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1 Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental re-
sults and the standard notations of the Nevanlinna value distribution theory
of meromorphic functions (see [13]). In addition, we use the notations σ(f)
to denote the order of growth of a meromorphic function f(z).

We define the linear measure of a set E ⊂ [0,+∞) by m(E) =
∫ +∞

0
χE(t)dt

and the logarithmic measure of a set H ⊂ [1,+∞) by lm(H) =
∫ +∞

1
χH(t)

t
dt,

where χF denote the characteristic function of a set F .

For the definition of the iterated order of a meromorphic function, we use the
same definition as in [14] , [5, p. 317] , [15, p. 129] . For all r ∈ R, we define
exp1 r := er and expp+1 r := exp

(

expp r
)

, p ∈ N. We also define for all r
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sufficiently large log1 r := log r and logp+1 r := log
(

logp r
)

, p ∈ N. Moreover,
we denote by exp0 r := r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.1 Let p ≥ 1 be an integer. Then the iterated p−order σp(f)
of a meromorphic function f (z) is defined by

σp(f) = lim sup
r→+∞

logp T (r, f)

log r
, (1.1)

where T (r, f) is the characteristic function of Nevanlinna. For p = 1, this
notation is called order and for p = 2, hyper-order.

Remark 1.1 The iterated p−order σp(f) of an entire function f (z) is defined
by

σp(f) = lim sup
r→+∞

logp T (r, f)

log r
= lim sup

r→+∞

logp+1M (r, f)

log r
, (1.2)

where M (r, f) = max
|z|=r

|f (z)| .

Definition 1.2 The finiteness degree of the order of a meromorphic function
f is defined by

i (f) =















0, if f is rational,
min {j ∈ N : σj (f) <∞} , if f is transcendental

with σj (f) <∞ for some j ∈ N,
∞, if σj (f) = ∞ for all j ∈ N.

(1.3)

Definition 1.3 The iterated convergence exponent of the sequence of zeros
of a meromorphic function f (z) is defined by

λp(f) = lim sup
r→+∞

logpN(r, 1/f)

log r
(p ≥ 1 is an integer) , (1.4)

where N
(

r, 1
f

)

is the counting function of zeros of f (z) in {z : |z| < r}.

Similarly, the iterated convergence exponent of the sequence of distinct
zeros of f (z) is defined by

λp(f) = lim sup
r→+∞

logpN(r, 1/f)

log r
(p ≥ 1 is an integer) , (1.5)
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whereN
(

r, 1
f

)

is the counting function of distinct zeros of f (z) in {z : |z| < r}.

Definition 1.4 The finiteness degree of the iterated convergence exponent
of the sequence of zeros of a meromorphic function f (z) is defined by

iλ (f) =







0, if n(r, 1/f) = O (log r) ,
min {j ∈ N : λj (f) <∞} , if λj(f) <∞ for some j ∈ N,

∞, if λj(f) = ∞ for all j ∈ N.
(1.6)

Remark 1.2 Similarly, we can define the finiteness degree iλ (f) of λp(f).

Let n ≥ 2 be an integer and let A0 (z) , ..., An−1 (z) with A0 (z) 6≡ 0 be
entire functions. It is well-known that if some of the coefficients of the linear
differential equation

f (n) + An−1 (z) f (n−1) + ...+ A1 (z) f ′ + A0 (z) f = 0 (1.7)

are transcendental, then the equation (1.7) has at least one solution of
infinite order. Thus, the question which arises is : What conditions on
A0 (z) , ..., An−1 (z) will guarantee that every solution f 6≡ 0 of (1.7) has an
infinite order?

For the above question, there are many results for the second and higher
order linear differential equations (see for example [2] , [3] , [4] , [8] , [11] , [14] ,
[15]). In 2001 and 2002, Beläıdi and Hamouda have considered the equation
(1.7) and have obtained the following two results:

Theorem A [4] Let A0 (z) , ..., An−1 (z) with A0 (z) 6≡ 0 be entire functions

such that for real constants α, β, µ, θ1 and θ2 satisfying 0 ≤ β < α, µ > 0
and θ1 < θ2, we have

|A0 (z)| ≥ exp {α |z|µ} (1.8)

and

|Aj (z)| ≤ exp {β |z|µ} (j = 1, 2, ..., n− 1) (1.9)

as z → ∞ in θ1 ≤ arg z ≤ θ2. Then every solution f 6≡ 0 of the equation

(1.7) has an infinite order.
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Theorem B [3] Let A0 (z) , ..., An−1 (z) with A0 (z) 6≡ 0 be entire func-

tions. Suppose that there exist a sequence of complex numbers (zk)k∈N
with

lim
k→+∞

zk = ∞ and three real numbers α, β and µ satisfying 0 ≤ β < α and

µ > 0 such that

|A0 (zk)| ≥ exp {α |zk|
µ} (1.10)

and

|Aj (zk)| ≤ exp {β |zk|
µ} (j = 1, 2, ..., n− 1) (1.11)

as k → +∞. Then every solution f 6≡ 0 of the equation (1.7) has an infinite

order.

Let n ≥ 2 be an integer and consider the linear differential equation

An (z) f (n) + An−1 (z) f (n−1) + ...+ A1 (z) f ′ + A0 (z) f = 0. (1.12)

It is well-known that if An ≡ 1, then all solutions of this equation are entire
functions but when An is a nonconstant entire function, equation (1.12) can
possess meromorphic solutions. For instance the equation

z2f
′′′

+ 6zf
′′

+ 6f
′

− z2f = 0

has a meromorphic solution

f (z) =
ez

z2
.

Recently, L. Z. Yang [18], J. Xu and Z. Zhang [17] have considered
equation (1.12) and obtained different results concerning the growth of its
solutions, but the condition that the poles of every meromorphic solution of
(1.12) must be of uniformly bounded multiplicity was missing in [17]. See
Remark 3 in [9] .

In the present paper, we improve and extend Theorem A and Theorem B
for equations of the form (1.12) by using the concept of the iterated order. We
also consider the nonhomogeneous linear differential equations. We obtain
the following results:

Theorem 1.1 Let p ≥ 1 be an integer and let A0 (z) , ..., An−1 (z) , An (z) with

A0 (z) 6≡ 0 and An (z) 6≡ 0 be entire functions such that iλ (An) ≤ 1, i (Aj) =
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p (j = 0, 1, ..., n) and max {σp (Aj) : j = 1, 2, ..., n} < σp (A0) = σ. Suppose

that for real constants α, β, θ1 and θ2 satisfying 0 ≤ β < α and θ1 < θ2 and

for ε > 0 sufficiently small, we have

|A0 (z)| ≥ expp

{

α |z|σ−ε
}

(1.13)

and

|Aj (z)| ≤ expp

{

β |z|σ−ε
}

(j = 1, 2, ..., n) (1.14)

as z → ∞ in θ1 ≤ arg z ≤ θ2. Then every meromorphic solution f 6≡ 0
whose poles are of uniformly bounded multiplicity of the equation (1.12) has

an infinite iterated p−order and satisfies i (f) = p+ 1, σp+1 (f) = σ.

Theorem 1.2 Let p ≥ 1 be an integer and let A0 (z) , ..., An−1 (z) , An (z) with

A0 (z) 6≡ 0 and An (z) 6≡ 0 be entire functions such that iλ (An) ≤ 1, i (Aj) =
p (j = 0, 1, ..., n) and max {σp (Aj) : j = 1, 2, ..., n} < σp (A0) = σ. Suppose

that there exist a sequence of complex numbers (zk)k∈N
with lim

k→+∞
zk = ∞

and two real numbers α and β satisfying 0 ≤ β < α such that for ε > 0
sufficiently small, we have

|A0 (zk)| ≥ expp

{

α |zk|
σ−ε

}

(1.15)

and

|Aj (zk)| ≤ expp

{

β |zk|
σ−ε

}

(j = 1, 2, ..., n− 1) (1.16)

as k → +∞. Then every meromorphic solution f 6≡ 0 whose poles are of

uniformly bounded multiplicity of the equation (1.12) has an infinite iterated

p−order and satisfies i (f) = p+ 1, σp+1 (f) = σ.

Let A0 (z) , ..., An−1 (z) , An (z) , F (z) be entire functions with A0 (z) 6≡ 0,
An (z) 6≡ 0 and F 6≡ 0. Considering the nonhomogeneous linear differential
equation

An (z) f (n) + An−1 (z) f (n−1) + ... + A1 (z) f ′ + A0 (z) f = F, (1.17)

we obtain the following result:
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Theorem 1.3 Let A0 (z) , ..., An−1 (z) ,An (z) with A0 (z) 6≡ 0 and An (z) 6≡ 0
be entire functions satisfying the hypotheses of Theorem 1.2 and let F 6≡ 0
be an entire function of iterated order with i (F ) = q.
(i) If q < p + 1 or q = p + 1 and σp+1 (F ) < σp (A0) = σ, then every

meromorphic solution f whose poles are of uniformly bounded multiplicity of

the equation (1.17) satisfies iλ (f) = iλ (f) = i (f) = p + 1 and λp+1 (f) =
λp+1 (f) = σp+1 (f) = σ with at most one exceptional solution f0 satisfying

i (f0) < p+ 1 or σp+1 (f0) < σ.
(ii) If q > p + 1 or q = p + 1 and σp (A0) < σp+1 (F ) < +∞, then every

meromorphic solution f whose poles are of uniformly bounded multiplicity of

the equation (1.17) satisfies i (f) = q and σq (f) = σq (F ).

2 Preliminary Lemmas

Lemma 2.1 [10] Let f (z) be a meromorphic function. Let α > 1 and

Γ = {(k1, j1) , (k2, j2) , ..., (km, jm)} denote a set of distinct pairs of integers

satisfying ki > ji ≥ 0. Then there exist a set E1 ⊂ (1,+∞) having finite

logarithmic measure and a constant B > 0 that depends only on α and Γ
such that for all z satisfying |z| = r /∈ [0, 1]∪E1 and all (k, j) ∈ Γ, we have

∣

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣

∣

≤ B

[

T (αr, f)

r
(logα r) logT (αr, f)

]k−j

. (2.1)

Lemma 2.2 [10] Let f (z) be a meromorphic function. Let α > 1 and

ε > 0 be given constants. Then there exist a constant B > 0 and a set

E2 ⊂ [0,+∞) having finite linear measure such that for all z satisfying

|z| = r /∈ E2, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ B [T (αr, f)rε logT (αr, f)]j (j ∈ N). (2.2)

Lemma 2.3 [6, 7] Let p ≥ 1 be an integer and g(z) be an entire function

with i (g) = p + 1 and σp+1(g) = σ. Let νg(r) be the central index of g (z) .
Then

lim sup
r→+∞

logp+1 νg(r)

log r
= σ. (2.3)

Lemma 2.4 Let p ≥ 1 be an integer and let f (z) = g (z) /d (z) be a

meromorphic function, where g (z) and d (z) are entire functions satisfying
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σp (f) = σp (g) = +∞, i (d) < p or i (d) = p and σp (d) = ρ < +∞. Then

there exist a sequence of complex numbers {zk}k∈N
and a set E3 of finite

logarithmic measure such that |zk| = rk /∈ E3, rk → +∞, |g (zk)| = M (rk, g)
and for sufficiently large k, we have

f (n)(zk)

f(zk)
=

(

νg (rk)

zk

)n

(1 + o (1)) (n ≥ 1 is an integer) (2.4)

and

lim
k→+∞

logp νg (rk)

log rk

= σp (g) = +∞, (2.5)

where νg (r) is the central index of g.

Proof. By induction, we obtain

f (n) =
g(n)

d
+

n−1
∑

j=0

g(j)

d

∑

(j1...jn)

Cjj1...jn

(

d′

d

)j1

...

(

d(n)

d

)jn

, (2.6)

where Cjj1...jn
are constants and j + j1 + 2j2 + ... + njn = n. Hence

f (n)

f
=
g(n)

g
+

n−1
∑

j=0

g(j)

g

∑

(j1...jn)

Cjj1...jn

(

d′

d

)j1

...

(

d(n)

d

)jn

. (2.7)

From the Wiman-Valiron theory [12, 16], there exists a set E ⊂ (1,+∞) with
finite logarithmic measure such that for a point z satisfying |z| = r /∈ E and
|g (z)| = M (r, g), we have

g(j)(z)

g(z)
=

(

νg (r)

z

)j

(1 + o (1)) (j = 1, 2, ..., n) , (2.8)

where νg (r) is the central index of g. Substituting (2.8) into (2.7) yields

f (n) (z)

f (z)
=

(

νg (r)

z

)n

[(1 + o (1))

+

n−1
∑

j=0

(

νg (r)

z

)j−n

(1 + o (1))
∑

(j1...jn)

Cjj1...jn

(

d′

d

)j1

...

(

d(n)

d

)jn



 . (2.9)
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By Lemma 2.1, there exist a constant B > 0 and a set E1 ⊂ (1,+∞) having
finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E1,
we have

∣

∣

∣

∣

d(m) (z)

d (z)

∣

∣

∣

∣

≤ B [T (2r, d)]2m (m = 1, 2, ..., n) . (2.10)

For any given ε > 0 and sufficiently large r, we have

T (2r, d) ≤ expp−1

{

(2r)ρ+ ε

2

}

. (2.11)

From (2.10) and (2.11) and j1+2j2+...+njn = n−j, we obtain for sufficiently
large r, |z| = r /∈ [0, 1] ∪ E1

∣

∣

∣

∣

∣

(

d′

d

)j1

...

(

d(n)

d

)jn

∣

∣

∣

∣

∣

≤ c

[

(

expp−1

{

(2r)ρ+ ε

2

})2
](n−j)

= c
[

exp
(

2 expp−2

{

(2r)ρ+ ε

2

})](n−j)

≤ c
[

expp−1

{

rρ+ε
}](n−j)

, (2.12)

where c is a positive constant. Since σp (g) = +∞, it follows that there exists
a sequence {r′k} (r′k → +∞) satisfying

lim
k→+∞

logp νg(r
′
k)

log r′k
= +∞. (2.13)

Setting the logarithmic measure of E3 = [0, 1]∪E ∪E1, lm (E3) = δ < +∞,
there exists a point rk ∈ [r′k, (δ + 1) r′k] − E3. Since

logp νg(rk)

log rk

≥
logp νg(r

′
k)

log [(δ + 1) r′k]
=

logp νg(r
′
k)

(log r′k)
[

1 + log(δ+1)
log r′

k

] , (2.14)

we deduce that

lim
k→+∞

logp νg(rk)

log rk

= +∞. (2.15)

Then from (2.15) for a given arbitrary large L > ρ+ ε+ 1,

νg (rk) > expp−1

{

rL
k

}

(2.16)

holds for sufficiently large rk. This and (2.12) lead
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∣

∣

∣

∣

∣

(

νg (rk)

zk

)j−n (

d′

d

)j1

...

(

d(n)

d

)jn

∣

∣

∣

∣

∣

≤ c

[

rk expp−1

{

rρ+ε
k

}

expp−1 {r
L
k }

](n−j)

→ 0, rk → +∞ (2.17)

for |zk| = rk and |g (zk)| = M (rk, g) . From (2.15) , (2.9) and (2.17), we
obtain our result.

Lemma 2.5 [6] Let p ≥ 1 be an integer. Suppose that f (z) is a meromorphic

function such that i (f) = p, σp (f) = σ and iλ

(

1
f

)

≤ 1. Then for any given

ε > 0, there exists a set E4 ⊂ (1,+∞) that has finite linear measure and

finite logarithmic measure such that for all z satisfying |z| = r /∈ [0, 1] ∪ E4,
r → +∞, we have

|f (z)| ≤ expp

{

rσ+ε
}

. (2.18)

Lemma 2.6 [14] Let p ≥ 1 be an integer and let f (z) be a meromorphic

function with i (f) = p. Then σp (f) = σp (f ′).

Lemma 2.7 [6] Let p ≥ 1 be an integer and let f (z) be a meromorphic

solution of the differential equation

f (n) +Bn−1 (z) f (n−1) + ... +B1 (z) f ′ +B0 (z) f = F, (2.19)

where B0 (z) , ..., Bn−1 (z) and F 6≡ 0 are meromorphic functions such that

(i) max {i (F ) , i (Bj) (j = 0, ..., n− 1)} < i (f) = p+ 1 or

(ii) max {σp+1 (F ) , σp+1 (Bj) (j = 0, ..., n− 1)} < σp+1 (f).
Then iλ (f) = iλ (f) = i (f) = p+ 1 and λp+1 (f) = λp+1 (f) = σp+1 (f).

To avoid some problems caused by the exceptional set we recall the
following lemmas.

Lemma 2.8 [1] Let g : [0,+∞) → R and h : [0,+∞) → R be monotone

non-decreasing functions such that g (r) ≤ h (r) outside of an exceptional set

E5 of finite linear measure. Then for any µ > 1, there exists r0 > 0 such

that g (r) ≤ h (µr) for all r > r0.
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Lemma 2.9 [11] Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone

non-decreasing functions such that ϕ (r) ≤ ψ (r) for all r /∈ E6 ∪ [0, 1], where

E6 ⊂ (1,+∞) is a set of finite logarithmic measure. Let η > 1 be a given

constant. Then there exists an r1 = r1 (η) > 0 such that ϕ (r) ≤ ψ (ηr) for

all r > r1.

3 Proof of Theorem 1.1

Suppose that f ( 6≡ 0) is a meromorphic solution whose poles are of uniformly
bounded multiplicity of the equation (1.12). From (1.12), it follows that

|A0 (z)| ≤ |An (z)|

∣

∣

∣

∣

f (n)

f

∣

∣

∣

∣

+ |An−1 (z)|

∣

∣

∣

∣

f (n−1)

f

∣

∣

∣

∣

+ ... + |A1 (z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (3.1)

By Lemma 2.2, there exist a constant B > 0 and a set E2 ⊂ [0,+∞) having
finite linear measure such that for all z satisfying |z| = r /∈ E2, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ Br [T (2r, f)]n+1 (j = 1, 2, ..., n) . (3.2)

Hence from (1.13), (1.14), (3.1) and (3.2), it follows that

expp

{

α |z|σ−ε
}

≤ Bnr [T (2r, f)]n+1 expp

{

β |z|σ−ε
}

(3.3)

as r → +∞, |z| = r /∈ E2 and θ1 ≤ arg z ≤ θ2. By Lemma 2.8 and (3.3), we
obtain that σp (f) = +∞ and i (f) ≥ p+ 1, σp+1 (f) ≥ σ − ε. Since ε > 0 is
arbitrary, we get σp+1 (f) ≥ σ. Set

δ = max {σp (Aj) : j = 1, 2, ..., n} < σp (A0) = σ < +∞.

We can rewrite (1.12) as

f (n) +
An−1 (z)

An (z)
f (n−1) + ...+

A1 (z)

An (z)
f ′ +

A0 (z)

An (z)
f = 0.

Obviously, the poles of f (z) can only occur at the zeros of An (z). Note
that the multiplicity of the poles of f is uniformly bounded, and thus we

have iλ

(

1
f

)

≤ p and λp (1/f) ≤ δ < σ < +∞. By Hadamard factorization

theorem, we can write f as f (z) = g (z) /d (z), where g (z) and d (z) are
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entire functions satisfying i (f) = i (g) = t ≥ p + 1, σt (f) = σt (g) and
i (d) ≤ p, σp (d) = λp (1/f) < σ < +∞. Thus by Lemma 2.4, there exists
a sequence of complex numbers {zk}k∈N

and a set E3 of finite logarithmic
measure such that |zk| = rk /∈ E3, rk → +∞, |g (zk)| = M (rk, g) and for
sufficiently large k, we have

f (j)(zk)

f(zk)
=

(

νg (rk)

zk

)j

(1 + o (1)) (j = 1, 2, ..., n) . (3.4)

By Remark 1.1, for any given ε > 0 and for sufficiently large r, we have

|Aj (z)| ≤ expp

{

rσ+ε
}

(j = 0, 1, ..., n− 1) . (3.5)

By Lemma 2.5, for the above ε > 0, there exists a set E4 ⊂ [1,+∞) that
has finite linear measure and finite logarithmic measure such that for all z
satisfying |z| = r /∈ [0, 1] ∪E4, r → +∞, we have

|1/An (z)| ≤ expp

{

rσ+ε
}

. (3.6)

We can rewrite (1.12) as

−An (z)
f (n)

f
= An−1 (z)

f (n−1)

f
+ ...+ A1 (z)

f ′

f
+ A0 (z) . (3.7)

Substituting (3.4) into (3.7), we obtain for the above zk

−An (zk)

(

νg (rk)

zk

)n

(1 + o (1)) = An−1 (zk)

(

νg (rk)

zk

)n−1

(1 + o (1))

+...+ A1 (zk)

(

νg (rk)

zk

)

(1 + o (1)) + A0 (zk) . (3.8)

Hence from (3.5), (3.6) and (3.8), we have

(

1/ expp

{

rσ+ε
k

})

∣

∣

∣

∣

νg (rk)

zk

∣

∣

∣

∣

n

|1 + o (1)|

≤ expp

{

rσ+ε
k

}

∣

∣

∣

∣

νg (rk)

zk

∣

∣

∣

∣

n−1

|1 + o (1)|

+...+ expp

{

rσ+ε
k

}

∣

∣

∣

∣

νg (rk)

zk

∣

∣

∣

∣

|1 + o (1)| + expp

{

rσ+ε
k

}
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≤ n expp

{

rσ+ε
k

}

∣

∣

∣

∣

νg (rk)

zk

∣

∣

∣

∣

n−1

|1 + o (1)| , (3.9)

where |zk| = rk /∈ [0, 1] ∪ E3 ∪ E4, rk → +∞ and |g (zk)| = M (rk, g). By
Lemma 2.9 and (3.9), we get

lim sup
k→+∞

logp+1 νg(rk)

log rk

≤ σ + ε. (3.10)

Since ε > 0 is arbitrary, by (3.10) and Lemma 2.3, we obtain i (f) = i (g) ≤
p+ 1 and σp+1 (f) = σp+1 (g) ≤ σ. This and the fact that σp+1 (f) ≥ σ yield
i (f) = p + 1 and σp+1 (f) = σ.

4 Proof of Theorem 1.2

Suppose that f ( 6≡ 0) is a meromorphic solution whose poles are of uniformly
bounded multiplicity of the equation (1.12). From (1.12), it follows that

|A0 (z)| ≤ |An (z)|

∣

∣

∣

∣

f (n)

f

∣

∣

∣

∣

+ |An−1 (z)|

∣

∣

∣

∣

f (n−1)

f

∣

∣

∣

∣

+ ... + |A1 (z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

. (4.1)

By Lemma 2.2, there exist a constant B > 0 and a set E2 ⊂ [0,+∞) having
finite linear measure such that for all z satisfying |z| = r /∈ E2, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ Br [T (2r, f)]n+1 (j = 1, 2, ..., n) . (4.2)

Hence from (1.15), (1.16), (4.1) and (4.2), we have

expp

{

α |zk|
σ−ε

}

≤ Bnrk [T (2rk, f)]n+1 expp

{

β |zk|
σ−ε

}

(4.3)

as k → +∞, |zk| = rk /∈ E2. Hence from (4.3) and Lemma 2.8, we obtain
that σp (f) = +∞ and i (f) ≥ p+1, σp+1 (f) ≥ σ−ε. Since ε > 0 is arbitrary,
we get σp+1 (f) ≥ σ. By using the same arguments as in proof of Theorem
1.1, we obtain i (f) ≤ p + 1 and σp+1 (f) ≤ σ. Hence i (f) = p + 1 and
σp+1 (f) = σ.
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5 Proof of Theorem 1.3

First, we show that (1.17) can possess at most one exceptional meromorphic
solution f0 satisfying i (f0) < p+ 1 or σp+1 (f0) < σ. In fact, if f ∗ is another
solution with i (f ∗) < p + 1 or σp+1 (f ∗) < σ of the equation (1.17), then
i (f0 − f ∗) < p + 1 or σp+1 (f0 − f ∗) < σ. But f0 − f ∗ is a solution of
the corresponding homogeneous equation (1.12) of (1.17). This contradicts
Theorem 1.2. We assume that f is an infinite iterated p−order meromorphic
solution whose poles are of uniformly bounded multiplicity of (1.17) and
f1, f2, ...fn is a solution base of the corresponding homogeneous equation
(1.12) of (1.17). Then f can be expressed in the form

f (z) = B1 (z) f1 (z) +B2 (z) f2 (z) + ...+Bn (z) fn (z) , (5.1)

where B1 (z) , ..., Bn (z) are suitable meromorphic functions determined by

B′
1 (z) f1 (z) +B′

2 (z) f2 (z) + ... +B′
n (z) fn (z) = 0

B′
1 (z) f ′

1 (z) +B′
2 (z) f ′

2 (z) + ... +B′
n (z) f ′

n (z) = 0
...............................

B′
1 (z) f

(n−1)
1 (z) +B′

2 (z) f
(n−1)
2 (z) + ...+B′

n (z) f
(n−1)
n (z) = F (z) .

(5.2)

Since the WronskianW (f1, f2, ..., fn) is a differential polynomial in f1, f2, ..., fn

with constant coefficients, it is easy by using Theorem 1.2 to deduce that

σp+1 (W ) ≤ max {σp+1 (fj) : j = 1, 2, ..., n} = σp (A0) = σ. (5.3)

From (5.2), we get

B′
j = F.Gj (f1, f2, ..., fn) .W (f1, f2, ..., fn)−1 (j = 1, 2, ..., n) , (5.4)

where Gj (f1, f2, ...fn) are differential polynomials in f1, f2, ..., fn with con-
stant coefficients. Thus

σp+1 (Gj) ≤ max {σp+1 (fj) : j = 1, 2, ..., n}

= σp (A0) = σ (j = 1, 2, ..., n) . (5.5)

(i) If q < p + 1 or q = p + 1 and σp+1 (F ) < σp (A0) = σ, then by Lemma
2.6, (5.3) , (5.4) and (5.5) for j = 1, 2, ..., n, we have
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σp+1 (Bj) = σp+1

(

B′
j

)

≤ max {σp+1 (F ) , σp (A0)} = σp (A0) = σ. (5.6)

Then from (5.1) and (5.6), we get

σp+1 (f) ≤ max {σp+1 (fj) , σp+1 (Bj) : j = 1, 2, ..., n}

= σp (A0) = σ < +∞. (5.7)

From (1.17), it follows that

|A0 (z)| ≤ |An (z)|

∣

∣

∣

∣

f (n)

f

∣

∣

∣

∣

+|An−1 (z)|

∣

∣

∣

∣

f (n−1)

f

∣

∣

∣

∣

+...+|A1 (z)|

∣

∣

∣

∣

f ′

f

∣

∣

∣

∣

+

∣

∣

∣

∣

F

f

∣

∣

∣

∣

. (5.8)

By Lemma 2.2, there exist a constant B > 0 and a set E2 ⊂ [0,+∞) having
finite linear measure such that for all z satisfying |z| = r /∈ E2, we have

∣

∣

∣

∣

f (j)(z)

f(z)

∣

∣

∣

∣

≤ Br [T (2r, f)]n+1 (j = 1, 2, ..., n) . (5.9)

Set
max {σp (Aj) : j = 1, 2, ..., n} = δ < σp (A0) = σ. (5.10)

We can rewrite (1.17) as

f (n) +
An−1 (z)

An (z)
f (n−1) + ... +

A1 (z)

An (z)
f ′ +

A0 (z)

An (z)
f =

F

An (z)
. (5.11)

Obviously, it follows that the poles of f (z) can only occur at the zeros of
An (z) . Note that the multiplicity of the poles of f is uniformly bounded,

and thus we have iλ

(

1
f

)

≤ p and λp (1/f) ≤ δ < σ < +∞. By Hadamard

factorization theorem, we can write f as f (z) = g (z) /d (z), where g (z) and
d (z) are entire functions satisfying i (f) = i (g) = t ≥ p + 1, σt (f) = σt (g)
and i (d) ≤ p, σp (d) = λp (1/f) < σ < +∞. Set

max {σp+1 (F ) , σp (d)} = γ < σ. (5.12)

For any given ε (0 < 2ε < σ − γ) and a sufficiently large r, we have

|F (z)| ≤ expp

{

rγ+ε
}

and |d (z)| ≤ expp−1

{

rγ+ε
}

. (5.13)
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Since M (r, g) ≥ 1 for a sufficiently large r, we obtain from (5.13),

∣

∣

∣

∣

F (z)

f (z)

∣

∣

∣

∣

=
|F (z)| |d (z)|

|g (z)|
≤ expp

{

rγ+ε
}

expp−1

{

rγ+ε
}

(5.14)

as r → +∞, |z| = r and |g (z)| = M (r, g). If A0 (z) , ..., An−1 (z) and An (z)
satisfy the hypotheses of Theorem 1.2, then from (1.15), (1.16) , (5.8) , (5.9)
and (5.14), it follows that

expp

{

α |zk|
σ−ε

}

≤ Bnrk [T (2rk, f)]n+1 expp

{

β |zk|
σ−ε

}

+ expp

{

|zk|
γ+ε

}

expp−1

{

|zk|
γ+ε

}

(5.15)

as k → +∞, |zk| = rk /∈ E2 and |g (zk)| = M (rk, g). From (5.15) and
Lemma 2.8, we get σp+1 (f) ≥ σ − ε. Since ε > 0 is arbitrary, it follows
that σp+1 (f) ≥ σ. This and the fact that σp+1 (f) ≤ σ yield σp+1 (f) = σ.
Thus by Lemma 2.7, we have iλ (f) = iλ (f) = i (f) = p + 1 and λp+1 (f) =
λp+1 (f) = σp+1 (f) = σ.

(ii) If q > p + 1 or q = p + 1 and σp (A0) < σp+1 (F ) < +∞, then by
Lemma 2.6, (5.3) , (5.4) and (5.5) for j = 1, 2, ..., n, we have

σq (Bj) = σq

(

B′
j

)

≤ max {σq (F ) , σq (fj) : j = 1, 2, ..., n} = σq (F ) . (5.16)

Then from (5.1) and (5.16), we get

σq (f) ≤ max {σq (fj) , σq (Bj) : j = 1, 2, ..., n} = σq (F ) . (5.17)

On the other hand, if q > p+ 1 or q = p + 1 and σp (A0) < σp+1 (F ) < +∞,
it follows from (1.17) that a simple consideration of order implies σq (f) ≥
σq (F ). By this inequality and (5.17) we obtain σq (f) = σq (F ) .
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[3] B. Beläıdi and S. Hamouda, Growth of solutions of n-th order linear

differential equation with entire coefficients, Kodai Math. J. 25 (2002),
240-245.
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