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Zdeněk OpluštilB

Brno University of Technology, 2 Technická, Brno, Czech Republic

Received 19 April 2016, appeared 20 July 2016

Communicated by Ivan Kiguradze

Abstract. New oscillation criteria are established for the system of non-linear equations

u′ = g(t)|v|
1
α sgn v, v′ = −p(t)|u|αsgn u,

where α > 0, g : [0,+∞[ → [0,+∞[ , and p : [0,+∞[ → R are locally integrable
functions. Moreover, we assume that the coefficient g is non-integrable on [0,+∞].
Among others, presented oscillatory criteria generalize well-known results of E. Hille
and Z. Nehari and complement analogy of Hartman–Wintner theorem for the consid-
ered system.
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1 Introduction

On the half-line R+ = [0,+∞[ , we consider the two-dimensional system of nonlinear ordinary
differential equations

u′ = g(t)|v| 1α sgn v,

v′ = −p(t)|u|αsgn u,
(1.1)

where α > 0 and p, g : R+ → R are locally Lebesgue integrable functions such that

g(t) ≥ 0 for a. e. t ≥ 0 (1.2)

and ∫ +∞

0
g(s)ds = +∞. (1.3)

By a solution of system (1.1) on the interval J ⊆ [0,+∞[ we understand a pair (u, v) of
functions u, v : J → R, which are absolutely continuous on every compact interval contained
in J and satisfy equalities (1.1) almost everywhere in J.
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It was proved by Mirzov in [10] that all non-extendable solutions of system (1.1) are defined
on the whole interval [0,+∞[. Therefore, when we are speaking about a solution of system
(1.1), we assume that it is defined on [0,+∞[.

Definition 1.1. A solution (u, v) of system (1.1) is called non-trivial if |u(t)|+ |v(t)| 6= 0 for
t ≥ 0. We say that a non-trivial solution (u, v) of system (1.1) is oscillatory if its each component
has a sequence of zeros tending to infinity, and non-oscillatory otherwise.

In [10, Theorem 1.1], it is shown that a certain analogue of Sturm’s theorem holds for
system (1.1) if the function g is nonnegative. Especially, under assumption (1.2), if system
(1.1) has an oscillatory solution, then any other its non-trivial solution is also oscillatory.

Definition 1.2. We say that system (1.1) is oscillatory if all its non-trivial solutions are oscilla-
tory.

Oscillation theory for ordinary differential equations and their systems is a widely studied
and well-developed topic of the qualitative theory of differential equations. As for the results
which are closely related to those of this section, we should mention [2, 4–9, 11–13]. Some
criteria established in these papers for the second order linear differential equations or for
two-dimensional systems of linear differential equations are generalized to the considered
system (1.1) below.

Many results (see, e.g., survey given in [2]) have been obtained in oscillation theory of the
so-called “half-linear” equation(

r(t)|u′|q−1 sgn u′
)′

+ p(t)|u|q−1 sgn u = 0 (1.4)

(alternatively this equation is referred as “equation with the scalar q-Laplacian”). Equation
(1.4) is usually considered under the assumptions q > 1, p, r : [0,+∞[ → R are continuous
and r is positive. One can see that equation (1.4) is a particular case of system (1.1). Indeed, if
the function u, with properties u ∈ C1 and r|u′|q−1 sgn u′ ∈ C1, is a solution of equation (1.4),
then the vector function (u, r|u′|q−1 sgn u′) is a solution of system (1.1) with g(t) := r

1
1−q (t) for

t ≥ 0 and α := q− 1.
Moreover, the equation

u′′ +
1
α

p(t)|u|α|u′|1−α sgn u = 0 (1.5)

is also studied in the existing literature under the assumptions α ∈ ]0, 1] and p : R+ → R is
a locally integrable function. It is mentioned in [6] that if u is a so-called proper solution of
(1.5) then it is also a solution of system (1.1) with g ≡ 1 and vice versa. Some oscillations and
non-oscillations criteria for equation (1.5) can be found, e.g., in [6, 7].

Finally, we mention the paper [1], where a certain analogy of Hartman–Wintner’s theorem
is established (origin one can find in [3, 14]), which allows us to derive oscillation criteria of
Hille–Nehari’s type for system (1.1).

Let

f (t) :=
∫ t

0
g(t)ds for t ≥ 0.

In view of assumptions (1.2) and (1.3), there exists tg ≥ 0 such that f (t) > 0 for t > tg and
f (tg) = 0. We can assume without loss of generality that tg = 0, since we are interested in
behaviour of solutions in the neighbourhood of +∞, i.e., we have

f (t) > 0 for t > 0 (1.6)
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and, moreover,
lim

t→+∞
f (t) = +∞. (1.7)

For any λ ∈ [0, α[ , we put

cα(t; λ) :=
α− λ

f α−λ(t)

∫ t

0

g(s)
f λ−α+1(s)

(∫ s

0
f λ(ξ)p(ξ)dξ

)
ds for t > 0.

Now, we formulate an analogue (in a suitable form for us) of the Hartman–Wintner’s
theorem for the system (1.1) established in [1].

Theorem 1.3 ([1, Corollary 2.5 (with ν = 1− α + λ)]). Let conditions (1.2) and (1.3) hold, λ < α,
and either

lim
t→+∞

cα(t; λ) = +∞,

or
−∞ < lim inf

t→+∞
cα(t; λ) < lim sup

t→+∞
cα(t; λ).

Then system (1.1) is oscillatory.

One can see that two cases are not covered by Theorem 1.3, namely, the function cα(t; λ)

has a finite limit and lim inft→+∞ cα(t; λ) = −∞. The aim of this Section is to find oscillation
criteria for system (1.1) in the first mentioned case. Consequetly, in what follows, we assume
that

lim
t→+∞

cα(t; λ) =: c∗α(λ) ∈ R. (1.8)

2 Main results

In this section, we formulate main results and theirs corollaries.

Theorem 2.1. Let λ ∈ [0, α[ and (1.8) hold. Let, moreover, the inequality

lim sup
t→+∞

f α−λ(t)
ln f (t)

(c∗α(λ)− cα(t; λ)) >

(
α

1 + α

)1+α

(2.1)

be satisfied. Then system (1.1) is oscillatory.

We introduce the following notations. For any λ ∈ [0, α[ and µ ∈ ]α,+∞[ , we put

Q(t; α, λ) := f α−λ(t)
(

c∗α(λ)−
∫ t

0
p(s) f λ(s)ds

)
for t > 0,

H(t; α, µ) :=
1

f µ−α(t)

(∫ t

0
p(s) f µ(s)ds

)
for t > 0,

where the number c∗α(λ) is given by (1.8). Moreover, we denote lower and upper limits of the
functions Q(·; α, λ) and H(·; α, µ) as follows

Q∗(α, λ) := lim inf
t→+∞

Q(t; α, λ), H∗(α, µ) := lim inf
t→+∞

H(t; α, µ),

Q∗(α, λ) := lim sup
t→+∞

Q(t; α, λ), H∗(α, µ) := lim sup
t→+∞

H(t; α, µ).

Now we formulate two corollaries of Theorem 2.1.
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Corollary 2.2. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover,

lim inf
t→+∞

(Q(t; α, λ) + H(t; α, µ)) >
µ− λ

(α− λ)(µ− α)

(
α

1 + α

)1+α

. (2.2)

Then system (1.1) is oscillatory.

Corollary 2.3. λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover, either

Q∗(α, λ) >
1

α− λ

(
α

1 + α

)1+α

, (2.3)

or

H∗(α, µ) >
1

µ− α

(
α

1 + α

)1+α

. (2.4)

Then system (1.1) is oscillatory.

Remark 2.4. Oscillation criteria (2.3) and (2.4) coincide with the well-known Hille–Nehari’s
results for the second order linear differential equations established in [4, 12].

Theorem 2.5. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover,

lim sup
t→+∞

(Q(t; α, λ) + H(t; α, µ)) >
1

α− λ

(
λ

1 + α

)1+α

+
1

µ− α

(
µ

1 + α

)1+α

. (2.5)

Then system (1.1) is oscillatory.

Now we give two statements complementing Corollary 2.3 in a certain sense.

Theorem 2.6. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover, inequalities

α

α− λ

(
γ− γ

1+α
α

)
≤ Q∗(α, λ) ≤ 1

α− λ

(
α

α + 1

)α+1

(2.6)

and

H∗(α, µ) >
1

µ− α

(
µ

1 + α

)1+α

− γ− A(α, λ) (2.7)

be satisfied, where

γ :=
(

λ

1 + α

)α

(2.8)

and A(α, λ) is the smallest root of the equation

α|x + γ| 1+α
α − αx + (α− λ)Q∗(α, λ)− αγ = 0. (2.9)

Then system (1.1) is oscillatory.

Theorem 2.7. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover, inequalities(
µ

1 + α

)α α(1 + α− µ)

(µ− α)(1 + α)
≤ H∗(α, µ) ≤ 1

µ− α

(
α

1 + α

)1+α

(2.10)

and

Q∗(α, λ) > B(α, µ) +
1

α− λ

(
λ

1 + α

)1+α

(2.11)

be satisfied, where B(α, µ) is the greatest root of the equation

α|x| 1+α
α − αx + (µ− α)H∗(α, µ) = 0. (2.12)

Then system (1.1) is oscillatory.
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Finally, we formulate an assertion for the case, when both conditions (2.6) and (2.10) are
fulfilled. In this case we can obtain better results than in Theorems 2.6 and 2.7.

Theorem 2.8. Let λ ∈ [0, α[ , µ ∈ ]α,+∞[ , and (1.8) hold. Let, moreover, conditions (2.6) and (2.10)
be satisfied and

lim sup
t→+∞

(Q(t; α, λ) + H(t; α, µ)) > B(α, µ)− A(α, λ) + Q∗(α, λ) + H∗(α, µ)− γ, (2.13)

where the number γ is defined by (2.8), A(α, λ) is the smallest root of equation (2.9), and B(α, µ) is
the greatest root of equation (2.12). Then system (1.1) is oscillatory.

Remark 2.9. Presented statements generalize results stated in [2,4–9,11–13] concerning system
(1.1) as well as equations (1.4) and (1.5). In particular, if we put α = 1, λ = 0, and µ = 2,
then we obtain oscillatory criteria for linear system of differential equations presented in [13].
Moreover, the results of [6] obtained for equation (1.5) are in a compliance with those above,
where we put g ≡ 1, λ = 0, and µ = 1 + α. Observe also that Corollary 2.3 and Theorems 2.6
and 2.7 extend oscillation criteria for equation (1.5) stated in [7], where the coefficient p is
suppose to be non-negative. In the monograph [2], it is noted that the assumption p(t) ≥ 0
for t large enough can be easily relaxed to

∫ t
0 p(s)ds > 0 for large t. It is worth mentioning

here that we do not require any assumption of this kind.

Finally we show an example, where we can not apply oscillatory criteria from the above
mentioned papers, but we can use Theorem 2.1 succesfully.

Example 2.10. Let α = 2, g(t) ≡ 1, λ = 0, and

p(t) := t cos
(

t2

2

)
+

1
(t + 1)3 for t ≥ 0.

It is clear that the function p and its integral∫ t

0
p(s)ds = sin

(
t2

2

)
− 1

2(t + 1)2 +
1
2

for t ≥ 0

change theirs sign in any neighbourhood of +∞. Therefore neither of results mentioned in
Remark 2.9 can be applied.

On the other hand, we have

c2(t; 0) =
2
t2

∫ t

0
s
(∫ s

0

(
ξ cos

ξ2

2
+

1
(ξ + 1)3

)
dξ

)
ds

=
1
2
−

2 cos t2

2
t2 +

3
t2 −

ln(t + 1)
t2 − 1

t2(t + 1)
for t > 0

and thus, the function c2(·, 0) has the finite limit

c∗α(0) = lim
t→+∞

c2(t; 0) =
1
2

.

Moreover,

lim sup
t→+∞

t2

ln t
(c∗α(0)− c2(t; 0)) = lim sup

t→+∞

(
2 cos t2

2 − 3
ln t

+
ln(t + 1)

ln t
+

1
(t + 1) ln t

)
= 1.

Consequently, according to Theorem 2.1, system (1.1) is oscillatory.
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3 Auxiliary lemmas

We first formulate two lemmas established in [1], which we use in this section.

Lemma 3.1 ([1, Lemma 3.1]). Let α > 0 and ω ≥ 0. Then the inequality

ωx− α|x| 1+α
α ≤

(
ω

1 + α

)1+α

is satisfied for all x ∈ R.

Lemma 3.2 ([1, Lemma 3.2]). Let α > 0. Then

α|x + y| 1+α
α ≥ α|y| 1+α

α + (1 + α)x|y| 1α sgn y for x, y ∈ R.

Remark 3.3. One can easily verify (see the proofs of Lemma 4.2 and Corollary 2.5 in [1]) that
if (u, v) is a solution of system (1.1) satisfying

u(t) 6= 0 for t ≥ tu (3.1)

with tu > 0 and the function cα(·; λ) has a finite limit (1.8), then

c∗α(λ) = f λ(tu)ρ(tu) +
∫ tu

0
f λ(s)p(s)ds +

α(γ− γ
1+α

α )

α− λ
· 1

f α−λ(tu)

−
∫ +∞

tu

g(s) f λ−1−α(s)h(s)ds,
(3.2)

where the number γ is defined by (2.8),

h(t) := α| f α(t)ρ(t) + γ| 1+α
α − (1 + α) f α(t)ρ(t)γ

1
α − αγ

1+α
α for t ≥ tu, (3.3)

and

ρ(t) :=
v(t)

|u(t)|αsgn u(t)
− 1

f α(t)

(
λ

1 + α

)α

for t ≥ tu. (3.4)

Moreover, according to Lemma 3.2, we have

h(t) ≥ 0 for t ≥ tu (3.5)

and one can show (see Lemma 4.1 and the proof of Corollary 2.5 in [1]) that

∫ +∞

tu

g(s) f λ−1−α(s)h(s)ds < +∞. (3.6)

Lemma 3.4. Let λ ∈ [0, α[ , (1.8) and (2.6) hold, where the number γ is defined by (2.8). Then every
non-oscillatory solution (u, v) of system (1.1) satisfies

lim inf
t→+∞

(
f α(t)v(t)

|u(t)|αsgn u(t)
− γ

)
≥ A(α, λ), (3.7)

where A(α, λ) denotes the smallest root of equation (2.9).
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Proof. Let (u, v) be a non-oscillatory solution of system (1.1). Then there exists tu > 0 such
that (3.1) holds. Define the function ρ by (3.4). Then we obtain from (1.1) that

ρ′(t) = −p(t)− αg(t)
∣∣∣∣ρ(t) + γ

f α(t)

∣∣∣∣ 1+α
α

+ αγ
g(t)

f 1+α(t)
for a. e. t ≥ tu. (3.8)

Multiplaying the last equality by f λ(t) and integrating it from tu to t, we get∫ t

tu

f λ(s)ρ′(s)ds = − α
∫ t

tu

g(s) f λ−1−α(s) |ρ(s) f α(s) + γ|
1+α

α ds

+ αγ
∫ t

tu

g(s) f λ−1−α(s)ds−
∫ t

tu

f λ(s)p(s)ds for t ≥ tu.
(3.9)

Integrating the left-hand side of (3.9) by parts, we obtain

f λ(t)ρ(t) =
(

αγ− αγ
1+α

α

) ∫ t

tu

g(s) f λ−1−α(s)ds−
∫ t

tu

f λ(s)p(s)ds

+ f λ(tu)ρ(tu)−
∫ t

tu

g(s) f λ−1−α(s)h(s)ds for t ≥ tu,

where the function h is defined in (3.3). Hence,

f λ(t)ρ(t) = δ(tu)−
∫ t

0
f λ(s)p(s)ds−

∫ t

tu

g(s) f λ−1−α(s)h(s)ds

−
α
(

γ− γ
1+α

α

)
α− λ

1
f α−λ(t)

for t ≥ tu,

(3.10)

where

δ(tu) := f λ(tu)ρ(tu) +
∫ tu

0
f λ(s)p(s)ds +

α
(

γ− γ
1+α

α

)
α− λ

1
f α−λ(tu)

.

Therefore, in view of relations (3.2) and (3.6), it follows from (3.10) that

f λ(t)ρ(t) = c∗α(λ)−
∫ t

0
f λ(s)p(s)ds +

∫ +∞

t
g(s) f λ−1−α(s)h(s)ds

−
α
(

γ− γ
1+α

α

)
α− λ

1
f α−λ(t)

for t ≥ tu.

(3.11)

Hence,

f α(t)ρ(t) = Q(t; α, λ) + f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds

−
α
(

γ− γ
1+α

α

)
α− λ

for t ≥ tu.

(3.12)

Put
m := lim inf

t→+∞
f α(t)ρ(t). (3.13)

It is clear that if m = +∞, then (3.7) holds. Therefore, we suppose that

m < +∞.
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In view of (2.6), (3.5), and (3.13), relation (3.12) yields that

m ≥ Q∗(α, λ)− α

α− λ

(
γ− γ

1+α
α

)
≥ 0. (3.14)

If Q∗(α, λ) = α
α−λ (γ − γ

1+α
α ), then 0 is a root of equation (2.9). Moreover, in view of

Lemma 3.2 and the assumption λ < α, we see that the function x 7→ α|x + γ| 1+α
α − αx− αγ

1+α
α

is positive on ]−∞, 0[ . Consequently, by virtue of notations (3.4), (3.13) and relation (3.14),
desired estimate (3.7) holds.

Now suppose that Q∗(α, λ) > α
α−λ (γ − γ

1+α
α ). Let ε ∈ ]0, Q∗(α, λ)− α

α−λ (γ − γ
1+α

α )[ be
arbitrary. According to (3.14), it is clear that

m > ε. (3.15)

Choose tε ≥ tu such that

f α(t)ρ(t) ≥ m− ε and Q(t; α, λ) ≥ Q∗(α, λ)− ε for t ≥ tε. (3.16)

Then it follows from (3.12) that

f α(t)ρ(t) ≥ Q∗(α, λ)− ε + f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds

−
α
(
γ− γ

1+α
α

)
α− λ

for t ≥ tε.

(3.17)

On the other hand, the function x 7→ α|x + γ| 1+α
α − (1 + α)xγ

1
α − αγ

1+α
α is non-decreasing on

[0,+∞[. Therefore, by virtue of (3.5), (3.15), and (3.16), one gets from (3.17) that

f α(t)ρ(t) ≥ Q∗(α, λ)− ε +
α|(m− ε) + γ| 1+α

α − αγ− λ(m− ε)

α− λ
for t ≥ tε,

which implies

m ≥ Q∗(α, λ)− ε +
α|(m− ε) + γ| 1+α

α − αγ− λ(m− ε)

α− λ
.

Since ε was arbitrary, the latter relation leads to the inequality

α|m + γ| 1+α
α − αm + Q∗(α, λ)(α− λ)− αγ ≤ 0. (3.18)

One can easily derive that the function y : x 7→ α|x + γ| 1+α
α − αx + Q∗(α, λ)(α − λ) − αγ is

decreasing on ]−∞, ( α
1+α )

α − γ] and increasing on [( α
1+α )

α − γ,+∞[ . Therefore, in view of
assumption (2.6), the function y is non-positive at the point

(
α

1+α

)α − γ, which together with
(3.4), (3.13), and (3.18) implies desired estimate (3.7).

Lemma 3.5. Let µ ∈ ]α,+∞[ and (2.10) hold. Then every non-oscillatory solution (u, v) of system
(1.1) satisfies

lim sup
t→+∞

f α(t)v(t)
|u(t)|αsgn u(t)

≤ B(α, µ), (3.19)

where B(α, µ) is the greatest root of equation (2.12).
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Proof. Let (u, v) be a non-oscillatory solution of system (1.1). Then there exists tu > 0 such
that (3.1) holds. Define the function ρ by (3.4). Then from (1.1) we obtain the equality (3.8),
where the number γ is defined by (2.8).

Multiplying (3.8) by f µ(t) and integrating it from tu to t, we obtain∫ t

tu

f µ(s)ρ′(s)ds = −
∫ t

tu

f µ(s)p(s)ds− α
∫ t

tu

g(s) f µ−α−1(s)|ρ(s) f α(s) + γ| 1+α
α ds

+ αγ
∫ t

tu

g(s) f µ−α−1(s)ds for t ≥ tu.

Integrating the left-hand side of the last equality by parts, we get

f α(t)ρ(t) = f α−µ(t)
∫ t

tu

g(s) f µ−α−1(s)
[
µ f α(s)ρ(s)− α|ρ(s) f α(s) + γ| 1+α

α

]
ds

+ δ(tu) f α−µ(t)− H(t; α, µ) +
αγ

µ− α
for t ≥ tu,

(3.20)

where

δ(tu) := f µ(tu)ρ(tu) +
∫ tu

0
f µ(s)p(s)ds− αγ

µ− α
f µ−α(tu). (3.21)

According to Lemma 3.1, it follows from (3.20) that

f α(t)ρ(t) ≤ δ1(tu) f α−µ(t)− H(t; α, µ) +
1

µ− α

(
µ

1 + α

)1+α

− γ for t ≥ tu, (3.22)

where

δ1(tu) := δ(tu)−
f µ−α(tu)

µ− α

((
µ

1 + α

)1+α

− µγ

)
. (3.23)

Put
M := lim sup

t→+∞
( f α(t)ρ(t) + γ) . (3.24)

Obviously, if M = −∞ then (3.19) holds. Therefore, suppose that

M > −∞.

By virtue of (1.7), inequality (3.22) yields

M ≤ −H∗(α, µ) +
1

µ− α

(
µ

1 + α

)1+α

. (3.25)

If H∗(α, µ) =
( µ

1+α

)α α(1+α−µ)
(µ−α)(1+α)

, then it is not difficult to verify that ( µ
1+α )

α is a root of the
equation (2.12) and the function x 7→ α|x| 1+α

α − αx+(µ− α)H∗(α, µ) is positive on ]( µ
1+α )

α,+∞[ .
Consequently, it follows from (3.24) and (3.25) that (3.19) is satisfied.

Now suppose that

H∗(α, µ) >

(
µ

1 + α

)α α(1 + α− µ)

(µ− α)(1 + α)
.

Using the latter inequality in (3.25), we get

M <

(
µ

1 + α

)α

.



10 Z. Opluštil

Let ε ∈]0,
( µ

1+α

)α −M[ be arbitrary and choose tε ≥ tu such that

γ + f α(t)ρ(t) ≤ M + ε, H(t; α, µ) ≥ H∗(α, µ)− ε for t ≥ tε. (3.26)

Observe that the function x 7→ µx − α|x| 1+α
α is non-decreasing on ] − ∞,

( µ
1+α

)α
] and thus,

using relations (3.26) and M + ε <
( µ

1+α

)α, from (3.20) we get

f α(t)ρ(t) ≤ δ2(tu) f α−µ(t)− H∗(α, µ) + ε +
αγ

µ− α
− µγ

µ− α

+ f α−µ(t)
t∫

tu

g(s) f µ−α−1(s)
[
µ (M + ε)− α|M + ε| 1+α

α

]
ds for t ≥ tε,

where

δ2(t) := f µ(tu)ρ(tu) +
∫ tu

0
f µ(s)p(s)ds + γ f µ−α(tu).

Consequently,

f α(t)ρ(t) + γδ3(tu) f α−µ(t)− H∗(α, µ) + ε +
µ (M + ε)− α|M + ε| 1+α

α

µ− α
for t ≥ tε,

where

δ3(tu) := δ2(tu)−
µ (M + ε)− α|M + ε| 1+α

α

µ− α
f µ−α(tu),

which, by virtue of the assumption α < µ and condition (1.7) and (3.24), yields that

M ≤ −H∗(α, µ) + ε +
µ (M + ε)− α|M + ε| 1+α

α

µ− α
.

Since ε was arbitrary, the latter inequality leads to

α|M| 1+α
α − αM + (µ− α)H∗(α, µ) ≤ 0. (3.27)

One can easily derive that the function y : x 7→ α|x| 1+α
α − αx + H∗(α, µ)(µ− α) is decreasing

on ] −∞, ( α
1+α )

α] and increasing on [( α
1+α )

α,+∞[. Therefore, in view of assumption (2.10),
the function y is non-positive at the point

(
α

1+α

)α, which together with (3.4), (3.24), and (3.27)
implies desired estimate (3.19).

4 Proofs of main results

Proof of Theorem 2.1. Assume on the contrary that system (1.1) is not oscillatory, i.e., there
exists a solution (u, v) of system (1.1) satisfying relation (3.1) with tu > 0. Analogously to
the proof of Lemma 3.4 we show that equality (3.11) holds, where the functions h, ρ and
the number γ are defined by (3.3), (3.4), and (2.8). Moreover, conditions (3.5) and (3.6) are
satisfied.
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Multiplying of (3.11) by g(t) f α−1−λ(t) and integrating it from tu to t, one gets∫ t

tu

g(s) f α−1(s)ρ(s)ds = c∗α(λ)
∫ t

tu

g(s)
f 1+λ−α(s)

ds

−
∫ t

tu

g(s)
f 1+λ−α(s)

(∫ s

0
f λ(ξ)p(ξ)dξ

)
ds

+
∫ t

tu

g(s)
f 1+λ−α(s)

(∫ +∞

s
g(ξ) f λ−1−α(ξ)h(ξ)dξ

)
ds

− α

α− λ

(
γ− γ

1+α
α

) ∫ t

tu

g(s)
f (s)

ds for t ≥ tu,

(4.1)

Observe that ∫ t

tu

g(s)
f 1+λ−α(s)

(∫ +∞

s
g(ξ) f λ−1−α(ξ)h(ξ)dξ

)
ds

= − f α−λ(t)
α− λ

∫ +∞

t
g(s) f λ−1−α(s)h(s)ds +

1
α− λ

∫ t

tu

g(s)
f (s)

h(s)ds

− f α−λ(tu)

α− λ

∫ +∞

tu

g(s) f λ−1−α(s)h(s)ds for t ≥ tu.

Hence, it follows from (4.1) that

f α−λ(t) (c∗α(λ)− cα(t; λ)) =
∫ t

tu

g(s)
f (s)

[
(α− λ) f α(s)ρ(s)− h(s) + α

(
γ− γ

1+α
α

)]
ds

+ f α−λ(tu)

[
c∗α(λ)− cα(tu; λ) +

∫ +∞

tu

g(s) f λ−1−α(s)h(s)ds
]

− f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds for t ≥ tu.

(4.2)

On the other hand, according to (2.8), (3.3), and Lemma 3.1 with ω := α, the estimate

(α− λ) f α(s)ρ(s)− h(s) + α
(

γ− γ
1+α

α

)
= α ( f α(s)ρ(s) + γ)− α| f α(s)ρ(s) + γ| 1+α

α ≤
(

α

1 + α

) 1+α
α

(4.3)

holds for s ≥ tu. Moreover, in view of (1.2), (1.6), and (3.5), it is clear that

f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds ≥ 0 for t ≥ tu.

Consequently, by virtue of the last inequality and (4.3), it follows from (4.2) that

f α−λ(t) [c∗α(λ)− cα(t; λ)] ≤
(

α

1 + α

) 1+α
α

ln
f (t)
f (tu)

+ f α−λ(tu)

[
c∗α(λ)− cα(tu; λ) +

∫ +∞

tu

g(s) f λ−1−α(s)h(s)ds
]

for t ≥ tu.

Hence, in view of (1.7), we get

lim sup
t→+∞

f α−λ(t)
ln f (t)

[c∗α(λ)− cα(t; λ)] ≤
(

α

1 + α

) 1+α
α

,

which contradicts (2.1).
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Proof of Corollary 2.2. Observe that for t > 0, we have

f α−λ(t)
ln f (t)

(c∗α(λ)− cα(t; λ)) =
α− λ

ln f (t)

∫ t

0

g(s)
f (s)

Q(s; α, λ)ds (4.4)

and

Q(t; α, λ) + H(t; α, µ) = (µ− λ) f α−µ(t)
∫ t

0
g(s) f µ−α−1(s)Q(s; α, λ)ds. (4.5)

Moreover, it is easy to show that

∫ t

0

g(s)
f (s)

Q(s; α, λ)ds = f α−µ(t)
∫ t

0
g(s) f µ−α−1(s)Q(s; α, λ)ds

+ (µ− α)
∫ t

0
g(s) f α−µ−1(s)

(∫ s

0
g(ξ) f µ−α−1(ξ)Q(ξ; α, λ)dξ

)
ds for t > 0. (4.6)

On the other hand, by virtue of (2.2), from relation (4.5) one gets

lim inf
t→+∞

f α−µ(t)
∫ t

0
g(s) f µ−α−1(s)Q(s; α, λ)ds >

(
α

α + 1

)α+1 1
(α− λ)(µ− α)

.

Therefore, in view of relation (1.7), it follows from (4.6) that

lim inf
t→+∞

1
ln f (t)

∫ t

0

g(s)
f (s)

Q(s; α, λ)ds >
(

α

α + 1

)α+1 1
α− λ

. (4.7)

Now, equality (4.4) and inequality (4.7) guarantee the validity of condition (2.1) and thus, the
assertion of the corollary follows from Theorem 2.1.

Proof of Corollary 2.3. If assumption (2.3) holds, then it follows from (4.4) that condition (2.1)
is satisfied and thus, the assertion of the corollary follows from Theorem 2.1.

Let now assumption (2.4) be fulfilled. Observe that∫ t

0
f α(s)p(s)ds = H(t; α, µ) + (µ− α)

∫ t

0

g(s)
f (s)

H(s; α, µ)ds for t ≥ 0t > 0.

Therefore, in view of (2.4), we obtain

lim inf
t→+∞

1
ln f (t)

∫ t

0
f α(s)p(s)ds >

(
α

α + 1

)α+1

. (4.8)

On the other hand, it is clear that

c′α(t; λ) =
−(α− λ)2g(t)

f 1+α−λ

∫ t

0
g(s) f α−λ−1(s)

(∫ s

0
f λ(ξ)p(ξ)dξ

)
ds

+
(α− λ)g(t)

f (t)

∫ t

0
f λ(s)p(s)ds

=
(α− λ)g(t)

f α−λ+1(t)

∫ t

0
f α(s)p(s)ds for t > 0.

Hence, we have

cα(τ; λ)− cα(t; λ) = (α− λ)
∫ τ

t

g(s)
f α−λ+1(s)

(∫ s

0
f α(ξ)p(ξ)dξ

)
ds τ ≥ t > 0
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and consequently, by virtue of assumption (1.8) and condition (4.8), we get

c∗α(λ)− cα(t; λ) = (α− λ)
∫ +∞

t

g(s) ln f (s)
f α−λ+1(s)

(
1

ln f (s)

∫ s

0
f α(ξ)p(ξ)dξ

)
ds for t > 0. (4.9)

In view of (4.8), there exist ε > 0 and tε > 0 such that

1
ln f (t)

∫ t

0
f α(s)p(s)ds ≥

(
α

α + 1

)α+1

+ ε for t ≥ tε.

Hence, it follows from (4.9) that

c∗α(λ)− cα(t; λ) ≥ (α− λ)

((
α

α + 1

)α+1

+ ε

) ∫ +∞

t

g(s) ln f (s)
f α−λ+1(s)

for t ≥ tε.

Since ε > 0, by virtue of (1.7), from the last relation we derive inequality (2.1). Therefore, the
assertion of the corollary follows from Theorem 2.1.

Proof of Theorem 2.5. Assume on the contrary that system (1.1) is not oscillatory, i.e., there
exists a solution (u, v) of system (1.1) satisfying relation (3.1) with tu > 0. Analogously to
the proofs of Lemmas 3.4 and 3.5 we derive equalities (3.11) and (3.20), where the numbers γ,
δ(tu) and the functions h, ρ are given by (2.8), (3.21) and (3.3), (3.4).

It follows from (3.11) and (3.20) that

Q(t; α, λ) + H(t; α, µ)

= − f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds

+
α

α− λ

(
γ− γ

1+α
α

)
+

αγ

µ− α
+ δ(tu) f α−µ(t)

+ f α−µ(t)
t∫

tu

g(s) f µ−α−1(s)
[
µ f α(s)ρ(s)− α|ρ(s) f α(s) + γ| 1+α

α

]
ds

(4.10)

is satisfied for t ≥ tu. Moreover, according to Lemma 3.1 with ω := µ, it is clear that

µ ( f α(t)ρ(t) + γ)− α|ρ(t) f α(t) + γ| 1+α
α ≤

(
µ

1 + α

)1+α

for t ≥ tu. (4.11)

Therefore, using (2.8), (3.5), and (4.11) in relation (4.10), we get

Q(t; α, λ) + H(t; α, µ)

≤ 1
α− λ

(
λ

1 + α

)1+α

+
1

µ− α

(
µ

1 + α

)1+α

+ δ̃(tu) f α−µ(t) for t ≥ tu, (4.12)

where

δ̃(tu) := δ(tu)−
[(

µ

1 + α

)1+α

− µγ

]
f µ−α(tu)

µ− α
.

Consequently, by virtue of (1.7), relation (4.12) leads to a contradiction with assumption (2.5).
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Proof of Theorem 2.6. Suppose on the contrary that system (1.1) is not oscillatory. Then there
exists a solution (u, v) of system (1.1) satisfying relation (3.1) with tu > 0. Analogously to the
proof of Lemma 3.5 one can show that relation (3.22) holds, where the numbers γ, δ1(tu) and
the function ρ are given by (2.8), (3.23), and (3.4). On the other hand, according to Lemma 3.4,
estimate (3.7) is fulfilled, where A(α, λ) is the smallest root of equation (2.9).

Let ε > 0 be arbitrary. Then there exists tε ≥ tu such that

f α(t)ρ(t) ≥ A(α, λ)− ε for t ≥ tε.

Hence, it follows from (3.22) that

H(t; α, µ) ≤ δ1(tu) f α−µ(t)− A(α, λ) + ε +
1

µ− α

(
µ

1 + α

)1+α

− γ for t ≥ tε.

Since ε was arbitrary, in view of (1.7), from the latter inequality we get

H∗(α, µ) ≤ 1
µ− α

(
µ

1 + α

)1+α

− γ− A(α, λ, γ),

which contradicts assumption (2.7).

Proof of Theorem 2.7. Assume on the contrary that system (1.1) is not oscillatory, i.e., there
exists a solution (u, v) of system (1.1) satisfying relation (3.1) with tu > 0. Analogously to the
proof of Lemma 3.4 we show that equality (3.12) holds, where the number γ and the functions
h, ρ are defined by (2.8), (3.3), and (3.4).

On the other hand, according to Lemma 3.5, estimate (3.19) is fulfilled, where B(α, µ) is
the greatest root of equation (2.12). Let ε > 0 be arbitrary. Then there exists tε ≥ tu such that

f α(t)ρ(t) + γ ≤ B(α, µ) + ε for t ≥ tε.

In view of the last inequality, (1.2), (1.6) and (3.5), it follows from (3.12) that

Q(t; α, λ) ≤ B(α, µ) + ε− γ +
α

α− λ

(
γ− γ

1+α
α

)
for t ≥ tε.

Since ε was arbitrary, we get

Q∗(α, λ) ≤ B(α, µ) +
γ

1+α
α

α− λ
,

which contradicts (2.11).

Proof of Theorem 2.8. Suppose on the contrary that system (1.1) is not oscillatory. Then there
exists a solution (u, v) of system (1.1) satisfying relation (3.1) with tu > 0. Put

m := A(α, λ), M := B(α, µ), (4.13)

i.e., m denotes the smallest root of equation (2.9) and M is the greatest root of equation (2.12).
According to Lemmas 3.4 and 3.5, we have

lim inf
t→+∞

f α(t)ρ(t) ≥ m, lim sup
t→+∞

( f α(t)ρ(t) + γ) ≤ M, (4.14)

where the function ρ and the number γ are defined in (3.4) and (2.8).
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Analogously to the proof of Theorem 2.5 we show that relation (4.10) holds for t ≥ tu,
where the number δ(tu) and the function h are defined by (3.21) and (3.3).

In view of (2.6), one can easily show that the function y : x 7→ α|x + γ| 1+α
α − αx +

Q∗(α, λ)(α− λ)− αγ is positive on ]−∞, 0[ and there exists x̄ ∈ [0,+∞[ such that y(x̄) ≤ 0,
which yields that m ≥ 0.

On the other hand, in view of (2.10), one can easily verify that the function z : x 7→
α|x| 1+α

α − αx + (µ− α)H∗(α, µ) is positive on ]
( µ

1+α

)α ,+∞[ and there exists x̃ ≤
( µ

1+α

)α such
that z(x̃) ≤ 0. Consequently, we have M ≤

( µ
1+α

)α.
We first assume that m > 0 and M <

( µ
1+α

)α. Let ε ∈ ]0, min
{

m,
( µ

1+α

)α−M
}
[ be arbitrary.

Then, by virtue of (4.14), there exists tε ≥ tu such that

f α(t)ρ(t) ≥ m− ε, f α(t)ρ(t) + γ ≤ M + ε for t ≥ tε. (4.15)

The function x 7→ α|x + γ| 1+α
α − (1 + α)xγ

1
α is non-decreasing on [0,+∞[ . Therefore, in view

of (3.3) and (4.15), we get

f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds ≥ α|m− ε + γ| 1+α

α − λ(m− ε)− αγ
1+α

α

α− λ
(4.16)

for t ≥ tε. Moreover, the function x 7→ µx− α|x| 1+α
α is non-decreasing on ]−∞,

( µ
1+α

)α
[ and

thus, in view of (4.15), we obtain

f α−µ(t)
t∫

tε

g(s) f µ−α−1(s)
[
µ f α(s)ρ(s)− α|ρ(s) f α(s) + γ| 1+α

α

]
ds

≤ µ(M + ε)− α|M + ε| 1+α
α − µγ

µ− α
for t ≥ tε. (4.17)

Now it follows from (4.10), (4.16), and (4.17) that

Q(t; α, λ) + H(t; α, µ) ≤ M + ε + H∗(α, µ)− (m− ε) + Q∗(α, λ)− γ

+
α(M + ε)− α|M + ε| 1+α

α − (µ− α)H∗(α, µ)

µ− α

− α|m− ε + γ| 1+α
α − α(m− ε) + (α− λ)Q∗(α, λ)− αγ

α− λ

+ δ(tε) f α−µ(t) for t ≥ tε,

(4.18)

where

δ(tε) := δ(tu) +
∫ tε

tu

g(s) f µ−α−1(s)
[
µ f α(s)ρ(s)− α|ρ(s) f α(s) + γ| 1+α

α

]
ds.

Since ε was arbitrary, in view of (1.7) and (4.13), inequality (4.18) yields that

lim sup
t→+∞

(Q(t; α, λ) + H(t; α, µ)) ≤ B(α, µ)− A(α, λ, γ) + Q∗(α, λ) + H∗(α, µ)− γ, (4.19)

which contradicts assumption (2.13).
If m = 0 then, in view of (3.5), it is clear that

− f α−λ(t)
∫ +∞

t
g(s) f λ−1−α(s)h(s)ds ≤ 0 = −α|m + γ| 1+α

α − λm− αγ
1+α

α

α− λ
(4.20)
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for t ≥ tu. On the other hand, if M =
( µ

1+α

)α then, using Lemma 3.1 with ω := µ, one can
show that

f α−µ(t)
t∫

tu

g(s) f µ−α−1(s)
[
µ f α(s)ρ(s)− α|ρ(s) f α(s) + γ| 1+α

α

]
ds

≤
( µ

1+α

)1+α − µγ

µ− α
− f µ−α(tu)

f µ−α(t)

(( µ
1+α

)1+α − µγ

µ− α

)

=
µM− α|M| 1+α

α − µγ

µ− α
− f µ−α(tu)

f µ−α(t)

(( µ
1+α

)1+α − µγ

µ− α

)
for t ≥ tu.

(4.21)

Consequently, if m = 0 (resp. M =
( µ

1+α

)α), then we derive from (4.10), the inequality (4.19)
similarly as above, but we use (4.20) instead of (4.16) (resp. (4.21) instead of (4.17)).
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