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1 Introduction and main results

In this paper, we assume that the reader is familiar with the fundamental re-
sults and the standard notations of the Nevanlinna value distribution theory
of meromorphic functions (see [13]). In addition, we use the notations o(f)
to denote the order of growth of a meromorphic function f(z).

We define the linear measure of a set E C [0, +00) by m(FE) fOJrOO xe(t)dt

and the logarithmic measure of a set H C [1,400) by Im(H) = f;roo XHT(t)dt,
where yr denote the characteristic function of a set F.

For the definition of the iterated order of a meromorphic function, we use the

same definition as in [14], [5, p. 317], [15, p. 129]. For all r € R, we define
exp,r := ¢ and exp, T = exp (expp 7“) , p € N. We also define for all r
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sufficiently large log, 7 := logr and log,,,, r := log (logp r) , p € N. Moreover,
we denote by exp,r :=r, log,r :=1r, log_; r := exp, r and exp_, r := log, r.

Definition 1.1 Let p > 1 be an integer. Then the iterated p—order o,(f)
of a meromorphic function f (z) is defined by
o

log T
»(f) =lim supiogp (r, /)

1.1
0o logr ' (1.1)

where T'(r, f) is the characteristic function of Nevanlinna. For p = 1, this
notation is called order and for p = 2, hyper-order.

Remark 1.1 The iterated p—order o,( f) of an entire function f (z) is defined

by
log, T 1 M
op(f) = lim supogqimf) = lim sup 08y M (1 f>, (1.2)
r—-+o0 ogr r—+4o00 lOg r
where M (r, f) = max |f (2)].

|z|=r

Definition 1.2 The finiteness degree of the order of a meromorphic function

f is defined by

0, if f is rational,

min{j € N: o, (f) < oo}, if f is transcendental
with o; (f) < oo for some j € N,
00, if 0 (f) = oo for all j € N.

i(f) = (13)

Definition 1.3 The iterated convergence exponent of the sequence of zeros
of a meromorphic function f (z) is defined by

Ap(f) = lim supw

m sty og (p > 1is an integer) , (1.4)

where N (T, %) is the counting function of zeros of f(z) in {z: |z| < r}.
Similarly, the iterated convergence exponent of the sequence of distinct

zeros of f (z) is defined by

Xp(f) = lim Supw

m suy Tog (p > 11is an integer) , (1.5)
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where N (r, %) is the counting function of distinct zeros of f (2) in{z : |z| < r}.

Definition 1.4 The finiteness degree of the iterated convergence exponent
of the sequence of zeros of a meromorphic function f (z) is defined by

0, if n(r,1/f) =0 (logr),
ix(f)=4q min{j € N: X; (f) <oo}, if X\;(f) < oo for some j € N,
00, if X\;(f) = oo for all j € N.

(1.6
Remark 1.2 Similarly, we can define the finiteness degree iy (f) of A\,(f).

Let n > 2 be an integer and let Ag (2), ..., A,—1 (2) with Ay (z) #Z 0 be
entire functions. It is well-known that if some of the coefficients of the linear
differential equation

FO 4 A ) O V4 AR A (2) f=0 (1.7)

are transcendental, then the equation (1.7) has at least one solution of
infinite order. Thus, the question which arises is : What conditions on
Ao (2), ..., An_1 (2) will guarantee that every solution f % 0 of (1.7) has an
infinite order?

For the above question, there are many results for the second and higher
order linear differential equations (see for example [2], [3], [4], [8], [11], [14],
[15]). In 2001 and 2002, Belaidi and Hamouda have considered the equation
(1.7) and have obtained the following two results:

Theorem A [4] Let Ay (2),..., An_1(2) with A (z) Z 0 be entire functions
such that for real constants o, 3, u, 601 and 0y satisfying 0 < 8 < a, p > 0
and 01 < O, we have

|40 (2)] = exp{a 2"} (1.8)

and

[4; ()| < exp{B 2"} (j=1,2,....n—1) (1.9)

as z — oo in 0 < argz < 6y. Then every solution f % 0 of the equation
(1.7) has an infinite order.
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Theorem B [3] Let Ay (z),...,An_1(2) with Ag(z) #Z 0 be entire func-
tions. Suppose that there exist a sequence of complexr numbers (zi)ycy With

khm zr = 00 and three real numbers o, 3 and p satisfying 0 < 3 < « and
— 400

w > 0 such that
| Ao (2)| = exp {a[2]"} (1.10)

and

|4 (zx)| <exp{Blz|"} (j=1,2,...,n—1) (1.11)

as k — 4o00. Then every solution f # 0 of the equation (1.7) has an infinite
order.

Let n > 2 be an integer and consider the linear differential equation

Ap (2) f™ 4+ A1 (2) FO D 4+ LA (2) f Ay (2) f = 0. (1.12)

It is well-known that if A, = 1, then all solutions of this equation are entire
functions but when A,, is a nonconstant entire function, equation (1.12) can
possess meromorphic solutions. For instance the equation

ZQf/// + 6Zf// + 6f/ . 22][, _ 0

has a meromorphic solution

Recently, L. Z. Yang [18], J. Xu and Z. Zhang [17] have considered
equation (1.12) and obtained different results concerning the growth of its
solutions, but the condition that the poles of every meromorphic solution of

(1.12) must be of uniformly bounded multiplicity was missing in [17]. See
Remark 3 in [9].

In the present paper, we improve and extend Theorem A and Theorem B
for equations of the form (1.12) by using the concept of the iterated order. We
also consider the nonhomogeneous linear differential equations. We obtain
the following results:

Theorem 1.1 Let p > 1 be an integer and let Ay (2) ..., An_1(2), A
Ao (2) Z0 and A, (z) # 0 be entire functions such that ir(A,) < ,z( i) =
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p (j=0,1,...,n) and max{o, (4;):j=1,2,....,n} < g, (Ay) = 0. Suppose
that for real constants «, 3,01 and 0y satisfying 0 < [ < « and 0, < 65 and
for € > 0 sufficiently small, we have

|Ag (2)] = exp, {a|2|”"} (1.13)

and

4 ()] < exp, {81277} (G =1,2,.m) (1.14)
as z — oo in 0y < argz < Oy. Then every meromorphic solution f # 0

whose poles are of uniformly bounded multiplicity of the equation (1.12) has
an infinite iterated p—order and satisfies i (f) =p+ 1,051 (f) = 0.

Theorem 1.2 Let p > 1 be an integer and let Ay (2) , ..., An_1(2), A, (2) with
Ay (2) #0 and A, (2) # 0 be entire functions such that iy (A,) < 1,i(A4;) =
p (j=0,1,....n) and max{o, (4,) : j=1,2,...,n} < 0,(Ay) = 0. Suppose

that there exist a sequence of complex numbers (z),cy with klirf 2 = 00

and two real numbers o and (B satisfying 0 < B < « such that for ¢ > 0
sufficiently small, we have

| Ao (21)| > exp, {oz |zk|07€} (1.15)
and

|Aj (z1)] <exp, {8z} (1=1,2,...,n—1) (1.16)

as k — +oo. Then every meromorphic solution f % 0 whose poles are of
uniformly bounded multiplicity of the equation (1.12) has an infinite iterated
p—order and satisfies i (f) =p+1, op1 (f) = 0.

Let Ag(2),...,An-1(2), A, (2), F(2) be entire functions with Ay (z) # 0,

A, (2) # 0 and F # 0. Considering the nonhomogeneous linear differential
equation

Ap () f™ 4 A () fO V4 L+ A () f + A (2) f=F, (1.17)

we obtain the following result:
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Theorem 1.3 Let Ay (2), ..., Ap_1(2) A, (2) with Ag (2) Z0 and A, (2) Z0
be entire functions satisfying the hypotheses of Theorem 1.2 and let F' # 0
be an entire function of iterated order with i (F) = q.

i) If g <p+1lorq=p+1and opp1(F) < 0,(Ay) = o, then every
meromorphic solution f whose poles are of uniformly bounded multiplicity of
the equation (1.17) satisfies ix (f) = ix (f) =i (f) =p+ 1 and A\ (f) =
Mpt1 (f) = 0pi1 (f) = o with at most one exceptional solution fy satisfying
i(fo) <p+1orop(fo) <o.

i) If ¢g>p+1orq=p+1and o,(Ay) < 0p+1 (F) < +o00, then every
meromorphic solution f whose poles are of uniformly bounded multiplicity of
the equation (1.17) satisfies i (f) = q and o, (f) = o, (F).

2 Preliminary Lemmas

Lemma 2.1 [10] Let f(z) be a meromorphic function. Let a > 1 and
U= {(k1,71), (k2,72) s (km, jm)} denote a set of distinct pairs of integers
satisfying k; > j; > 0. Then there exist a set F1 C (1,400) having finite
logarithmic measure and a constant B > 0 that depends only on a and T’
such that for all z satisfying |z| =1 ¢ [0,1]U Ey and all (k,j) € ', we have

fP () T(ar,f) . k=g
F0(2) <B {f (log® r)log T'(ar, f) : (2.1)

Lemma 2.2 [10] Let f(z) be a meromorphic function. Let o > 1 and
e > 0 be gwen constants. Then there exist a constant B > 0 and a set
Ey C [0,400) having finite linear measure such that for all z satisfying
|z| = r ¢ Ey, we have

'f(j)(z)
f(z)
Lemma 2.3 [6,7] Let p > 1 be an integer and g(z) be an entire function

with i (g) =p+1 and 0,11(9) = 0. Let v,(r) be the central index of g (z).
Then

< B[T(ar, f)rflogT(ar, f))’ (j € N). (2.2)

lo Vy(r
lim sup 108p+1%4(r) = 0. (2.3)
00 log r

Lemma 2.4 Let p > 1 be an integer and let f(z) = g(z)/d(z) be a
meromorphic function, where g(z) and d(z) are entire functions satisfying
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o, (f) = 0,(g9) = +00, i(d) <p ori(d) =p and o,(d) = p < +00. Then
there exist a sequence of complex numbers {z} ey and a set Es of finite
logarithmic measure such that |z| = 1, & Es, ry — 400, |g (zx)| = M (74, 9)
and for sufficiently large k, we have

F™(z) (v (r)\" - .
flz) ( P ) (14+0(1)) (n>11isan integer) (2.4)

and | )

. ng Vg Tk o .

Jim ST 6, () = oo, (2.5)
where vy (1) is the central index of g.
Proof. By induction, we obtain
(n) n—1 d Ji d™ Jn
) = 9~ g T @
j=0 (J1---3n)

where Cj;, ;. are constants and j + j1 + 2j2 + ... + nj, = n. Hence

n—l ; 1 ]n

f g g9 A\ d™

/ g — g
7=0 (J1.--4n)

From the Wiman-Valiron theory [12, 16], there exists a set E C (1, 400) with

finite logarithmic measure such that for a point z satisfying |z| = r ¢ E and

lg (2)] = M (r,g), we have

(4 v, (r)\?
99(=) _ < o ( )) (1+0(1) (=12 ...n), (2.8)

9(2) z
where v, (r) is the central index of ¢g. Substituting (2.8) into (2.7) yields

f™(z) _ (Vg (7“)>n [(1+0(1))
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By Lemma 2.1, there exist a constant B > 0 and a set £y C (1, 4+00) having
finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Ej,
we have

< B[T(2r,d)*" (m=1,2,...,n). (2.10)

’ dm (z)
d(z)

For any given ¢ > 0 and sufficiently large r, we have

T (2r,d) < exp, , {(2r)ﬂ+%}. (2.11)

From (2.10) and (2.11) and j; +2j2+...+nj, = n—j, we obtain for sufficiently

large r, |z| =r ¢ [0,1] U By
7 1 (n)\ /n SN 2
|(%) (%) <c [(expp_l {(27«)0+5}) ]
=c [exp <2 exp, o {(27’)p+% })] ") < ¢ [exp,_; {r"**}] (n=7) . (2.12)

where ¢ is a positive constant. Since o, (¢) = +00, it follows that there exists
a sequence {r}} (r, — +00) satisfying

(n—3)

log v,(r,
lim g”ig(,’“) = +o0. (2.13)
k—too  logry

Setting the logarithmic measure of F3 = [0,1]U EU Ey, Im (E3) = 6 < +00,
there exists a point 7 € [}, (0 + 1) r] — Ej5. Since

—_— I - ° 9 .
log 7y, log [(6 + 1) 7] (log ) [1 L) igj;:)]
we deduce that | ()
og, v,(r
lim —op 0k (2.15)
k—Foo  logry
Then from (2.15) for a given arbitrary large L > p + ¢ + 1,
vy (1) > exp,_y {ri} (2.16)

holds for sufficiently large 7. This and (2.12) lead
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() (0 ()

pte

<. Tk €XP,_1 {T
€XPy 1 {Tk}

for |zx| = 1 and |g(2)] = M (rg,g). From (2.15), (2.9) and (2.17), we
obtain our result.

(n—7)
}] — 0, 1y — 400 (2.17)

Lemma 2.5 [6] Let p > 1 be an integer. Suppose that f (z) is a meromorphic
function such that i (f) =p, o, (f) =0 and iy <%> < 1. Then for any given
e > 0, there exists a set Ey C (1,400) that has finite linear measure and

finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Ey,
r — 400, we have

|/ (2)] < exp, {r7"}. (2.18)

Lemma 2.6 [14] Let p > 1 be an integer and let f(z) be a meromorphic
function with i (f) = p. Then o, (f) = o, (f').

Lemma 2.7 [6] Let p > 1 be an integer and let f(z) be a meromorphic
solution of the differential equation

f<>+Bn1()f"1+ 4+ B (2)f'+By(2) f=F, (2.19)

where By (2), .. 1(2) and F # 0 are meromorphic functions such that
(i) max{i(F),i(Bj) (j=0,.on=1}<i(f)=p+1or

(i) wax {11 (F) ,0psr (B5) (G = 0, sn— 1)} < 301 (f).

Then ix (f) = ix (f) = i (f) = p+ 1 ond Xpir () = i1 () = ops1 (F):

To avoid some problems caused by the exceptional set we recall the
following lemmas.

Lemma 2.8 [1] Let g : [0,4+00) — R and h : [0,400) — R be monotone
non-decreasing functions such that g (r) < h(r) outside of an exceptional set

Es5 of finite linear measure. Then for any p > 1, there exists rog > 0 such
that g (r) < h(ur) for all r > ro.
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Lemma 2.9 [11] Let ¢ : [0,4+00) — R and ¢ : [0,4+00) — R be monotone
non-decreasing functions such that ¢ (r) < ¢ (r) for all r ¢ EgU]|0, 1], where
Es C (1,400) is a set of finite logarithmic measure. Let n > 1 be a given
constant. Then there exists an r1 = 11 (n) > 0 such that ¢ (r) < ¢ (nr) for
all ¥ > 1ry.

3 Proof of Theorem 1.1

Suppose that f (# 0) is a meromorphic solution whose poles are of uniformly
bounded multiplicity of the equation (1.12). From (1.12), it follows that

f /!
f i
By Lemma 2.2, there exist a constant B > 0 and a set Fy C [0, +00) having
finite linear measure such that for all z satisfying |z| = r ¢ E,, we have

200
f(2)
Hence from (1.13), (1.14), (3.1) and (3.2), it follows that

Fo A (2)] (3.1)

(n-1)
o (2)] < 14, (2) \ &

A ()]

< Br[T@r A" (j=1,2,...,n). (3.2)

exp, {a|2|”7°} < Bnr [T(2r, nrt exp, {6127} (3.3)

as r — +00, |z| =r ¢ Ey and 6, < argz < 6. By Lemma 2.8 and (3.3), we
obtain that o, (f) = +oo and i (f) > p+ 1, 0p41 (f) > 0 — €. Since € > 0 is
arbitrary, we get 0,41 (f) > 0. Set

d=max{o,(4;):j=1,2,...,n} <0, (A) =0 < +oo.

We can rewrite (1.12) as

Fo An1 (2) Fo- 4y A (2) Ao (2)

A, (2) A, (2) A, (2)

Obviously, the poles of f(z) can only occur at the zeros of A, (z). Note
that the multiplicity of the poles of f is uniformly bounded, and thus we

have iy (%) <pand A\, (1/f) < <o < +o0o. By Hadamard factorization

f+ f=0.

theorem, we can write f as f(z) = g(z)/d(z), where g(z) and d(z) are
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entire functions satisfying i (f) = i(g) =t > p+ 1, oo (f) = 04(g) and
i(d) <p,o,(d) =X (1/f) < 0 < 4o0. Thus by Lemma 2.4, there exists
a sequence of complex numbers {z},.y and a set Ej3 of finite logarithmic
measure such that |zx| = rp € Es, 1, — +o0, |g(2)] = M (rg, g) and for
sufficiently large k, we have

f(])(zk) B M J . o i
PO (20 avoq) =120 G

By Remark 1.1, for any given € > 0 and for sufficiently large r, we have

|A; ()] <exp, {r"*} (7 =0,1,...,n—1). (3.5)

By Lemma 2.5, for the above € > 0, there exists a set £, C [1,400) that
has finite linear measure and finite logarithmic measure such that for all z
satisfying |z| = r ¢ [0,1] U By, r — 400, we have

11/A, (2)] < exp, {r7™}. (3.6)
We can rewrite (1.12) as
(n) (n—1) /
—A, (2) ff =An_1(2) / 7 +..+ A (z)f7+A0 (2). (3.7)

Substituting (3.4) into (3.7), we obtain for the above z

~n () () (0 (1) = v () (ﬁ) (14 0(1))

Zk

+.. 4+ Ay (2x) (%:k)) (1+0(1))+ A (21). (3.8)
Hence from (3.5), (3.6) and (3.8), we have
(1/ exp, {ry*°}) g (i) |1+ 0(1)]
< e, {7} ) 101y
vy (1)

+...+exp, {r*} 1140 (1) +exp, {rg*}
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Yy (re) "

-1
< nexp, {rg*} 14+ 0(1)], (3.9)

where |z| = rp ¢ [0,1] U E3 U Ey, r, — 400 and |g (zx)| = M (rx,9). By
Lemma 2.9 and (3.9), we get

lo v, (r
lim supM <o+e. (3.10)
k—-o0 log Tk

Since £ > 0 is arbitrary, by (3.10) and Lemma 2.3, we obtain i (f) =i (g) <
p+1and oy (f) = 0py1 (9) < 0. This and the fact that 0,41 (f) > o yield

i(f)=p+1land o, (f) =0.

4 Proof of Theorem 1.2

Suppose that f (# 0) is a meromorphic solution whose poles are of uniformly
bounded multiplicity of the equation (1.12). From (1.12), it follows that

(n) (n—1) /
|Ao<z>|s|An<z>|]ff - L

By Lemma 2.2, there exist a constant B > 0 and a set Fy C [0, 4+00) having
finite linear measure such that for all z satisfying |z| = r ¢ FE», we have

’f(j)(z)
f(2)
Hence from (1.15), (1.16), (4.1) and (4.2), we have

bt AL (2)] (4.1)

el

< Br[T@r, "™ (j=1,2,..,n). (4.2)

exp, {a|z|7°} < Bnry [T(2ry, f)]" ™ exp, {8277} (4.3)

as k — +00, |zx| = rx ¢ Es. Hence from (4.3) and Lemma 2.8, we obtain
that o, (f) = +ocoand i (f) > p+1, 0p41 (f) > 0 —e. Since € > 0 is arbitrary,
we get 0,41 (f) > 0. By using the same arguments as in proof of Theorem
1.1, we obtain i (f) < p+ 1 and 0,4 (f) < 0. Hence i(f) = p+ 1 and

opi1(f) =0
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5 Proof of Theorem 1.3

First, we show that (1.17) can possess at most one exceptional meromorphic
solution fy satisfying i (fo) < p+ 1 or 0,41 (fo) < 0. In fact, if f* is another
solution with 7 (f*) < p+ 1 or o,41 (f*) < o of the equation (1.17), then
i(fo—f") <p+1or o (fo—f) < o But fo — f*is a solution of
the corresponding homogeneous equation (1.12) of (1.17). This contradicts
Theorem 1.2. We assume that f is an infinite iterated p—order meromorphic
solution whose poles are of uniformly bounded multiplicity of (1.17) and
f1, fo,...fn is a solution base of the corresponding homogeneous equation
(1.12) of (1.17). Then f can be expressed in the form

f(z) = Bi(2) [1(2) + B2 (2) fa (2) + ... 4+ B (2) fn (2) (5.1)

where By (2), ..., B, (2) are suitable meromorphic functions determined by

0
0

By EZ) fi(2) + By (2) fa (2) + ... + By, (2) fn (2)

Bi (2) fi (2) + B} (2) f3(2) + .. + B, (2) £ (2) (5.2)

B (2) {7V (2) + By (2) "V (2) + o+ BL(2) "V (2) = F (2).

Since the Wronskian W (f1, fa, ..., fn) is a differential polynomial in fi, fa, ..., fs
with constant coefficients, it is easy by using Theorem 1.2 to deduce that

pr1 (W) <max{op41 (f;):7=1,2,....,n} =0, (4) = 0. (5.3)

From (5.2), we get

B} = F.Gj(fi, far e o) W (1, for oo fa) 7 (G=1,2,0m),  (5.4)

where G, (f1, fa, ... fn) are differential polynomials in fi, fo, ..., f,, with con-
stant coefficients. Thus

Op+1 (Gj) S max {0p+1 (f]) : ] = 1727 777’}

=0,(A) =0 (j=1,2,...,n). (5.5)
) Ifg<p+lorgq=p+1and oy (F) < 0,(Ag) = 0, then by Lemma
2.6, (5.3), (5.4) and (5.5) for j = 1,2,...,n, we have
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0pi1 (Bj) = 0pi1 (Bj) < max{ops1 (F), 05 (Ao)} = 0, (Ag) = 0. (5.6)
Then from (5.1) and (5.6), we get
op+1 (f) < max{opi1 (f;),0p41(B)) 1 j = 1,2,...,n}

=0, (Ay) = 0 < +00. (5.7)
From (1.17), it follows that

(n) (n—1)
40 (2)] < 1A, (2) \f S A )

f f

By Lemma 2.2, there exist a constant B > 0 and a set Fy C [0, 400) having
finite linear measure such that for all z satisfying |z| = r ¢ E,, we have

A ()]

S
f

+‘§' (5.8)

f(j)(z) n+1 . n
' 8 ' < Br[T(2r, f)] (j=1,2,...,n). (5.9)
Set
max {0, (4;):j=1,2,...n} = <0, (A) = 0. (5.10)

We can rewrite (1.17) as

n An—l(z) n—1
f()+7An<z> FOD 44

A (2)
A, (2)
Obviously, it follows that the poles of f(z) can only occur at the zeros of
A, (z) . Note that the multiplicity of the poles of f is uniformly bounded,
and thus we have i) (%) <pand \,(1/f) < < 0 < +00. By Hadamard

AO (2) . F
4, = A,

f+ (5.11)

factorization theorem, we can write f as f (2) = g (2) /d (z), where g (2) and
d (z) are entire functions satisfying i (f) =i(g) =t >p+1, oy (f) = 04 (9)
and i (d) < p, o, (d) =\, (1/f) < 0 < +00. Set

max {0, (F),0,(d)} =7 < o. (5.12)
For any given € (0 < 2e < 0 — 7) and a sufficiently large r, we have

|F (2)] < exp, {r"**} and |d(z)| < exp,_; {r""}. (5.13)
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Since M (r,g) > 1 for a sufficiently large r, we obtain from (5.13),

F(2)]d(2)]

| I <o e, () )
as r — 400, |z| =rand |g(z)] = M (r,g). If Ay (z
satisfy the hypotheses of Theorem 1.2, then from (
and (5.14), it follows that

)y
1

wAn_1(2) and A, (2)
15), (1.

16), (5.8), (5.9)

exp, {a |27} < By [T(2r4, ot exp, {3 |z|" "}

+exp, {2 exp,_y |27} (5.15)

as k — 400, |z| = 1 € FEy and |g(2x)] = M (ry,g). From (5.15) and
Lemma 2.8, we get 0,41 (f) > 0 —e. Since € > 0 is arbitrary, it follows
that 0,41 (f) > o. This and the fact that o, (f) < o yield 0,41 (f) = 0.
Thus by Lemma 2.7, we have ix (f) = i) (f) =i (f) =p+ 1 and N\yy (f) =

Ap+1 (f) = Op+1 (f)=o.

(i) If¢g>p+1orq=p+1ando,(Ay) < opi1 (F) < 400, then by
Lemma 2.6, (5.3), (5.4) and (5.5) for j = 1,2,...,n, we have

o, (B;j) =g, (B;) <max{o, (F),0,(f;):7=1,2,...,n} =0,(F). (5.16)

Then from (5.1) and (5.16), we get

o, (f) <max{o,(f;),0,(Bj):j=1,2,...n} =0, (F). (5.17)

On the other hand, if ¢ >p+1or ¢ =p+1 and 0, (Ay) < opy1 (F) < +00,
it follows from (1.17) that a simple consideration of order implies o, (f) >
o, (F'). By this inequality and (5.17) we obtain o, (f) = o, (F).
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