(0) = 〈β, u(n−1)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,

and yn−2(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−1)(0) = 〈β, u(n−1)(ξ)〉 − 1,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,

and yn−1(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−1)(0) = 〈β, u(n−1)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉 + 1.

(b) For any k ∈ {0, . . . , n− 3}, ỹk(t) is the unique solution of the BVP consisting

of Eq. (4.5) and the BC






















u(k)(0) = 〈α, u(k)(ξ)〉 + 1,

u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3, i 6= k,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−1)(1) = 〈γ, u(n−1)(ξ)〉,

and ỹn−2(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉 + 1,

u(n−1)(1) = 〈γ, u(n−1)(ξ)〉,

and ỹn−1(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−1)(1) = 〈γ, u(n−1)(ξ)〉 + 1.
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(c) For any k ∈ {0, . . . , n− 3}, ŷk(t) is the unique solution of the BVP consisting

of Eq. (4.5) and the BC






















u(k)(0) = 〈α, u(k)(ξ)〉 + 1,

u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3, i 6= k,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,

and ŷn−2(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉 + 1,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉,

and ŷn−1(t) is the unique solution of the BVP consisting of Eq. (4.5) and the

BC










u(i)(0) = 〈α, u(i)(ξ)〉, i = 0, . . . , n− 3,

u(n−2)(0) = 〈β, u(n−2)(ξ)〉,

u(n−2)(1) = 〈γ, u(n−2)(ξ)〉 + 1.

Parts (a) and (b) of Lemma 4.1 were proved in [20, Lemma 2.4], and part (c) can

be proved similarly. We omit the proof of part (c) of the lemma.

For any λ = (λ0, . . . , λn−1) ∈ R
n
+, let

u(t) = v(t) +

n−1
∑

i=0

λiyi(t), t ∈ [0, 1]. (4.6)

Here, the reader is reminded that yi(t), i = 0, . . . , n− 1, are defined by (4.1) if n = 2,

and are given by (4.2)–(4.4) if n ≥ 3. Then, by Lemma 4.1 (a), BVP (1.1), (1.2) is

equivalent to the BVP consisting of the equation

v(n) + g(t)f

(

t, v +

n−1
∑

i=0

λiyi(t)

)

, t ∈ (0, 1), (4.7)

and the homogeneous BC










v(i)(0) = 〈α, v(i)(ξ)〉, i = 0, . . . , n− 3,

v(n−1)(0) = 〈β, v(n−1)(ξ)〉,

v(n−2)(1) = 〈γ, v(n−2)(ξ)〉.

(4.8)

Moreover, if v(t) is a solution of BVP (4.7), (4.8), then u(t) given by (4.6) is a solution

of BVP (1.1), (1.2).
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Let P , L, and M be defined as in (2.30) and (2.31). By Lemma 2.7, L and M map

P into P and are compact. Define operators Fλ, T : X → X by

Fλv(t) = f

(

t, v +

n−1
∑

i=0

λiyi(t)

)

(4.9)

and

Tv(t) = LFλv(t) =

∫ 1

0

Kn−1(t, s)g(s)Fλv(s)ds, (4.10)

where Kn−1 is defined by (2.12) with i = n−1. Then, Fλ is bounded, and a standard

argument shows that T is compact. Moreover, by Lemma 2.5 (a), a solution of BVP

(4.7), (4.8) is equivalent to a fixed point of T in X.

Proof of Theorem 3.1. We first verify that conditions (A1)–(A4) of Lemma 2.3 are

satisfied. By Lemma 2.7 (a) and (b), there exist ϕL, ϕM ∈ P \ {0} such that (2.1)

holds. To show (2.2), we let

h(v) =

∫ 1

0

ϕM(t)g(t)v(t)dt, v ∈ X. (4.11)

Then h ∈ P ∗ \ {0}, and from (2.1) and (2.31),

(L∗h)(v) = h(Lv) =

∫ 1

0

ϕM(t)g(t)Lv(t)dt

=

∫ 1

0

ϕM(t)g(t)

(
∫ 1

0

Kn−1(t, s)g(s)v(s)ds

)

dt

=

∫ 1

0

g(s)v(s)

(
∫ 1

0

Kn−1(t, s)g(t)ϕM(t)dt

)

ds

=

∫ 1

0

g(s)v(s)MϕM(s)ds

= rM

∫ 1

0

g(s)v(s)ϕM(s)ds = rMh(v),

i.e., h satisfies (2.2).

From the fact that ϕM = µMMϕM , (2.31), and (3.1),

rMϕM(s) =

∫ 1

0

Kn−1(t, s)g(t)ϕM(t)dt. (4.12)
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Then, by Lemma 2.6 (a) (see (2.14)), we have

rMϕM(s) ≥ (1 − s)

∫ 1

0

µ(t)g(t)ϕM(t)dt

=

(

1

ν

∫ 1

0

µ(t)g(t)ϕM(t)dt

)

ν(1 − s)

≥

(

1

ν

∫ 1

0

µ(t)g(t)ϕM(t)dt

)

Kn−1(t, s)

= δKn−1(t, s) for t, s ∈ [0, 1], (4.13)

where µ(t) and ν are defined by (2.15) and (2.16), and

δ =
1

ν

∫ 1

0

µ(t)g(t)ϕM(t)dt.

To see that δ > 0, first note that µ(t) > 0 on (0, 1) and ν > 0. If δ = 0, then

g(t)ϕM(t) ≡ 0 on (0, 1). Since rM > 0, this implies ϕM(t) ≡ 0 by (4.12), which is a

contradiction.

Let P (h, δ) be defined by (2.3). For any v ∈ P and t ∈ [0, 1], from (2.31), (4.11),

and (4.13), it follows that

h(Lv) = rMh(v) = rM

∫ 1

0

ϕM(s)g(s)v(s)ds

≥ δ

∫ 1

0

Kn−1(t, s)g(s)v(s)ds

= δLv(t).

Hence, h(Lv) ≥ δ||Lv||, i.e., L(P ) ⊆ P (h, δ). Therefore, (A1) of Lemma 2.3 holds.

Let λ = (λ0, . . . , λn−1) ∈ R
n
+ and

Hλv(t) = b̄c

(

|v(t)| +
n−1
∑

i=0

λi||yi||

)

for v ∈ X, where b̄ = maxt∈[0,1] b(t). Since c is nondecreasing on R
+, we have

Hλv(t) ≤ b̄c

(

||v||+

n−1
∑

i=0

λi||yi||

)

for all v ∈ P and t ∈ [0, 1].

Then, from the fact that c is even, it follows that

Hλv(t) ≤ b̄c

(

||v|| +
n−1
∑

i=0

λi||yi||

)

for all v ∈ X and t ∈ [0, 1].
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Thus,

||Hλv|| ≤ b̄c

(

||v|| +
n−1
∑

i=0

λi||yi||

)

for all v ∈ X.

From (3.3), we see that

lim
||v||→∞

||Hλv||

||v||
= 0 for any v ∈ X.

Thus, (A2) of Lemma 2.3 holds with H = Hλ.

Let Fλ be defined by (4.9), and u0(t) = a(t). Then, from (H1), we have Fλv +

Hλv + u0 ∈ P for all v ∈ X. Hence, (A3) of Lemma 2.3 holds with F = Fλ and

H = Hλ.

Since f∞ > µM , there exist ǫ > 0 and N > 0 such that

f(t, x) ≥ µM(1 + ǫ)x for (t, x) ∈ [0, 1] × [N,∞).

In view of (3.2), we see that there exists ζ > 0 large enough so that

f(t, x) ≥ µM(1 + ǫ)x− b̄c(x) − ζ for (t, x) ∈ [0, 1] × R.

From (3.1) and (4.9), we have

Fλv(t) ≥ µM(1 + ǫ)

(

v(t) +
n−1
∑

i=0

λiyi(t)

)

− b̄c

(

v(t) +
n−1
∑

i=0

λiyi(t)

)

− ζ

≥ µM(1 + ǫ)v(t) − b̄c

(

|v(t)| +
n−1
∑

i=0

λi||yi||

)

− ζ

= r−1
M (1 + ǫ)v(t) −Hλv(t) − ζ for all v ∈ X.

Thus,

LFλv(t) ≥ r−1
M (1 + ǫ)Lv(t) − LHλv(t) − Lζ for all v ∈ X.

Therefor, (A4) of Lemma 2.3 holds with F = Fλ, H = Hλ, and v0 = Lζ .

We have verified that all the conditions of Lemma 2.3 hold, so there exists R1 > 0

such that

deg(I − T,B(0, R1), 0) = 0. (4.14)

Next, since F0 < µM , there exist 0 < q < 1 and 0 < R2 < R1 such that

|f(t, x)| ≤ µM(1 − q)|x| for (t, x) ∈ [0, 1] × [−2R2, 2R2]. (4.15)
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In what follows, let λ = (λ0, . . . , λn−1) ∈ R
n
+ be small enough so that

n−1
∑

i=0

λi||yi|| < R2 (4.16)

and

C1 := µM(1 − q)

(

n−1
∑

i=0

λi||yi||

)

max
t∈[0,1]

∫ 1

0

Kn−1(t, s)g(s)ds < qR2. (4.17)

We claim that

Tv 6= τv for all v ∈ ∂B(0, R2) and τ ≥ 1. (4.18)

If this is not the case, then there exist v̄ ∈ ∂B(0, R2) and τ̄ ≥ 1 such that T v̄ = τ̄ v̄.

It follows that v̄ = s̄T v̄, where s̄ = 1/τ̄ . Clearly, s̄ ∈ (0, 1]. From (4.9), (4.15), and

(4.16), we have

|Fλv̄(t)| ≤ µM(1 − q)

∣

∣

∣

∣

∣

v̄(t) +
n−1
∑

i=0

λiyi(t)

∣

∣

∣

∣

∣

≤ µM(1 − q)

(

|v̄(t)| +
n−1
∑

i=0

λi||yi||

)

. (4.19)

Assume R2 = ||v̄|| = |v̄(t̄)| for some t̄ ∈ [0, 1]. Then, from (2.31), (3.1), (4.10), (4.17),

and (4.19), we obtain

R2 = |v̄(t̄)| = s̄|T v̄(t̄)| ≤

∫ 1

0

Kn−1(t̄, s))g(s)|Fλv̄(s)|ds

≤ µM(1 − q)

∫ 1

0

Kn−1(t̄, s)g(s)

(

v(s) +
n−1
∑

i=0

λi||yi||

)

ds

= µM(1 − q)

∫ 1

0

Kn−1(t̄, s)g(s)|v(s)|ds

+µM(1 − q)

(

n−1
∑

i=0

λi||yi||

)

∫ 1

0

Kn−1(t̄, s)g(s)ds

≤ µM(1 − q)L|v(t̄)| + C1 = r−1
M (1 − q)LR2 + C1.
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Consequently,

h(R2) ≤ r−1
M (1 − q)h(LR2) + h(C1)

= r−1
M (1 − q)(L∗h)(R2) + h(C1)

= r−1
M (1 − q)rMh(R2) + h(C1)

= (1 − q)h(R2) + h(C1).

Thus,

(C1 − qR2)h(1) ≥ 0.

Since h(1) > 0, we have C1 ≥ qR2. But this contradicts (4.17). Thus, (4.18) holds.

Now, Lemma 2.1 implies

deg(I − T,B(0, R2), 0) = 1. (4.20)

By the additivity property of the Leray-Schauder degree, (4.14), and (4.20), we have

deg(I − T,B(0, R1) \B(0, R2)) = −1.

Then, from the solution property of the Leray-Schauder degree, T has at least one

fixed point v in B(0, R1)\B(0, R2), which is a solution of BVP (4.7), (4.8). Therefore,

we have shown that, for λ = (λ0, . . . , λn−1) ∈ R
n
+ satisfying (4.16) and (4.17), BVP

(4.7), (4.8) has at least one solution v(t) satisfying ||v|| ≥ R2. Thus, for each λ =

(λ0, . . . , λn−1) ∈ R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one

solution u(t) = v(t) +
∑n−1

i=0 λiyi(t) satisfying

||u|| ≥ ||v|| −
n−1
∑

i=0

λi||yi|| ≥ R2 −
n−1
∑

i=0

λi||yi|| > 0.

This completes the proof of the theorem. �

Proof of Theorem 3.2. We first verify that conditions (A1) and (A2)∗–(A4)∗ of Lemma

2.4 are satisfied. As in the proof of Theorem 3.1, there exist ϕL, ϕM ∈ P \ {0} and

h ∈ P ∗ \ {0} defined by (4.11) such that (A1) holds.

From the fact that e is even and nondecreasing on R
+, it is easy to see that

e(v(t)) ≤ e(||v||) for all v ∈ X and t ∈ [0, 1].

Thus,

||e(v)|| ≤ e(||v||) for all v ∈ X.
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This, together with (3.5), implies that

lim
||v||→0

||e(v)||

||v||
= 0 for any v ∈ X.

Let Hv(t) = d̄e(v(t)) for v ∈ X, where d̄ = maxt∈[0,1] d(t). Then, (A2)∗ of Lemma 2.4

holds.

Since f0 > µM , there exist ǫ > 0 and 0 < ζ1 < 1 such that

f(t, x) ≥ µM(1 + ǫ)x = r−1
M (1 + ǫ)x ≥ 0 for (t, x) ∈ [0, 1] × [0, 2ζ1]. (4.21)

Let λ = (λ0, . . . , λn−1) ∈ R
n
+ be small enough so that

n−1
∑

i=0

λi||yi|| ≤ ζ1 (4.22)

and Fλ be defined by (4.9). Then, from (4.21), we have

Fλv(t) ≥ µM(1 + ǫ)

(

v(t) +
n−1
∑

i=0

λiyi(t)

)

≥ µM(1 + ǫ)v(t) = r−1
M (1 + ǫ)v(t) for all v ∈ P with ||v|| ≤ ζ1. (4.23)

Let r be given in (H2). Now, in view of (3.4) and (4.23), we see that (A3)∗ of Lemma

2.4 holds with F = Fλ and r1 = min{r, ζ1}.

From (3.5), there exists 0 < ζ2 < min{r, ζ1} such that

−e(x) ≥ d̄−1r−1
M (1 + ǫ)x for x ∈ [−ζ2, 0].

Then, from (3.4),

f(t, x) ≥ d(t)d̄−1r−1
M (1 + ǫ)x ≥ r−1

M (1 + ǫ)x for (t, x) ∈ [0, 1] × [−ζ2, 0]. (4.24)

From (4.21) and (4.24), it is easy to see that

Fλv(t) ≥ µM(1 + ǫ)

(

v(t) +

n−1
∑

i=0

λiyi(t)

)

≥ µM(1 + ǫ)v(t) = r−1
M (1 + ǫ)v(t) for all v ∈ X with ||v|| ≤ ζ2,

which clearly implies that

LFλv(t) ≥ r−1
M (1 + ǫ)Lv(t) for all v ∈ X with ||u|| < ζ2.

Hence, (A4)∗ of Lemma 2.4 holds with F = Fλ and r2 = ζ2.
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We have verified that all the conditions of Lemma 2.4 hold, so there exists R3 > 0

such that

deg(I − T,B(0, R3), 0) = 0. (4.25)

Next, since F∞ < µM , there exist 0 < z < 1 and R > R3 such that

|f(t, x)| ≤ µM(1 − z)|x| = r−1
M (1 − z)|x| for (t, |x|) ∈ [0, 1] × (R,∞). (4.26)

Let

C2 = r−1
M (1 − z)

(

n−1
∑

i=0

λi||yi||

)

max
t∈[0,1]

∫ 1

0

Kn−1(t, s)g(s)ds

+ max
t∈[0,1],|x|≤R

|f(t, x)| max
t∈[0,1]

∫ 1

0

Kn−1(t, s)g(s)ds. (4.27)

Then 0 < C2 <∞. Choose R4 large enough so that

R4 > max{R, z−1C2}. (4.28)

We claim that

Tv 6= τv for all v ∈ ∂B(0, R4) and τ ≥ 1. (4.29)

If this is not the case, then there exist v̄ ∈ ∂B(0, R4) and τ̄ ≥ 1 such that T v̄ = τ̄ v̄. It

follows that v̄ = s̄T v̄, where s̄ = 1/τ̄ . Clearly, s̄ ∈ (0, 1]. Assume R4 = ||v̄|| = |v̄(t̄)|

for some t̄ ∈ [0, 1]. Let

J1(v̄) =

{

t ∈ [0, 1] :

∣

∣

∣

∣

v̄(t) +
n−1
∑

i=0

λiyi(t)

∣

∣

∣

∣

> R

}

,

J2(v̄) = [0, 1] \ J1(v̄),

and

p(v̄(t)) = min

{

∣

∣

∣

∣

v̄(t) +
n−1
∑

i=0

λiyi(t)

∣

∣

∣

∣

, R

}

for t ∈ [0, 1].
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Then, from (2.31), (4.10), (4.26), and (4.27), it follows that

R4 = |v̄(t̄)| = s̄|T v̄(t̄)|

≤

∫ 1

0

Kn−1(t̄, s)g(s)|Fλv̄(s)|ds

=

∫

J1(v̄)

Kn−1(t̄, s)g(s)|Fλv̄(s)|ds+

∫

J2(v̄)

Kn−1(t̄, s)g(s)|Fλv̄(s)|ds

≤ r−1
M (1 − z)

∫

J1(v̄)

Kn−1(t̄, s)g(s)

∣

∣

∣

∣

v̄(s) +
n−1
∑

i=0

λiyi(s)

∣

∣

∣

∣

ds

+

∫

J2(v̄)

Kn−1(t̄, s)g(s)|Fλp(v̄(s))|ds

≤ r−1
M (1 − z)

∫ 1

0

Kn−1(t̄, s)g(s)|v̄(s)|ds

+r−1
M (1 − z)

(

n−1
∑

i=0

λi||yi||

)

∫ 1

0

Kn−1(t̄, s)g(s)ds

+

∫ 1

0

Kn−1(t̄, s)g(s)|Fλp(v̄(s))|ds

≤ r−1
M (1 − z)L|v(t̄)| + C2 = r−1

M (1 − z)LR4 + C2.

Hence, for h defined by (4.11), we have

h(R4) ≤ r−1
M (1 − z)h(LR4) + h(C2)

= r−1
M (1 − z)(L∗h)(R4) + h(C2)

= r−1
M (1 − z)rMh(R4) + h(C2)

= (1 − z)h(R4) + h(C2),

which implies

(zR4 − C2)h(1) ≤ 0.

In view of the fact that h(1) > 0, it follows that R4 ≤ z−1C2. This contradicts (4.28)

and so (4.29) holds. By Lemma 2.1, we have

deg(I − T,B(0, R4), 0) = 1. (4.30)

By the additivity property of the Leray-Schauder degree, (4.25), and (4.30), we obtain

deg(I − T,B(0, R4) \B(0, R3)) = 1.
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Thus, from the solution property of the Leray-Schauder degree, T has at least one

fixed point v in B(0, R4)\B(0, R3), which is a solution of BVP (4.7), (4.8). Therefore,

we have shown that, for λ = (λ0, . . . , λn−1) ∈ R
n
+ satisfying (4.22), BVP (4.7), (4.8)

has at least one solution v(t) satisfying ||v|| ≥ R3. Thus, for each λ = (λ0, . . . , λn−1) ∈

R
n
+ with

∑n−1
i=0 λi sufficiently small, BVP (1.1), (1.2) has at least one solution u(t) =

v(t) +
∑n−1

i=0 λiyi(t) satisfying

||u|| ≥ ||v|| −

n−1
∑

i=0

λi||yi|| ≥ R3 −

n−1
∑

i=0

λi||yi|| > 0.

This completes the proof of the theorem. �

Proof of Theorem 3.3. For (t, x) ∈ [0, 1] × R, let

f1(t, x) =

{

f(t, x), x ≥ 0,

−f(t, x), x < 0.
(4.31)

In virtue of (H3), we see that f1 : [0, 1]×R → R is continuous and nonnegative. Then,

(H1) with f = f1 is trivially satisfied. Moreover, from F0 < µM < f ∗
∞, it follows that

F1,0 < µM < f1,∞, where

F1,0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f1(t, x)

x

∣

∣

∣

∣

and f1,∞ = lim inf
x→∞

min
t∈[0,1]

f1(t, x)

x
.

Thus, by Theorem 3.1, we know that the BVP consisting of the equation

u(n) + g(t)f1(t, u) = 0, t ∈ (0, 1),

and BC (1.2) has at least one nontrivial solution u1(t). By Lemma 2.5 (a), we have

u1(t) =

∫ 1

0

Kn−1(t, s)g(s)f1(s, u1(s))ds.

Then, by Remark 2.1, u1(t) > 0 on (0, 1). Therefore, from (4.31), f1(t, u(t)) =

f(t, u(t)), and so u1(t) is a positive solution of BVP (1.1), (1.2).

For (t, x) ∈ [0, 1] × R, let

f2(t, x) =

{

−f(t,−x), x ≥ 0,

f(t,−x), x < 0.
(4.32)

In virtue of (H3), we see that f2 : [0, 1]×R → R is continuous and nonnegative. Then,

(H1) with f = f2 is trivially satisfied. Moreover, from F0 < µM < f ∗
∞, it follows that
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F2,0 < µM < f2,∞, where

F2,0 = lim sup
x→0

max
t∈[0,1]

∣

∣

∣

∣

f2(t, x)

x

∣

∣

∣

∣

and f2,∞ = lim inf
x→∞

min
t∈[0,1]

f2(t, x)

x
.

Thus, as above, we know that the BVP consisting of the equation

u(n) + g(t)f2(t, u) = 0, t ∈ (0, 1),

and BC (1.2) has at least one solution v(t) satisfying v(t) > 0 on (0, 1) and

v(t) =

∫ 1

0

Kn−1(t, s)g(s)f2(s, v(s))ds.

Then, from (4.32),

−v(t) =

∫ 1

0

Kn−1(t, s)g(s)f(s,−v(s))ds.

Therefore, u2(t) := −v(t) is a negative solution of BVP (1.1), (1.2), and the theorem

is proved. �

Using Theorem 3.2, Theorem 3.4 can be proved by similar ideas as those given in

the proof of Theorem 3.3. We omit the details here.

Lemma 4.2. Let µM , µM̃ , and µM̂ be given in (3.1). Then we have the following:

(a) A ≤ µM ≤ B, where A and B are defined in (3.6).

(b) Ã ≤ µM̃ ≤ B̃, where Ã and B̃ are defined in (3.7).

(c) Â ≤ µM̂ ≤ B̂, where Â and B̂ are defined in (3.8).

Proof. We first prove part (a). Let ϕM be given as in Lemma 2.7 (b). Then,

ϕM(t) = µM

∫ 1

0

Kn−1(t, s)g(s)ϕM(s)ds for t ∈ [0, 1].

By Lemma 2.6 (a), we have

ϕM(t) ≤ µMν

∫ 1

0

(1 − s)g(s)ϕM(s)ds on [0, 1] (4.33)

and

ϕM(t) ≥ µMµ(t)

∫ 1

0

(1 − s)g(s)ϕM(s)ds on [0, 1]. (4.34)

Thus,

ϕM(t) ≥
1

ν
µ(t)||ϕM || on [0, 1]. (4.35)
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From (4.33), we have

ϕM(t) ≤ µMν||ϕM ||

∫ 1

0

(1 − s)g(s)ds on [0, 1].

Hence,

µM ≥
1

ν
∫ 1

0
(1 − s)g(s)ds

= A.

From (4.34) and (4.35), we see that

ϕM(t) ≥
1

ν
µMµ(t)||ϕM ||

∫ 1

0

(1 − s)g(s)µ(s)ds

≥
1

ν
µMµ ||ϕM ||

∫ 1

0

(1 − s)g(s)µ(s)ds for t ∈ [θ1, θ2].

Hence,

µM ≤
ν

µ
∫ 1

0
(1 − s)g(s)µ(s)ds

= B.

This proves part (a).

By Lemma 2.6 (b) and (c), and a similar argument as above, parts (b) and (c) can

be proved. This completes the proof of the lemma. �

Proof of Corollary 3.1. The conclusion follows readily from Theorem 3.1 and Lemma

4.1 (a). �

Proof of Corollary 3.2. The conclusion follows readily from Theorem 3.2 and Lemma

4.1 (a). �

Proof of Corollary 3.3. The conclusion follows readily from Theorem 3.3 and Lemma

4.1 (a). �

Proof of Corollary 3.4. The conclusion follows readily from Theorem 3.4 and Lemma

4.1 (a). �

Finally, we remark that, by virtue of Lemma 2.5 (b) and (c), Lemma 4.1 (b) and

(c), and Lemma 4.2 (b) and (c), Theorems 3.5–3.12 and Corollaries 3.5–3.12 can be

proved by techniques similar to those in the proofs of Theorems 3.1–3.4 and Corollaries

3.1–3.4. To avoid redundancy and save space, we omit the details.
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Appendix: Equality of two eigenvalues

The authors wish to thank professor Jeff R. L. Webb for the following proof.

Let P be the cone of non-negative functions in C[0, 1],

P = {u ∈ C[0, 1] : u(t) ≥ 0, t ∈ [0, 1]}.

We consider linear operators defined by

Lu(t) =

∫ 1

0

C(t, s)g(s)u(s) ds, Mu(t) =

∫ 1

0

C(s, t)g(s)u(s) ds,
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where C(t, s) ≥ 0 for almost all t, s ∈ [0, 1] together with some implicit conditions that

ensure that L,M are well defined bounded linear operators on C[0, 1]. For example,

we might ask that C be continuous and g belong to L1.

Proposition 5.1. Let g ∈ L1(0, 1) be such that g(s) ≥ 0 for almost all s ∈ [0, 1].

Suppose that L and M are well defined bounded linear operators on C[0, 1] and that

λL and λM are positive eigenvalues of L, and M with respective eigenfunctions ϕ, ψ

in P \ {0}. Suppose that
∫ 1

0
g(s)ϕ(s)ψ(s) ds > 0. Then λL = λM .

Proof. We have

λLϕ(t) =

∫ 1

0

C(t, s)g(s)ϕ(s) ds and λMψ(t) =

∫ 1

0

C(s, t)g(s)ψ(s) ds.

Then, for almost every t ∈ (0, 1),

λLg(t)ϕ(t)ψ(t) =

∫ 1

0

g(t)ψ(t)C(t, s)g(s)ϕ(s) ds.

Integrating over [0, 1] gives

λL

∫ 1

0

g(t)ϕ(t)ψ(t) dt =

∫ 1

0

(

∫ 1

0

C(t, s)g(s)ϕ(s) ds
)

g(t)ψ(t) dt

=

∫ 1

0

(

∫ 1

0

C(t, s)g(t)ψ(t) dt
)

g(s)ϕ(s) ds

= λM

∫ 1

0

g(s)ϕ(s)ψ(s) ds,

where changing the order of integration is justified by Tonelli’s theorem since
∫ 1

0

g(t)ϕ(t)ψ(t) dt ≤ ‖ϕ‖ ‖ψ‖

∫ 1

0

g(t) dt <∞.

As
∫ 1

0
g(t)ϕ(t)ψ(t) dt > 0, this proves λL = λM . �

Remark 5.1. The argument here is similar to one used in [38]. In the proof, L and

M do not need to be compact operators, but they are compact if G is continuous and

g ∈ L1. Compactness is useful so that the Krein-Rutman theorem can be applied to

assert that rL and rM are positive eigenvalues with eigenfunctions in P \ {0}.

Remark 5.2. The positivity condition
∫ 1

0
g(t)ϕ(t)ψ(t) dt > 0 is satisfied if there is

a subinterval [t0, t1] such that ϕ(t)ψ(t) > 0 for t ∈ [t0, t1] and g is positive almost

everywhere on [t0, t1], say g is continuous on (0, 1) and g 6≡ 0 on any subinterval of
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(0, 1). Under quite general conditions, it is known that ϕ(t) > 0 for t ∈ [t0, t1] for

an arbitrarily chosen [t0, t1] in (0, 1) (see, for example, [36]), and then [t0, t1] can be

chosen so that ϕ(t)ψ(t) > 0 for t ∈ [t0, t1].
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