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1 Introduction
In this article, we are concerned with the following problem

=Dy ot = Dyt — a(x)|u " 20 = AulT® "2y + f(x,u) inQ
u=0 on 0(),

(Py)

where ) C RY(N > 1) is a bounded smooth domain, A is a positive parameter and f : Q x
R — R is a continuous function which satisfies some assumptions provided later. Moreover,

p1,P2,9 € C(Q) and m(x) = max(p1(x), p2(x)) for all x € ), such that

1<p; =minp;(x) <p; =maxp;(x) <N, =12,
xeQ) xeQ)

mT =maxm(x) < g~ =ming(x) < gq(x) <m*(x) VxeQ,
xeQ) xeQ)
where m*(x) = NN_mngg) for all x € Q) and the set

B={x € Q:q(x) =m"(x)} is nonempty.

(m‘h)

(qu)

In recent years, the study of various mathematical problems with variable exponent growth
condition has been received considerable attention in recent years. A more and more impor-
tant number of surveys and books dealing with this type of problems and their corresponding
functional spaces setting have been published (see [1-4,12,16-20]). We also have to mention
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the books [13] and [21] as important references in this field. This great interest may be jus-
tified by their various physical applications. In fact, there are applications concerning elastic
mechanics [25], electrorheological fluids [23,24], image restoration [9], dielectric breakdown,
electrical resistivity and polycrystal plasticity [6,7] and continuum mechanics [5].

It is well known that although most of the materials can be accurately modeled with the
help of the classical Lebesgue and Sobolev spaces L and W7, where p is a fixed constant, but
there are some nonhomogeneous materials, for which this is not adequate, e.g. the rheological
fluids mentioned above, which are characterized by their ability to drastically change their
mechanical properties under the influence of an exterior electromagnetic field. Thus it is
necessary for the exponent p to be variable, hence the need for spaces with variable exponents.
This leads, on the one hand,to many interesting applications, and, on the other hand,to the
study of much more mathematically complicated problems.

In [19], Mihdilescu considered the problem

{—Apl(x)u — APZ(X)M = :I:(_A|u’m(3()*2u + |u’q(x)72u) in O

u=20 on o),
where m(x) = max{p1(x), p2(x)} for any x € Q or m(x) < g(x) < Nl\lmngg) for any x € Q.

In the first case, using mountain pass theorem, he established the existence of infinity many
solutions. In the second case, by simple variational arguments, he proved that the problem has
a solution for A large enough. The novelty of this paper lies in the fact we consider problem
(Py), with growth g(x) which is critical in a set with positive measure. The difficulty in this
case, is due to the lack of compactness of the imbedding Wg’m(x)(Q) s L™ (™) (Q) and the
Palais-Smale condition for the corresponding energy functional could not be checked directly.
To deal with this difficulty, we use a version of the concentration compactness lemma due to
Lions for variable exponents [8].

Here, we are interested in the existence and multiplicity of weak solutions under the
following hypotheses on a(x) and f.

(a1) a(x) € L®(Q) and there exists « > 0 such that

|Vu|Pr®) [ Vu|p2(x) |u| ) / || () 1m(x)
— dx > ——dx, Yue W, 0);
/ﬂ( nE e i )T w Ve

(a2) m(x) =m™ forallx e TT :={x € Q:a(x) > 0};

(f1) f € C(Q x R,R), odd with respect to t such that

mM =0, uniformlyinx € O,
t—0 |t‘m(x)*1
flot) _ 0, uniformlyinx € Q;

[t +oo | £]7(X) =1

(f2) F(x,t) < -Lf(x,t)t, Vt € Rand ae. x € Q, where F(x,t) = fotf(x,s)ds.

Example 1.1. In this example we just exhibit a function a(x) satisfying assumption (a;).
Let QO = B(0,2) := {x € RN : |x| < 2} (N > 3), p1(x) = 2— 1x1 — [x]* and pa(x) =

2—1x,— L|x? for all x = (x1,%,...,x8) € Q, where |x|> = YN, x% Then p; € C(Q)
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and 1 < p; < p! <N, i=12 Lete; = (1,0,...,0). Then for any x € (), the function
hi : t — p1(x + tep) is monotone in I, = {t : x + te; € O}. In fact, we have

() =2 Y 40— L+ nio Ly
e 16" 16 &1
thus hj(t) = —§(2+x1 +1). Since |x; +t| < |x+tey| < 2, hj(t) < O for all ¢+ € I, and

hence h; is decreasing in I,. Similarly, for e; = (0,1,...,0), the function hy : t — pa(x + tey) is
monotone in I, = {t : x +te; € Q}. Therefore p;, i = 1,2, satisfying conditions of [15, Theorem
3.3], thus the modular Poincaré inequality holds:

/ Vi) dx > ci/ wuP@dx (G >0,i=1,2),
Q QO

which is equivalent to

pi(x) pi(x)
/ VulP s o [P0 (@m0, i=1,2),
o pi(x) a pi(x)

since 1 < p; < pi(x) < p <N.
Now, let V € L*(Q) such that 1+ V(x) > ¢ > 0. Note that p;, i = 1,2, are log-Holder
continuous functions. Indeed, let x,y € Q) such that [x —y| < 1, then

p1(x) = ()!_4!xl y1!+ HXI2 lyP?|

IN

=yl + 16 HXI Il (x| + ly[)

IN

=yl + 16 |x = yl(Ix[ +1y])

IN
NP ==

w=

-yl
1

IN

N
P~
)
a9
/
=
| =
=)
N—

In the same way, we get [p2(x) — p2(y)| < ﬁ Applying [11, Theorem 2.2], we can find
a1, &2 > 0 such that 08 ( 5y

‘Vu’pl(x) / ‘u|P1(x)
—  dx> 1+V d
ooty e A V)

and

’V;”Pz(x) / ’u‘?ﬂz(x)
— dx > 1+V — dx.
ey 2 0 A V)

\u|p1
pa(x)

|Vu|Pr() | Vu|p2(x) . |1 [y|P2(¥)
/()( () + ~EY )dx2 m1n(uc1,a2)/0(1—|—V(x)) < 1 () + 72 (%) >dx

m(x)

P28 Ju]™€

4l ) 2 i ) It follows that

Observe that [u|P1) + |u|P2(¥) > |u|™(), thus

]

(x) dx.

> min(le,(xz)/ﬂ(1+v(x))
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Therefore

IVl [Tl . e "
+ dx—/ w1, 00)V(x dx > Ny, K / dx,
/ﬂ< E Ay o M 82)V (0% e = min(e02) 555

and hence the function a(x) := min(aq, )V (x) satisfies condition (a7 ).

2 Preliminaries

Here, we state some interesting properties of the variable exponent Lebesgue and Sobolev
spaces that will be useful to discuss problem (P,). Every where below we consider Q C RN

to be a bounded domain with smooth boundary and p(x) € C4(Q)), where
Ci(Q)={heC(Q):h(x)>1forallx € O}.

Define the variable exponent Lebesgue space by

P Q) = {u : O — Rmeasurable : / u(x)[PMdx < oo}.
0
This space endowed with the Luxemburg norm,

p(x)
[l oo () :inf{r>0:/0 dxgl}

is a separable and reflexive Banach space. Denoting by LF'(*)(Q)) the conjugate space of
LP™)(Q) where ﬁ + ﬁ = 1; for any u € LPM(Q) and v € LV (Q) we have the fol-
lowing Holder type inequality

ulx)
T

1 1
el < (5 + 2 ) Il oy

Now, we introduce the modular of the Lebesgue-Sobolev space LP(¥)(Q) as the mapping
Pp(x) LPO)(Q) — R, defined by

= PWdx,  Yue LPH(Q).
oy () = [ uPPax,  vue L)

In the following proposition, we give some relations between the Luxemburg norm and the
modular.

Proposition 2.1 ([14]). If u, u, € LP®™)(Q), then following properties hold true:
) Nl < 1= 1) < Ppier (0) < 1l
@) Nl 2 1= 180 0 < i (00) < Nl
(3) )}EEOHuHHLP(x)(Q) =0« ,}E%opp(x)(un) =0;

(4) 711erolo||u”HLP(’f>(Q) =00 = Ji_{gopp(x)(un) = ©0.
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Next, we define the variable exponent Sobolev space W'*(¥)(Q) by
Wi (Q) = {u e 9(Q) 1 |Vu| € LPO(Q) }.
endowed with the norm

H”le,p(x)(Q) = ||u||LP(X)(Q) + Hv“||Lp(x)(Q),

where by || Vit|; ) ) we understand || [Vl [| 0 ). We denote by Wg’p(x)(ﬂ) the closure of
Ce(Q) in W) (Q) with respect to the above norm. The space W?()(Q) and W&’p(x)(ﬂ)
are separable and reflexive Banach spaces.

Proposition 2.2 ([14]).
(1) Ifr € C4(Q) and r(x) < p*(x) for all x € Q, then the embedding
WP (Q) — L' (Q)
is compact and continuous.

(2) There is a constant C > 0 such that

il oray < ClVll oy for all u € Wy (Q).

3 Main result

From now on, we consider m(x) = max(p;1(x), p2(x)) for all x € Q). By (2) of Proposition 2.2,
we know that [ul| := [[Vul|nw ) and [[u|yinw o) are equivalent norms in Wé’m(x)(ﬂ). In

the following, we will use |[u|| instead of [[u||yy1mw () on W&’m(x) (Q).
Definition 3.1. We say that u Wg’m(x) (Q)) is a weak solution of problem (P,) if
/Q <|Vu|m(x)*2 + |Vu\p2(x)’2> VuVovdx — /Qa(x)]u|m(x)’2uvdx
= )\/Q 1|12y pdx + /Qf(x,u)vdx,

forall v € Wol’m(x) (Q).
Our main result is the following theorem.

Theorem 3.2. Assume that (a1)—(a2), (f1)—(f2) and (mq,)—(mgq,) hold. Then, there exits a sequence
{Ak} C (0, 400) with Ay > Agyq, such that for any A € (Mg 1, Ax], problem (P,) has at least k pairs
of nontrivial solutions.

4 Proof of main result

We will start by recalling an important abstract theorem involving genus theory, which will
be used in the proof of Theorem 3.2.
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Theorem 4.1 ([22]). Let E be an infinite dimensional Banach space with E = V @ X, where V is
finite dimensional and let I € C'(E,R) be a even function with 1(0) = 0 and satisfying

(i) There are constants B, ¢ > 0 such that I(u) > B for all u € 0B, N X;
(ii) There is T > 0 such that I satisfies the (PS). condition, for 0 < ¢ < T;

(iii) For each finite dimensional subspace E C E, there is R = R(E) > 0 such that I(u) < 0 for all
u € E\Bg(0).

Suppose that V is k dimensional and V = span{ey, ..., ex}. For n > k, inductively choose e, 1 &
E, :=span{ey,...,e,}. Let R, = R(E,) and D,, = Bg, N E,,. Define

Gn = {h € C(Dy,E) : his odd and h(u) = u, Vu € dBg, NE,}

and

U= {n(D\Y) :h€ Gy n>j, Y €T, andy(Y) <n—j},

where

Y ={Y CE\{0}:Yisclosedin Eand Y = —Y}

and y(Y) is the genus of Y € X. For each j € IN, let

5 = e

Then 0 < B < c¢j < cjy1forj >k, and if j > k and ¢; < T, we have that c; is the critical value of I.
Moreover, if ¢; = ¢jy1 = -+ = ¢jyy = ¢ < T for j > k, then v(K.) > 141, where

Kc={u€E:I(u) =cand I'(u) = 0}.

In the sequel, we derive some results related to the above theorem and the Palais-Smale
compactness condition.

Since we will rely on the critical point theory, we define the energy functional correspond-
ing to problem (P,) as I : W&’m(x)(ﬂ) — R,

B (Vu|P1() | Vu|p2() || () Ju))
L\(M)—/Q< 1 (%) + 2 () )dx—/ﬂa(x) () —A o 700 dx—/QF(x,u)dx.

Clearly, I is C! functional and the critical points of it are weak solutions of problem (P,).

Lemma 4.2. Assume that (a1), (f1) and (mqy) hold. Then for each A > 0, I, satisfies condition (i)
given in Theorem 4.1.
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Proof. Let 6 > 0. By (a1), we have
(- o
s (e T e
1+5/ (\w\m sz‘(f)m —a(x)|um’;n;;)>dx
(S
1+5/ (‘V”‘m |VPL21‘(T)(QC)> dx—& Qa(x)‘ﬂ(ni;)dx
> @ \Mm i Cvmwl |vwmm>d Ol [ s
1+9 1+5 pa(x) (1+06)m
N
We can choose é > 0 such that Cp := %(% - 5T|Zﬂ°°) > 0. So

Tl [Tuf \Vum IV
AQ(:n@) o T ) B2, A R

+C0/ ’u‘mx
Q

By the seconde part of (f1), there is #, > 0 such that

|f(x,£)| < e|t|7™~1 for all |t| > 5 and for all x € Q.
Thanks to the continuity of f, there is A, > 0, such that
|f(x,t)] < Ag for all |t| < 7. and for all x € Q.

Therefore
|f(x, )| < e|t|T¥)1 4+ A, for all (x,t) € Q x R. (4.2)

On the other hand, by the first part of (f1), for each ¢ > 0 there exists 0 < J; < 1 such that
1f(x,£)] < elt]™ ™)1 forall |t| < & and for all x € Q. (4.3)
For |t| > &, it follows from (4.2) that

|f(x,1)] Ag Ag
<e+ < — =

|t|‘7(x)*1 ¢ q(x)—-1 — € gt—1 &

O¢ ¢

that is
|f(x, )| < Ce|t|T®~1 for all |t| > & and for all x € Q. (4.4)
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Combining (4.3)—(4.4), we obtain
1f(x, £)] < et ™)1 4 CJt]1971 forall (x,t) € Q x R.

By integrating this last inequality, we get

|t|m(x) € |t\”7(x) for all (x,t) € Q x R. 4.5)

C
[Fx, )] < e

&
m(x)
Therefore

|w|m |w|ﬂz<X> € ) A+ Ce
> __& m(x) gy — 21 e q(x)
Iy(u) > 1+5/ < EY dx+<CO _)/Q|u] dx = /Q|u| dx

\Vu\’”l(")JrIVu\pZ("))der(%—%)/ || )
m=/ Jo

> A
(1+9) maX(Pl P3)
_)H'Cs/ 11]90) i

q Q

Hence for ¢ sufficiently small,

) A+C
L(u) > V| 4 |Vt £ / 1) g
M) = (1+5)max(pf,p§“)/ﬂ(’ ul vl ) q- Q\u| g

Using the fact that

|Vu|P0) 4 | Vu(x)|P20) > [ Vu(x) "™ for allx € Q, (4.6)
it follows that
) A+C
Iy(u) > / Vu|"®) gy — E/ u|19) gy
) 2 G S a7 Jo V" "

By the continuous embedding Wg’m(x) (Q) — LI (Q)), there exists C; > 0 such that
]l L ) < Callell-

Consequently, by Proposition 2.1, for ||u| = o, with0 < ¢ < 1,

0 + A+ C)Co
) 2 e - A
(1+6)max(py, p;) 1
Since m™ < g~, there exists f > 0 such that I)(u) > B for ||u|| = ¢, where ¢ is chosen
sufficiently small. O

Lemma 4.3. Assume that (a1), (f1) and (mq,) hold. Then I, satisfies condition (iii) given in Theo-
rem 4.1.

Proof. Let E to be a finite dimensional subspace of Wg’m(x) (Q). By (4.2),

[f(x,8)| <elt]T™1+ A, forall (x,) € QxR.
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Integrating this inequality, we entail

|F(x,t)] < € A
|¢]9(x) g(x ) |t|a(x)-1
€ Ag
< P + e as [t| — +oo,

hence for € > 0, there is J; > 0, such that
|F(x,t)| <e|t|?™) forall |t| > & and for all x € Q. (4.7)
By continuity, there is M, > 0 such that
|F(x,t)| < M, forall |t| < J and for all x € Q. (4.8)

This and (4.7) imply that

F(x,t) > —M, —¢|t|1™) forall (x,t) € QO x R. (4.9)
Thus
Iy(u) < .1/ (|w\m<x)dx+|w|Pz<x>)dx+”””""/ Ju| ")
min(p;, p, ) Jo m= Jao

+(e—ﬁ>/ u|7®) dx + M| Q.
q Q

. A .
By choosing ¢ = 57, We obtain

1 H ||oo
L) < —— _/ (VPO dx 4 |2 /| ")
mm(Pl'Pz) (
q
2q+/ " dx + M| Q)
< <z|m+2/ ]Vu|m(x)dx+||a]|oo/ ]u\m(")dx>
min(py, p, ) o) o)

/\ X
2 /Q 7™ dx + M| Q.

Since dim E < oo, the norms | - || and [| - [| ;40 () are equivalent in E. According to Proposition
2.1, for min ([Jull, [l peor oy el oo () > 1

1
< - - m—+ ~ m+ _
h) < sy (200 20l + allelul o) 2q+HuH o+ M0l
1 /\C3
< ———— (2] + 2u]" + Claflsllu ") = T2 [l + Ml

min(p;, p; )

Using the fact that m* < q—, we conclude that I, (#) < 0 for ||u|]] > R > 1, where R is chosen
large enough. O



10 M. Massar

4.1 Palais—Smale condition

Lemma 4.4. Assume that (a1), (f1)—(f2) and (mq,) hold. Then any (PS) sequence of I, is bounded
in W ().

Proof. Let {u,} C Wé’m(x)(ﬂ) such that I)(u,) — c and Ij(u,) — 0. By (f2), for n large
enough,

1
¢+ 1+ |lunll > In(un) — 7<I§L(“n)r“n>

1m7ﬁwww ”*/( W>me
< x)) a(x) |u " dx—i—/\/< _q(lx)> |14, |109)
(e

f(x,up)u, — F(x, un)> dx

) ey )

X
<1ml mgx ) a (x) [ " clx+/\/Q <m+ - q(1x)> 1,7

( _ ) 1y < /\/ ( q(1x)> PRUCEN

1 1
< L m(x)
_c+1+||unH+/Q(m(x) )a(x)!un! dx

1 1
<+ 1+ il + l|afe <m_ - m+> [ lual

On the other hand, by (m4,), for any & > 0, there exists C; > 0 such that

Therefore

= &
A
A
> (m
A
A

[£7C) < |10 4 ¢, forall (x,£) € Q x R.

It follows that

1 1 1
= L1 gy < ; o — — — L1
/\(m+ )/ ual"@dx < ¢+ 1+ [[ua] +elal (m_ m+)/0|u 10)dx

1 1
+lalle (= = e ) GO

1 1 1 1
R - = q(x)
(/\ <m+ q_) ellal]o (m_ m+)> | lual

hence

Choosing ¢ = 2”2| (

Al 1 1 1 1
A 1(x) gy < —
(= L) [l < e 14l + lall (5 - ) e,
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Thus,
[l 10 < Ca1 -+ ) (4.10)

By (4.7) and (4.8), for € > 0, there exists C, > 0 such that
|F(x,t)| <elt|1™ +C; forall (x,t) € QxR. (4.11)
(4.1), (4.6), (4.10) and (4.11) imply that for n large enough

) P |V, |1 |V, P20
Vi, |"®dx < / 1 + 1 dx
(1+ 6)max(p}, p3) /Q‘ | ~14+6Ja p1(x) pa(x)

§I;\(un)—|—)\_/ \un\q(x)dx—i—/ F(x,uy,)dx
q- Ja O

<GCs+ ((;\—Fs)/ |1, [T dx + Ce|Q
0

A
< <q +s) Ca(1+ |lun]]) + C5 + Ce|QY).

Hence
[ 19" < Co(1+ )
0
and so
min ([[uy ]|, [Jun]|"7) < C1+ [|unl])-
Consequently {u,} is bounded in W&’m(x) (Q). O

In view of Lemma 4.4, {u,} is bounded in Wg’m(x)(()). So, up to subsequence, we may
assume that

ol
uy = u in W, m(x)(Q),
U, = u in Lq(")(Q),
Uy, —u in L'M(Q), r e C(Q), r(x) < m*(x) Vx € Q.

Taking in to account (mgq,), from the concentration compactness lemma of Lions [8], there
exist tow nonnegative measures y,v € M(Q), a countable set 7, points {x;};c7 in Q) and
sequences {};}je7,{Vj}jes C [0, 400), such that

[Vitn["0) = g > [u"™) + 3 o, in O
jeg
|Mn|‘?(x) -y > ’u|q(x) + Z V]'éxj in O (4.12)
jeJ
1 1

m*(xj) m(x]) .
< yu.
< M forallje J,

Sv].

where IVl
S= inf 9 L))

pec (@) ([Pl

Let ¢ € C° (RV) such that

0<¢<1, ¢=1 inBi(0), ¢=0 inRN\By(0).



12 M. Massar

For e > 0 and j € J denote

4)£(x) =¢ <x—8x]> , forall x € RN.
We claim that
/Q (|W¢Qm<x> I ‘uv(l,gm(x)) dx

< C (1Bac () + o 3 180 ) ) (4.13)
for all u € W™ )(Q), where C > 0 is independent of € and j € J. Indeed

[p1(x) /1p2(x)
[ (19l + uvgii)) da
j ()
< 2|Boe(xj) |+2/V¢{;|>1 |uV ¢ )dx
< 2fBaxp)| +2 [ (|uvel"™) dx
Q
< Cr (1Bl + [ [uvel ")

1 X — X
— [ IBoe(x; / ) |2y ( f)
' <| ()l + Bae(x;) 4 € ¢ €
Using Holder’s inequality,

/ |u|m(x
Bzg(x]')

< Cs H’”|m(x)

m(x)
dx) : (4.14)

m(x)
dx

1 X —Xj
o ()

m(x)

m* (x)
L (%) (By(x;))

1 X — Xj
e ()

. . (@415)
LI GTE (Bae (7))

m(x)m *(x)
m* (x)—m(x) 1 X — x]. N
dx = / "V
st(x]-) & &

o[V dy =

Furthermore,

/Bzg(xl‘)

dx

(4.16)
Gathering (4.14)-(4.16) and taking into account Proposition 2.1, we deduce
[ (199l + [ugl=)) dx < G ( 1B ()] + Cao [l oo
o) L ™) (Bye(x;))
€ (1Bae )|+ el ) + 180 ) ) -
and the claim follows.

Lemma 4.5. Assume that (a1), (f1)—(f2) and mq, hold. If {u,} is a (PS) sequence of I,, then for
eachj € J,

SN
1/]-:0 or vjz

N *

/\m(x]-)
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Proof. Let cpé as above. By Lemma 4.4, we see that for each j € 7, {uncpé} is bounded in
We™™ Q). Since I (i) — 0, (I, (), tnl) = 0,(1). From (4.6),

LAVl < [ (19,710 + Va2 ) gl
—/ ]Vun|p1(x)‘2unVuan>£dx—/ |Vun]p2(")_2unVunV<p£dx
+A/ 1|75 4>fdx+/ )|t gl
—|—/Qf (X, 1) unpldx + 0, (1). (4.17)

For any T > 0, by Young's inequality, there exist C;, C. > 0 such that

/|vunyr’1<x)dx+cf/ 1, VL7 D
Q Q

<T <’Bzg(xj)\ —l—/ \Vun]m(x)dx> —|—CT/ !MnV¢£|p1(x)dx
Q o}

/ ‘\wnv’l(x)—zunwnwé
(@)

/Q )|Vun\p2(x)_2unVun

g:dxﬁ’(/ |Vun|P2(x)dx+Cf[/ |MnV(P£|p2(x)dx
Q o)

<T (|325(xj)| +/ ]Vun|m(x)dx> +C’T/ |1, VplP2)
Q Q
Using the fact {u, } is bounded in Wg m(x) (Q), it follows that

lim sup / ‘ |V, \pl(x)*zunVunchi
Q

n—-+o00

lim sup / ‘ |V, |”2(x)_2unVuan>£
0

n—-4o00

dx < 1tCpp + CT/ \uV¢£]p1(x)dx
0

dx < 1Cqyp + C’/r/ |”V¢£|p2(x)
o)

Now, bearing in mind (4.13), we obtain

lim sup [/ ‘|Vunyp1(x)72unVunV¢£ dx—I—/ ‘]Vun‘Pz(x)qunVun g dx}
n—r—+00 Q Q
< 1C1p 4+ max(Cy, CL) ( / VL dx + / |uv<p£|r’z<x>dx>
< 7Cyp + max(Cy, C)C (|Bzg(x])|+ 1o oy 3800, (xj))) (4.18)
On the other hand, by the compactness lemma of Strauss [10] and Sobolev embedding,
nl_i)rJrrloo/Qf(x,un)uncpédx = /Qf(x,u)ucpédx (4.19)
and
. m(x) of 3. m(x) 4]
ngTw Qa(x)\un\ Pedx /Q a(x)|u|™ pudx. (4.20)

From (4.12) and (4.17)—(4.20),

| ¢l < 7Cra -+ max(Ce, €C (1Bl + o, )+ 10t )
+A/ édv—/ u|me ﬁdx
[dlav— [ el
+ f(x,u)u4>£dx.

BZE(X]‘)
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Letting ¢ — 0, we obtain
Wi < 1C1p + )H/j,

Now, letting T — 0, we derive Hi < /\1/]-. Therefore

1 1 1

m*(xj) m(x]-) N m(x;)
Sv; < i < ()W]) !

]

and hence the result follows. O

Lemma 4.6. Assume that (a1)—(az2), (f1)-(f2) and (mgqy) hold. If A < 1, then I, satisfies (PS),
condition for ¢ < A =wE (L - q%)SN.

Proof. Let {u,} C Wy () such that
Iy(uy) » ¢ and Ij(uy) — 0.

Then

¢ =I(un) - %(M(“H)r”ﬁ +0u(1)

1 1 1 1
— - = p1(x) - = p2(x)
/Q <p1(x) m+> Vit dx—i—/n <p2(x) m+> |V i1, |P25) dx

+f (n; - m@) ()lua"x 2 [ <ml+ _ q(lx)> 1410
+f (n;f(x,un)un—l-"(x,un)) dx + on(1).

By (a2) and (f2), we obtain
1 1
> - = q(x) )
c> /\/Q <m+ q_) |1, |7 dx + 0,(1)
Using (4.12), it follows that

c>A lim (1 — 1) |un|"(")dx
o)

n— 400 mt q-
1 1
> A ( - > / ul@dx + Y v;
mt g ( Q| | ]-;7 J
1 1 .
ZA(W_[]_>V] fO].‘aH]Ej.

If v; > 0 for some j € J, by Lemma 4.5, we get

Since A < 1,
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which is impossible, and so v; = 0 for all j € J. Hence

lim

n—+o0

/|un|‘7(x)dx:/ || 1)
O o)

This implies lim,, 1« fQ |ty — u\q(")dx = 0, thanks to Proposition 2.1, we deduce

u, — uin L1 (Q).

By standard arguments, we see that

|, | 1) 24, — |u|‘7(x)’2u) (uy, —u)dx =0,

lim (
n—+oo J0)
n—r+00
and
dim [ (FGxu)

On the other hand, we have

0n(1) = (I} (un) — Iy (), un — u)
= / (|Vun|p1(x)_2Vun - |Vu\p1(x)_2Vu> V(uy —u)dx
0

lim (|un|m(x)_2un - |u|m(x)_2u) (uy —u)dx =0
0

—I—/ (\Vuﬂpl(x)’ZVun — \Vu]m(x)’ZVu) V(uy — u)dx
0

— [ a() (I )20, -

—A/ (,un,q(x) 2
o

It follows that

n——+00

_ |u|”/

]u\m(")’zu> (uy —u)dx

(x)_2u> (uy, —u)dx — /Q(f(x, uy) — f(x,u))(u, —u)dx.

lim [/ (|Vunypl(x)72Vun — |Vu\P1(x)72Vu> V(uy, — u)dx
0

+ / (|Vun]p1(x)’2Vun — |Vu\”2(x)’2Vu> V(uy — u)dx] = 0.
0

Since (|Viuy [P =2V, — |Vu|Pil¥)

i

2Vu)V (uy —

u)>0inQ, i=1,2,

lim (]Vun\pf(x)_ZVun - |Vu|pf(")_2Vu) V(uy, —u)dx =0, i=1,2.

n—+o /0

Recalling the following well known inequality in RN,

[(1E]P72E — |n|P~2n) (& —

(Ig17=2¢ —

)’

Divide ) in two parts as follows:

lP~2)(E ~

—Pr

(gl + 1) "

7)

> (p- Dz~ )’
>2Pg— gl ifp>2.

QO ={xeQ:pi(x) >2} and Q7 ={xeQ:pi(x) <2},

By (4.21) and (4.23), it yields

lim
n——+o00

oF

|V (it — )|

dx—O

i=1,2.

ifl<p<2,

i=1,2.

15

(4.21)

(4.22)
(4.23)

(4.24)
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On the other hand, by (4.22) and Holder’s inequality,

/_ 1V (1 — u) [P dx < / (pi(x) —1)|Vu, — u|Pi®)
Q -1
pi(x)
< — [(qun\pi(x)*ZVun - ]Vu]pf(x)’ZVu) V(u, — u)} :
pi —1Joy
2-pi(x)
X (]Vun\pf(x) + | VulPi)) T dx
pi(x)
< Cp ‘ [(]Vun\”i(x)’2Vun - ]Vu]”"(")’ZVu) V(u, — u)} ’ ,
Lpi(x) Q)
2-p;i(x)
s ™
2
L.2-pi(x) Q)
Since {u,} is bounded in Wé’p i) (Q)), Proposition 2.1 implies
pi(x)
/7 IV (1t — u)[PWdx < C), K\Vun!p"(")*ZVun _ ‘Vu‘Pi(x)*Zvu> (1t — u>] |
i LP ()
Using again Proposition 2.1 and (4.21), it follows that
lim IV (up —u)|PWdx =0, i=1,2 (4.25)
n—+o00 Q7
(4.24) and (4.25) imply
i —u)|n®) _ ) |2 —
Jim [ (]V(un )P 4 |V (1 — u)] ) dx = 0.
Using inequality (4.6), we get
V (1 — u)|"Pdx = 0,
[ 19— )"
and hence u, — u in Wg’m(x)(()). O

Lemma 4.7. Under assumptions of Theorem 3.2, there exists a sequence { My} C (0, +c0) indepen-
dent of A, with M, < M, 1, such that for any A > 0,

A
= O R ) < M
Proof. The proof is similar to [26, Lemma 5] and so, we will omit it. O

4.2 Proof of Theorem 3.2

By choosing for each k > 1, A sufficiently small, we construct a sequence (Ay), with Ay > Agyq
such that M; < )\ it (L — —)SN Therefore, for A € (Agi1, Ail,

mt

1 1
O<C%SC§§'--§C?<MI<</\1_”’A+ (er_q_>SN-
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Thanks to Theorem 4.1, the levels c{‘ < cé <. <L C? are critical values of I,. So, if
<y <<cf,

I) has at least k critical points. Now, if C]-A = c])-‘Jrl for some j =1,...,k —1, again Theorem 4.1
implies that K, is an infinite set [22, Chap. 7] and hence in this case, problem (P,) has infinitely
many solutions. Conclusion, problem (P,) has at least k pair solutions.
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