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Abstract. We study a variational property on the evolutionary bifurcation curves for
the one-dimensional perturbed Gelfand problem from combustion theory{

u′′(x) + λ exp
( au

a+u
)
= 0, −1 < x < 1,

u(−1) = u(1) = 0,

where λ > 0 is the Frank–Kamenetskii parameter or ignition parameter, a > 0 is the
activation energy parameter, and u is the dimensionless temperature.
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1 Introduction and the main result

In this paper we mainly study a variational property on the evolutionary bifurcation curves
of positive solutions for the two-point boundary value problem{

u′′(x) + λ exp
( au

a+u

)
= 0, −1 < x < 1,

u(−1) = u(1) = 0,
(1.1)

which is the one-dimensional case of a problem arising in the study of standard models of
ignition in a context of thermal combustion, cf. [1,14]. In (1.1), λ > 0 is the Frank–Kamenetskii
parameter or ignition parameter, a > 0 is the activation energy parameter, u is the dimension-
less temperature of the medium, and the reaction term

f (u) ≡ exp
(

au
a + u

)
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is the temperature dependence obeying the simple Arrhenius reaction-rate law in irreversible
chemical reaction kinetics, see, e.g. Boddington et al. [2]. Notice that, substituting a = 1/ε

(ε is the reciprocal activation energy parameter) into (1.1), we obviously obtain{
u′′(x) + λ exp

( u
1+εu

)
= 0, −1 < x < 1,

u(−1) = u(1) = 0.
(1.2)

This problem (1.2) is the famous one-dimensional perturbed Gelfand problem, cf. [1, 3, 5, 10,
11, 13].

For any a > 0, on the (λ, ‖u‖∞)-plane, we study the shape and structure of bifurcation
curves Sa of positive solutions of (1.1), defined by

Sa ≡ {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)} .

We say that, on the (λ, ‖uλ‖∞)-plane, the bifurcation curve Sa is S-shaped if Sa has exactly two
turning points at some points (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) where λ∗ < λ∗ are two positive
numbers such that

(i) ‖uλ∗‖∞ < ‖uλ∗‖∞ ,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sa turns to the left,

(iii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sa turns to the right.

See Figure 1.1 (i). In that case for S-shaped bifurcation curve Sa for thermal combustion prob-
lem (1.1), the two critical values λ∗ and λ∗ correspond to ignition limit and extinction limit
respectively. The upper branch of Sa is then known as the explosion branch, and the lower
branch the quenching branch. See [9, p. 374].

Figure 1.1: The global bifurcation of bifurcation curves Sa for a > 0.

Huang and Wang [6, Theorem 4] very recently studied global bifurcation of bifurcation
curves Sa in the following theorem.

Theorem 1.1 (See Figure 1.1). Consider (1.1) with varying a > 0. Then there exists a critical value
a0 ≈ 4.069 such that the following assertions (i)–(iii) hold:

(i) (See Figure 1.1 (i).) For a > a0, the bifurcation curve Sa is S-shaped on the (λ, ‖u‖∞)-plane.
Let (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) be exactly two turning points of the bifurcation curve Sa

satisfying λ∗ < λ∗ and ‖uλ∗‖∞ < ‖uλ∗‖∞ . Then uλ∗ and uλ∗ are only two degenerate positive
solutions of (1.1).
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(ii) (See Figure 1.1 (ii).) For a = a0, the bifurcation curve Sa0 is monotone increasing on the
(λ, ‖u‖∞)-plane. Moreover, (1.1) has exactly one (cusp type) degenerate positive solution uλ0 .

(iii) (See Figure 1.1 (iii).) For 0 < a < a0, the bifurcation curve Sa is monotone increasing on the
(λ, ‖u‖∞)-plane. Moreover, all positive solutions uλ of (1.1) are nondegenerate.

Furthermore, Hung and Wang [8] proved that there exists a positive number a∗(≈ 4.166) >
a0 such that

p1(a) < ‖uλ∗‖∞ < γ(a) < p2(a) < ‖uλ∗‖∞ for a ≥ a∗, (1.3)

where

γ(a) ≡ a(a− 2)
2

, p1(a) ≡ a (a− 2)− a
√

a(a− 4)
2

, p2(a) ≡ a (a− 2) + a
√

a(a− 4)
2

. (1.4)

Clearly, p1(a) < γ(a) < p2(a) for a > 4. In addition, for a > 4, we note that (γ(a), f (γ(a))) is
the unique inflection point of f (u) on (0, ∞), and p1(a) and p2(a) are two positive zeros of

f (u)− u f ′(u) =
[
u2 − a(a− 2)u + a2]

(a + u)2 exp
(

au
a + u

)
, (1.5)

which is the y-intercept of the tangent line to the graph of f at the point (u, f (u)). In this
paper, we continue our work [6] and extend the result of (1.3). The following Theorem 1.2
is our main result, in which we show the variation of the values of ‖uλ∗‖∞ and ‖uλ∗‖∞ with
varying parameter a > a0, where (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞) are defined in Theorem 1.1.

Theorem 1.2 (See Figures 1.1 (i) and 1.2). Consider (1.1) with varying a > a0. Let (λ∗, ‖uλ∗‖∞)

and (λ∗, ‖uλ∗‖∞) be two turning points of the bifurcation curve Sa satisfying λ∗ < λ∗ and ‖uλ∗‖∞ <

‖uλ∗‖∞ . Then there exist two positive numbers â ≈ 4.088, ǎ ≈ 4.077 satisfying a∗ > â > ǎ > a0

such that:

(1 <) p1(a) < ‖uλ∗‖∞ < γ(a) < p2(a) < ‖uλ∗‖∞ for a > â, (1.6)

γ(â) = ‖uλ∗‖∞ < p2(â) < ‖uλ∗‖∞ for a = â, (1.7)

γ(a) < ‖uλ∗‖∞ < p2(a) < ‖uλ∗‖∞ for ǎ < a < â, (1.8)

γ(ǎ) < ‖uλ∗‖∞ < ‖uλ∗‖∞ = p2(ǎ) for a = ǎ, (1.9)

γ(a) < ‖uλ∗‖∞ < ‖uλ∗‖∞ < p2(a) for a0 < a < ǎ, (1.10)

lim
a→a+0

‖uλ∗‖∞ = lim
a→a+0

‖uλ∗‖∞ = ‖uλ0‖∞ ≈ 4.896. (1.11)

Moreover,
aγ(a)
p1(a)

>
‖uλ∗‖∞
‖uλ∗‖∞

>
p2(a)
‖uλ0‖∞

for a ≥ ǎ and lim
a→∞

‖uλ∗‖∞
‖uλ∗‖∞

= ∞. (1.12)

The paper is organized as follows: Section 2 contains a few lemmas needed to prove the
main result. Finally, Section 3 contains the proof of the main result.
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Figure 1.2: The evolution of bifurcation curves Sa with varying a ≥ a0 ≈
4.069. The notations • and N denote the two turning points (λ∗, ‖uλ∗‖∞) and
(λ∗, ‖uλ∗‖∞) , respectively.

2 Lemmas

To prove Theorem 1.2, we develop some new time-map techniques. The time-map formula
which we apply to study (1.1) takes the form as follows:

√
λ =

1√
2

∫ α

0
[F(α)− F(u)]−1/2 du ≡ Ta(α) for α > 0, (2.1)

where F(u) ≡
∫ u

0 f (t)dt, see Laetsch [12]. (Note that it can be proved that Ta(α) is a twice
differentiable function of α > 0 for a > 0, and is a differentiable function of a > 0 for α > 0.
The proofs are easy but tedious and hence we omit them.) So the positive solution u of (1.1)
corresponds to

‖u‖∞ = α and Ta(α) =
√

λ.

Thus studying the shape of bifurcation curve Sa on the (λ, ‖u‖∞)-plane is equivalent to study-
ing the shape of the time-map Ta(α) on (0, ∞), cf. [6]. By (2.1) and Theorem 1.1, we note
that

(i) If a > a0, Ta(α) has exactly two critical points at ‖uλ∗‖∞ < ‖uλ∗‖∞ where (λ∗, ‖uλ∗‖∞)

and (λ∗, ‖uλ∗‖∞) are exactly two turning points of the S-shaped bifurcation curve Sa.
See Figure 2.1 (i).

(ii) If a = a0, Ta(α) has exactly one critical point at ‖uλ0‖∞ where (λ0, ‖uλ0‖∞) is the unique
turning point of the monotone bifurcation curve Sa0 . See Figure 2.1 (ii).

(iii) If 0 < a < a0, Ta(α) has no critical points on (0, ∞) and is a strictly increasing function
on (0, ∞). See Figure 2.1 (iii).
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Figure 2.1: Graphs of Ta(α) on (0, ∞) for a > 0. αM = ‖uλ∗‖∞, αm = ‖uλ∗‖∞ and
α0 = ‖uλ0‖∞ .

For Ta(α) in (2.1), we compute that

T′a(α) =
1

2
√

2α

∫ α

0

θ(α)− θ(u)

[F(α)− F(u)]3/2 du, (2.2)

where
θ(u) = 2F(u)− u f (u),

cf. [8, (3.4) and p. 230]. For the sake of convenience, we let γ = γ(a), γ′ = γ′(a), p1 = p1(a),
p2 = p2(a) and p′2 = p′2(a). First, we need to have the following lemma:

Lemma 2.1. Consider (1.1) with a > 4. Then there exists â ∈ [a0, a∗) such that

T′a(γ(a))


> 0 for 4 < a < â,

= 0 for a = â,

< 0 for â < a ≤ a∗ ≈ 4.166.

(2.3)

Proof of Lemma 2.1. By (2.2), we compute that

∂

∂a
T′a(γ(a)) =

1
2
√

2γ2(a)

∫ γ(a)

0

N(u)

[F(γ(a))− F(u)]5/2 du, (2.4)

where

N(u) ≡− [F(γ)− F(u)]

{
γ′ [γ f (γ)− u f (u)] + γ

∫ γ

u

s2

(a + s)2 f (s)ds

}

+
3
2
[γ f (γ)− u f (u)]

{
γ′ [γ f (γ)− u f (u)] + γ

∫ γ

u

s2

(a + s)2 f (s)ds

}

− [F(γ)− F(u)]

{
γ′ +

a2γ′γ + γ3

(a + γ)2

}
γ f (γ)

+ [F(γ)− F(u)]

{
γ′ +

a2γ′u + γu2

(a + u)2

}
u f (u).
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By [6, Lemma 17], we have that

α f (α)− u f (u) ≤
(

1 +
a
4

)
[F(α)− F(u)] for 0 ≤ u ≤ α and a > 4. (2.5)

Since we compute and find that, for 0 ≤ u ≤ γ and a > 4,

a2γ′γ + γ3

(a + γ)2 = γ and γ′ [γ f (γ)− u f (u)] + γ
∫ γ

u

s2

(a + s)2 f (s)ds ≥ 0,

and by (2.5), we obtain that

N(u) ≤ γ [F(γ)− F(u)] L(u, a) for 0 ≤ u ≤ γ and a > 4, (2.6)

where

L(u, a) ≡
(

3a
8

+
1
2

) ∫ γ

u

s2

(a + s)2 f (s)ds +
[
(a− 1)

(
3a
8
− 1

2

)
− γ

]
f (γ)

−
[
(a− 1)

(
3a
8
− 1

2

)
− a2 (a− 1) u + γu2

[a + u]2

]
u
γ

f (u). (2.7)

We assert that, for 4 < a ≤ 4.17,

L(0, a) < 0 and
∂

∂u
L(u, a)


< 0 for 0 ≤ u < υ1,

= 0 for u = υ1,

> 0 for υ1 < u ≤ γ

for some υ1 ∈ (0, γ) . (2.8)

It is easy to see that L(γ, a) = 0 by (2.7). So under (2.8), we observe that L(u, a) < 0 for
0 ≤ u < γ. So by (2.4) and (2.6), we see that ∂

∂a T′a(γ(a)) < 0 for 4 < a ≤ 4.17. It follows that
∂
∂a T′a(γ(a)) < 0 for a0 ≤ a ≤ a∗ since 4 < a0 (≈ 4.069) < a∗ (≈ 4.166) < 4.17. In addition, by
Theorem 1.1 (i) and (1.3), we see that

T′a(γ(a))

{
> 0 for 4 < a < a0,

< 0 for a ≥ a∗.

Thus there exists â ∈ [a0, a∗) such that (2.3) holds. So the proof of Lemma 2.1 is complete.
Next, we divide the proof of assertion (2.8) into next Steps 1–2.

Step 1. We prove the first inequality of (2.8). We compute that∫ s2

(a + s)2 ds = s− a2

a + s
− 2a ln (a + s) . (2.9)

Since f ′(u) > 0 for u ≥ 0, and by (2.7) and (2.9), we compute and obtain that, for 4 < a ≤ 4.17,

L(0, a) =
(

3a
8

+
1
2

) ∫ γ

0

s2

(a + s)2 f (s)ds +
[
(a− 1)

(
3a
8
− 1

2

)
− γ

]
f (γ)

=

(
3a
8

+
1
2

) ∫ γ

0

s2

(a + s)2 f (s)ds− 1
8
(
a2 − a− 4

)
f (γ)

=

(
3a
8

+
1
2

)[∫ 2

0

s2

(a + s)2 f (s)ds +
∫ γ

2

s2

(a + s)2 f (s)ds

]
− 1

8
(
a2 − a− 4

)
f (γ)

≤
(

3a
8

+
1
2

)[∫ 2

0

s2

(a + s)2 ds

]
f (2) +

[(
3a
8

+
1
2

) ∫ γ

2

s2

(a + s)2 ds− 1
8
(
a2 − a− 4

) ]
f (γ)

=
1

16 (a + 2)
L1(a) < 0,



Evolutionary bifurcation curves for a positone problem 7

where

L1(a) ≡ 4 (3a + 4)
[

2a + 2 +
(
a2 + 2a

)
ln

a
a + 2

]
exp

(
2a

a + 2

)
+

[
3a4 + 8a3 − 30a2 − 84a− 48 +

(
12a3 + 40a2 + 32a

)
ln
(

2 (a + 2)
a2

)]
exp (a− 2)

< 0 for 4 < a ≤ 4.17,

see Figure 2.2. So the first inequality of (2.8) holds.

Figure 2.2: The graph of L1(a) on [4, 4.17] and L1(4.17) ≈ −69.547.

Step2. We prove the second inequality of (2.8). We compute that

∂

∂u
L(u, a) =

f (u)

8a (a− 2) (a + u)4 L2(u), (2.10)

where

L2(u) ≡ − (3a− 4)
(
a2 − 2

)
u4 + (−4a4 + 10a3 − 32a)u3

+ (a5 + 34a4 − 4a3 − 48a2)u2 − 2a3 (a− 1) (3a + 4) (a− 4) u

− 2a4 (a− 1) (3a− 4)

is a quartic polynomial of u. We compute that, for 4 < a ≤ 4.17,

L2(0) = −2a4 (a− 1) (3a− 4) < 0, (2.11)

L2(γ) =
a8

16

{
(3a− 8)

[
(4.2− a) (a + 0.4) +

5a + 8
25

]
+ 8
}

> 0, (2.12)

L′2(0) = −2a3 (a− 1) (3a + 4) (a− 4) < 0, (2.13)

L′2(γ) =
1
2

a6 (3a− 4) [(4.2− a) (a + 0.2) + 0.16] > 0, (2.14)

L′′2 (0) =
[(

2a2 − 8
)

a +
(
68a2 − 96

)]
a2 > 0, (2.15)

L′′2 (γ) = a3 [(36− 9a) a3 − 10a2 + (64− 40a)
]
< 0. (2.16)
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Since L′′2 (u) is a quadratic polynomial with a negative leading coefficient, and by (2.15) and
(2.16), there exists υ2 ∈ (0, γ) such that

L′′2 (u)


> 0 for 0 ≤ u < υ2,

= 0 for u = υ2,

< 0 for υ2 < u ≤ γ.

So by (2.13) and (2.14), there exists υ3 ∈ (0, γ) such that

L′2(u)


< 0 for 0 ≤ u < υ3,

= 0 for u = υ3,

> 0 for υ3 < u ≤ γ.

So by (2.10)–(2.12), there exists υ1 ∈ (0, γ) such that the second inequality of (2.8) holds.
The proof of Lemma 2.1 is complete.

Lemma 2.2. Consider (1.1) with 4 < a ≤ 4.108. Then

3.6 [F(p2)− F(u)] ≤ A(u) ≤ Ma [F(p2)− F(u)] for 0 ≤ u ≤ p2, (2.17)

where

A(u) ≡ p′2
p2

[p2 f (p2)− u f (u)] +
∫ p2

u

s2

(a + s)2 f (s)ds,

Ma ≡
p′2
p2

( a
4
+ 1
)
+

p2
2

(a + p2)
2 .

Proof of Lemma 2.2. Let

U1(u) ≡ Ma [F(p2)− F(u)]− A(u) and U2(u) ≡ A(u)− 3.6 [F(p2)− F(u)] .

To prove (2.17), it is sufficient to prove that U1(u) ≥ 0 and U2(u) ≥ 0 for 0 ≤ u ≤ p2.
(I) We prove that U1(u) ≥ 0 for 0 ≤ u ≤ p2. Clearly, we see that

p′2(a) =
(a− 1)

√
a2 − 4a + a (a− 3)√

a2 − 4a
> 0 for a > 4. (2.18)

Since u2/ (a + u)2 is a strictly increasing function of u > 0 for a > 0, and by (2.18), we compute
and observe that, for 0 ≤ u ≤ p2,

U′1(u) =
d

du

{∫ p2

u

(
Ma −

s2

(a + s)2

)
f (s)ds− p′2

p2
[p2 f (p2)− u f (u)]

}

=

{
−Ma +

u2

(a + u)2 +
p′2
p2

[
a2u

(a + u)2 + 1

]}
f (u)

= −
{

a (a− u)2 p′2
4 (a + u)2 p2

+
p2

2

(a + p2)
2 −

u2

(a + u)2

}
f (u) < 0. (2.19)

Since U1(p2) = 0, and by (2.19), we see that U1(u) ≥ 0 for 0 ≤ u ≤ p2. It implies that the
second inequality of (2.17) holds.
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(II) We prove that U2(u) ≥ 0 for 0 ≤ u ≤ p2. We observe that

U2(u) =
p′2
p2

[p2 f (p2)− u f (u)] +
∫ p2

u

(
s2

(a + s)2 − 3.6

)
f (s)ds.

First, we assert that

U2(0) = p′2 f (p2) +
∫ p2

0

[
s2

(a + s)2 − 3.6

]
f (s)ds > 0 for 4 < a ≤ 4.108. (2.20)

Indeed, by (1.4), we observe that

∂

∂a
p′2 f (p2) =

2a f (p2)[
a +

√
a (a− 4)

]
[a (a− 4)]3/2

w1(a) < 0 for 4 < a ≤ 4.108, (2.21)

where
w1(a) ≡

√
a (a− 4) [a (a− 1) (a− 4) + 1] + a4 − 7a3 + 12a2 − a.

See Figure 2.3(i). Clearly,

d
da

∫ 5.7

0

[
s2

(a + s)2 − 3.6

]
f (s)ds

= −
∫ 5.7

0

s2 f (s)

5 (a + s)4

[
13s2 + (36a + 10) s + 18a2 + 10a

]
ds < 0. (2.22)

Figure 2.3: (i) The graph of w1(a) on [4, 4.108]. (ii) The graph of w2(a) on
[4, 4.108].

By (2.18), we compute that

p2(a) ≤ p2(4.108) (≈ 5.697) < 5.7 for 4 < a ≤ 4.108. (2.23)

So by (2.21)–(2.23), we compute and find that, for 4 < a ≤ 4.108,

U2(0) ≥ p′2 f (p2) +
∫ 5.7

0

[
s2

(a + s)2 − 3.6

]
f (s)ds

≥
{

p′2 f (p2) +
∫ 5.7

0

[
s2

(a + s)2 − 3.6

]
f (s)ds

}
a=4.108

(≈ 1.174) > 0.
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Thus assertion (2.20) holds.
Secondly, we compute and obtain that, for 0 ≤ u < p2,

U′2(u)
f (u)

= 3.6− p′2
p2

[
a2u

(a + u)2 + 1

]
− u2

(a + u)2 , (2.24)

(
U′2(u)
f (u)

)′
= − d

du

{
p′2
p2

[
a2u

(a + u)2 + 1

]
+

u2

(a + u)2

}

=
a

(a + u)3√a (a− 4)

{[
a−

√
a (a− 4)

]
u− a2 − a

√
a (a− 4)

}
<

a

(a + u)3√a (a− 4)

{[
a−

√
a (a− 4)

]
p2 − a2 − a

√
a (a− 4)

}
= 0. (2.25)

By (2.24), we compute and obtain that

U′2(p2)

f (p2)
= −2

p′2
p2
− p2

a2 + 3.6 =
w2(a)

10a
√

a2 − 4a
< 0 for 4 < a ≤ 4.108, (2.26)

where w2(a) ≡
√

a (a− 4) (31a− 10)− 5a2. See Figure 2.3 (ii). Since f (u) > 0 for u > 0, and
by (2.25) and (2.26), we see that either U′2(u) < 0 for 0 < u ≤ p2, or there exists υ4 ∈ (0, p2)
such that

U′2(u)


> 0 for 0 ≤ u < υ4,

= 0 for u = υ4,

< 0 for υ4 < u ≤ p2.

Since U2(p2) = 0, and by (2.20), we further see that U2(u) ≥ 0 for 0 ≤ u ≤ p2. It implies that
the first inequality of (2.17) holds.

The proof of Lemma 2.2 is complete.

Lemma 2.3. Consider (1.1) with a > 4. There exists ǎ ∈ [a0, 4.108) such that

T′a(p2(a))


> 0 for 4 < a < ǎ,

= 0 for a = ǎ,

< 0 for a > ǎ.

(2.27)

Proof of Lemma 2.3. We compute that

∂

∂a
F(p2) = p′2 f (p2) +

∫ p2

0

t2

(a + t)2 f (t)dt (2.28)

and
∂

∂a
p2 f (p2) = p′2 f (p2) +

a2 p2 p′2 + p3
2

(a + p2)
2 f (p2). (2.29)
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We further compute that, by (2.2), (2.28) and (2.29),

∂

∂a
T′a(p2(a)) =

∂

∂a

{
1

2
√

2

∫ 1

0

θ(p2)− θ(p2t)

[F(p2)− F(p2t)]3/2 dt

}
(let t =

u
p2

)

=
1

2
√

2

∫ 1

0

{
∂
∂a [θ(p2)− θ(p2t)]

}
[F(p2)− F(p2t)]

[F(p2)− F(p2t)]5/2 dt

− 1
2
√

2

∫ 1

0

3
2 [θ(p2)− θ(p2t)] ∂

∂a [F(p2)− F(p2t)]

[F(p2)− F(p2t)]5/2 dt

=
1

2
√

2p2

∫ p2

0

[F(p2)− F(u)] B(u)− 3
2 [θ(p2)− θ(u)] A(u)

[F(p2)− F(u)]5/2 du, (2.30)

where A(u) is defined in Lemma 2.2 and

B(u) ≡ 2A(u)−
[

p′2 +
p2
(
a2 p′2 + p2

2
)

(a + p2)
2

]
f (p2) +

[
p′2
p2

u +
u
(
a2 p′2u + p2u2)
p2 (a + u)2

]
f (u).

In addition, by [6, Lemma 12], we see that there exists p̄2 ∈ (0, p1) such that

θ(p2)− θ(u)


> 0 for 0 ≤ u < p̄2,

= 0 for u = p̄2,

< 0 for p̄2 < u < p2.

(2.31)

So by Lemma 2.2, we observe that, for 0 ≤ u < p̄2,

− 3
2
[θ(p2)− θ(u)] A(u) ≤ −5.4 [θ(p2)− θ(u)] [F(p2)− F(u)] , (2.32)

and, for p̄2 ≤ u ≤ p2,

− 3
2
[θ(p2)− θ(u)] A(u) ≤ −3

2
Ma [θ(p2)− θ(u)] [F(p2)− F(u)] . (2.33)

By (2.30)–(2.33), we have that

∂

∂a
T′a(p2) ≤

1
2
√

2p2

∫ p2

0

U2(u)

[F(p2)− F(u)]3/2 du− 5.4
2
√

2p2

∫ p̄2

0

θ(p2)− θ(u)

[F(p2)− F(u)]3/2 du

− 3
4
√

2p2
Ma

∫ p2

p̄2

θ(p2)− θ(u)

[F(p2)− F(u)]3/2 du

=
1

2
√

2p2

∫ p̄2

0

B(u)

[F(p2)− F(u)]3/2 du +
1

2
√

2p2

∫ p2

p̄2

C(u)

[F(p2)− F(u)]3/2 du

− 5.4
2
√

2p2
T′a(p2), (2.34)

where

C(u) ≡ B(u)−
(

3
2

Ma − 5.4
)
[θ(p2)− θ(u)] .

We assert that

B(u) < 0 for 0 < u < p̄2 and C(u) < 0 for p̄2 ≤ u < p2 and 4 < a ≤ 4.108. (2.35)
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In addition, by [6, Lemma 16], there exists a positive number ã (≈ 4.107) such that T′a(p2(a)) <
0 for a ≥ ã. By Theorem 1.1 (iii), we see that T′a (p2(a)) > 0 for 0 < a < a0. It follows that there
exists ǎ ∈ [a0, 4.108) such that T′ǎ(p2(ǎ)) = 0. Furthermore, since 4 < ã < 4.108, and by (2.34)
and (2.35), we see that

∂

∂a
T′a(p2(a))

∣∣∣∣
a=ǎ

< 0.

Thus ǎ is unique and (2.27) holds. We then divide the proof of (2.35) into next Steps 1–3.

Step 1. We prove that 1 < p̄2(a) for 4 < a ≤ 4.108. Let

Λa(u) ≡ θ(u)− θ(p2) for 0 ≤ u ≤ p2.

By (2.18), we see that 1 < 4 = p2(4) < p2(a) for a > 4. So by (2.31), it is sufficient to prove
that Λa(1) < 0 for 4 < a ≤ 4.108. We compute that

∂

∂a
Λa(u) = −2

∫ p2

u

s2

(a + s)2 f (s)ds +
p3

2 f (p2)

(a + p2)
2 −

u3 f (u)

(a + u)2 . (2.36)

Since

u2 − a2u− a2 < 0 for 0 ≤ u ≤ p2 <
a
(

a +
√

a2 + 4
)

2
and a > 4,

we further compute and obtain that

∂

∂u
∂

∂a
Λa(u) =

u2 f (u)

(a + u)4

(
u2 − a2u− a2) < 0 for 0 ≤ u ≤ p2 and a > 4. (2.37)

So by (2.36) and (2.37), we have that

∂

∂a
Λa(u) >

∂

∂a
Λa(u)

∣∣∣∣
u=p2

= 0 for 0 ≤ u < p2 and a > 4. (2.38)

By (2.38), we compute and obtain that Λa(1) < Λ4.108(1) (≈ −0.0356 ) < 0. Thus 1 < p̄2(a)
for 4 < a ≤ 4.108.

Step 2. We prove that B(u) < 0 for 0 < u < p̄2 and 4 < a ≤ 4.108. Clearly, B(p2) = 0. By
(2.38), we see that, for a > 4,

B(0) = 2
∫ p2

0

s2

(a + s)2 f (s)ds− p3
2

(a + p2)
2 f (p2) =

∂

∂a
θ(p2) = −

∂

∂a
Λa(0) < 0.

We assert that there exists µ1 ∈ (0, p2) such that

B′(u)


< 0 for 0 ≤ u < µ1,

= 0 for u = µ1,

> 0 for µ1 < u < p2.

(2.39)

Thus B(u) < 0 for 0 ≤ u < p2. It implies that B(u) < 0 for 0 < u < p̄2.
Next, we prove assertion (2.39). We compute that

B′(u) =
f (u)

a (a + u)4√a2 − 4a
B̄(u), (2.40)



Evolutionary bifurcation curves for a positone problem 13

where

B̄(u) ≡ a
[
−u4 + (−a2 − 4a)u3 + (a4 − 6a2)u2 + (a4 − 4a3)u− a4

]
+
√

a2 − 4a (u + a)
[
(−a− 1)u3 + (a3 − 3a)u2 + (a3 − 3a2)u− a3

]
.

We further compute that

B̄′′(u) = − 12
[

a + (a + 1)
√

a2 − 4a
]

u2 +
[
−6a3 − 24a2 + 6a

(
a2 − a− 4

)√
a2 − 4a

]
u

+ 2
(
a2 − 6

)
a3 + 2a2(a + 3)(a− 2)

√
a2 − 4a.

Obviously, the leading coefficient of quadratic polynomial B̄′′(u) is negative and B̄′′(0) > 0.
So there exists µ2 > 0 such that

B̄′′(u) =


> 0 for 0 ≤ u < µ2,

= 0 for u = µ2,

< 0 for u > µ2.

(2.41)

We compute that, for a > 4,

B̄′(0) = a3(a− 4)(a +
√

a2 − 4a) > 0, (2.42)

B̄′(γ) = 2a3
[
−2a2 + 3a + (a− 2)

√
a2 − 4a

]
< 2a3 [−2a2 + 3a + (a− 2) a

]
= −2a4 (a− 1) < 0. (2.43)

Since γ(a) < p2(a) for a > 4, and by (2.41)–(2.43), there exists µ3 ∈ (0, p2) such that

B̄′(u) =


> 0 for 0 ≤ u < µ3,

= 0 for u = µ3,

< 0 for µ3 < u < p2.

(2.44)

We compute that B̄(0) = −a4(a +
√

a2 − 4a) < 0 and B̄(p2) = 0 for a > 4. So by (2.40) and
(2.44), assertion (2.39) holds.

Step 3. We prove that C(u) < 0 for p̄2 ≤ u < p2. By Step 1, Lemma 2.2 and (2.38), we observe
that, for 4 < a ≤ 4.108,

Ma > 3.6, θ(p2)− θ(1) > 0,
a2 p2

(a + p2)
2 = 1, (2.45)

2
∫ p2

1

s2

(a + s)2 f (s)ds− p3
2

(a + p2)
2 f (p2) +

1

(a + 1)2 f (1) = − ∂

∂a
Λa(1) < 0. (2.46)

By (2.18), (2.45) and (2.46), we obtain that, for 4 < a ≤ 4.108,

C(1) = 2
p′2
p2

[p2 f (p2)− f (1)] + 2
∫ p2

1

s2

(a + s)2 f (s)ds−
[

2p′2 +
p3

2

(a + p2)
2

]
f (p2)

+

[
p′2
p2

+
p′2a2

p2 (a + 1)2 +
1

(a + 1)2

]
f (1)−

(
3
2

Ma − 5.4
)
[θ(p2)− θ(1)]

=
p′2
p2

[
a2

(a + 1)2 − 1

]
f (1)− 3

2
(Ma − 3.6) [θ(p2)− θ(1)]− ∂

∂a
Λa(1) < 0. (2.47)
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We assert that there exists µ4 ∈ (1, p2) such that

either C′(u) > 0 for 1 < u < p2, or C′(u)


< 0 for 1 ≤ u < µ4,

= 0 for u = µ4,

> 0 for µ4 < u ≤ p2.

(2.48)

By Step 1, we note that 1 < p̄2(a) for 4 < a ≤ 4.108. Since C(p2) = 0, and by (2.47) and (2.48),
we see that C(u) < 0 for p̄2 ≤ u < p2.

Next, we prove assertion (2.48). We compute that

C′(u) =
f (u)

10a(a− 4)
[

a +
√

a (a− 4)
]2

(a + u)4
C̄(u), (2.49)

where

C̄(u) ≡ a(a− 4)
[
(−83a2 + 141a + 40)u4 + (83a4 − 473a3 + 444a2 + 160a)u3

+ (166a5 − 680a4 + 566a3 + 240a2)u2 + (63a6 − 353a5 + 364a4 + 160a3)u

− 63a6 + 101a5 + 40a4
]

+
√

a (a− 4)
[
(−83a3 + 307a2 + 180a)u4 + (83a5 − 639a4 + 968a3 + 720a2)u3

+ (166a6 − 1012a5 + 1162a4 + 1080a3)u2

+ (63a7 − 479a6 + 728a5 + 720a4)u− 63a7 + 227a6 + 180a5
]

.

We further compute that C̄′′(u) = ψ2(a)u2 + ψ1(a)u + ψ0(a) where

ψ2(a) ≡ − 12a (a− 4)
(
83a2 − 141a− 40

)
− 12a

√
a (a− 4)

(
83a2 − 307a− 180

)
,

ψ1(a) ≡ 6a2 (a− 4)
(
83a3 − 473a2 + 444a + 160

)
− 6a2

√
a (a− 4)(−83a3 + 639a2 − 968a− 720),

ψ0(a) ≡ 4a3 (a− 4)
(
83a3 − 340a2 + 283a + 120

)
+ 4a3

√
a (a− 4)(83a3 − 506a2 + 581a + 540).

Since 83a2 − 307a− 180 < 0 for 4 < a ≤ 4.108, we observe that, for 4 < a ≤ 4.108,

ψ2(a) ≤ − 12a (a− 4)
(
83a2 − 141a− 40

)
− 12a2 (a− 4)

(
83a2 − 307a− 180

)
= − 12a (a− 4)

(
83a3 − 224a2 − 321a− 40

)
< 0.

It implies that the quadratic polynomial C̄′′(u) of u has a negative leading coefficient. Simi-
larly, we observe that C̄′′(0) = ψ0(a) > 0 for 4 < a ≤ 4.108. Then there exists µ5 > 0 such
that

C̄′′(u)


> 0 for 0 ≤ u < µ5,

= 0 for u = µ5,

< 0 for u > µ5.

(2.50)
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From Figure 2.4, we further see that, for 4 < a ≤ 4.108,

C̄′(1) = a(a− 4)(63a6 − 21a5 − 747a4 − 127a3 + 1480a2 + 1044a

+ 160) + a
√

a (a− 4)(63a6 − 147a5 − 1047a4 + 1127a3

+ 4732a2 + 3388a + 720) > 0, (2.51)

C̄′(p2(a)) = − a6(a− 4)(83a3 − 473a2 + 539a + 140)

− a5
√

a (a− 4)
(

83a4 − 639a3 + 1319a2 − 324a− 80
)
< 0. (2.52)

By (2.50)–(2.52), for 4 < a ≤ 4.108, there exists µ6 ∈ (1, p2) such that

C̄′(u)


> 0 for 1 ≤ u < µ6,

= 0 for u = µ6,

< 0 for µ6 < u ≤ p2.

(2.53)

Figure 2.4: (i) The graph of C̄′(1) on [4, 4.108]. (ii) The graph of C̄′(p2(a)) on
[4, 4.108].

We compute that C̄(p2) = 0. So by (2.53), we see that either Ψ̄3(u) > 0 for 1 < u < p2, or

C̄(u)


< 0 for 1 ≤ u < η6,

= 0 for u = η6,

> 0 for η6 < u ≤ p2

for some η6 ∈ (1, p2).

So by (2.49), (2.48) holds.
The proof of Lemma 2.3 is complete.

By numerical simulations, we compute and find that

(i) T′4.075 (4.8)
(
≈ −3.461× 10−4) < 0,

(ii) T′4.075 (p2(4.075))
(
≈ 6.596× 10−5) > 0,
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(iii) T′4.084(γ(4.084))
(
≈ 3.351× 10−4) > 0,

(iv) T′4.084(p2(4.084))
(
≈ −2.474× 10−4) < 0.

In fact, these inequalities can be proved by analytic techniques, see the next lemma. These
results as stated in next lemma are needed in the proof of Theorem 1.2.

Lemma 2.4. Consider (1.1). The following assertions (i)–(iv) hold.

(i) T′4.075 (4.8) < 0.

(ii) T′4.075 (p2(4.075)) = T′4.075

(
13529
3200 + 163

3200

√
489
)
> 0.

(iii) T′4.084(γ(4.084)) = T′4.084
( 531941

125000

)
> 0.

(iv) T′4.084(p2(4.084)) = T′4.084

(
531941
125000 +

1021
125000

√
21441

)
< 0.

Figure 2.5: (i) The graph of F(4.8) − F(u) − X1(u) on [0, 4.8] . (ii) The graph
of X2(u) − F(4.8) + F(u) on [0, 4.8]. (iii) The graph of 4.8 f (4.8) − u f (u) −
X3(u) [F(4.8)− F(u)] on [0, 4.8] . Note that a = 4.075.

Proof of Lemma 2.4. The proofs of assertions (i)–(iv) are similar. So we only prove assertion (i)
while the proofs of assertions (ii)–(iv) are omitted. Let

X1(u) ≡ −
1
5

(
u− 24

5

)
(4u + 23) , X2(u) ≡ −

1
10

(
u− 24

5

)
(9u + 48) ,

X3(u) ≡ −
29

5000

(
u− 383

100

)2

+
10083
5000

.

Assume that a = 4.075. By Figure 2.5, we obtain that

X1(u) < F(4.8)− F(u) < X2(u) for 0 ≤ u ≤ 4.8, (2.54)

X3(u) [F(4.8)− F(u)] ≤ 4.8 f (4.8)− u f (u) for 0 ≤ u ≤ 4.8. (2.55)

The proofs of (2.54) and (2.55) are trivial but rather lengthy, and hence we put them in [7].
Clearly, the quartic polynomials X1(u) > 0 and X2(u) > 0 for 0 ≤ u < 4.8.



Evolutionary bifurcation curves for a positone problem 17

We further see that there exists

ς ≡ 383
100
− 1

29

√
2407 ≈ 2.138

such that 0 < X3(u) < 2 for 0 ≤ u < ς, X3(ς) = 2 and X3(u) > 2 for ς < u ≤ 4.8. So by (2.54)
and (2.55), we observe that

T′4.075(4.8) =
5

48
√

2

∫ 4.8

0

2 [F(4.8)− F(u)]− 4.8 f (4.8) + u f (u)

[F(4.8)− F(u)]3/2 du

≤ 5
48
√

2

∫ 4.8

0

2− X3(u)√
F(4.8)− F(u)

du

=
5

48
√

2

[∫ ς

0

2− X3(u)√
F(4.8)− F(u)

du +
∫ 4.8

ς

2− X3(u)√
F(4.8)− F(u)

du

]

≤ 5
48
√

2

[∫ ς

0

2− X3(u)√
X1(u)

du +
∫ 4.8

ς

2− X3(u)√
X2(u)

du

]
.

We compute that

∫ ς

0

2− X3(u)√
X1(u)

du =

[(
− 29u

40000
+

97121
8× 106

)√
−20u2 − 19u + 552

+
68634343

√
5

8× 108 arcsin
(

40
211

u +
19
211

)]ς

0

≈ 0.01391,

∫ 4.8

ς

2− X3(u)√
X2(u)

du =

[(
− 29u

90000
+

11687
2250000

)√
−90u2 − 48u + 2304

+
23277863

√
10

45× 107 arcsin
(

15
76

u +
1

19

)]4.8

ς

≈ − 0.01455.

Thus we obtain that

T′4.075(4.8) ≤ 5
48
√

2

[∫ ς

0

2− X3(u)√
X1(u)

du +
∫ 4.8

ς

2− X3(u)√
X2(u)

du

] (
≈ −4.7× 10−5) < 0.

The proof of Lemma 2.4 is complete.

3 Proof of the main result

Since lima→∞ p1(a) = lima→∞
a(a−2)−a

√
a(a−4)

2 = 1 and

p′1(a) =
(a− 1)

√
a2 − 4a− a (a− 3)√

a2 − 4a
< 0 for a > 4,
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we obtain that p1(a) > 1 for a > 4. Assume that a > a0. By Theorem 1.1, we see that Ta(α) has
exactly two critical points, a local maximum at some αM(a) = ‖uλ∗‖∞ and a local minimum
at some αm(a) = ‖uλ∗‖∞ (> αM(a)), see Figure 2.1. By [6, Lemma 25], we have that

αM(a) < lim
a→a+0

αM(a) = lim
a→a+0

αm(a) = ‖uλ0‖∞ < αm(a). (3.1)

Thus (1.11) holds immediately. By [6, Lemma 12], we see that θ(p1)− θ(u) > 0 for 0 ≤ u < p2

and a > 4. So by (2.2), we further see that T′a(p1) > 0 for a > 4. Since a0 > 4, we see that
p1(a) < αM(a) for a > a0. In addition, since 4.8 < p2(4.075) (≈ 5.354), and by Lemmas 2.1,
2.3 and 2.4, we see that

a0 < 4.075 < ǎ < 4.084 < â, (3.2)

(1 <) p1(a) < αM(a) < γ(a) < p2(a) < αm(a) for a > â. (3.3)

By Lemma 2.1 and (3.2), it is easy to see that γ(â) = αm(â) or γ(â) = αM(â). Suppose to the
contrary that αM(â) < αm(â) = γ(â). By [6, Lemma 25 (i)], we see that γ(a) and αM(a) are
continuous functions of a > a0. So by Lemma 2.1, we observe that αM(a) < αm(a) < γ(a)
for a0 < a < â. It implies that Ta(α) has two critical points on (0, γ), which is a contradiction
by [12, Lemma 3.2]. Thus γ(â) = αM(â). Then since γ′(a) = a − 1 > 0 for a > 4, and by
[6, Lemma 25 (i)], we see that γ(a) and αM(a) are strictly increasing and strictly decreasing on
(a0, ∞), respectively. So we obtain that{

γ(a) = αM(a) for a = â,

γ(a) < αM(a) for a0 < a < â.
(3.4)

By Lemma 2.3, we have that αM(a) < p2(a) < αm(a) for a > ǎ. So by (3.2) and (3.4),{
γ(â) = αM(â) < p2(â) < αm(â) for a = â,

γ(a) < αM(a) < p2(a) < αm(a) for ǎ < a < â.
(3.5)

By Lemma 2.3 and (3.2), it is easy to see that p2(ǎ) = αM(ǎ) or p2(ǎ) = αm(ǎ). Suppose to
the contrary that p2(ǎ) = αM(ǎ) < αm(ǎ). Since p2(a) and αM(a) are strictly increasing and
strictly decreasing on (a0, ∞) respectively, and by (2.18) and (3.2), we obtain that

4.8 < (5.35 ≈) p2(4.075) < p2(ǎ) = αM(ǎ) < αM(4.075).

It follows that T′4.075(4.8) > 0, which is a contradiction by Lemma 2.4(i). Thus αM(ǎ) <

αm(ǎ) = p2(ǎ). By Lemma 2.3 and continuity of αM(a) and p2(a) on (a0, ∞), we find that
αM(a) < αm(a) < p2(a) for a ∈ (a0, ǎ) . Thus we have that{

γ(ǎ) < αM(ǎ) < αm(ǎ) = p2(ǎ) for a = ǎ,

γ(a) < αM(a) < αm(a) < p2(a) for a0 < a < ǎ.
(3.6)

By (3.3), (3.5) and (3.6), inequalities (1.6)–(1.10) hold.
Finally, we prove (1.12). We compute and observe that

θ′(u) =
t2 −

(
a2 − 2a

)
t + a2

(a + t)2 f (t)


> 0 for u ∈ (0, p1) ∪ (p2, ∞) ,

= 0 for u ∈ {p1, p2} ,

< 0 for u ∈ (p1, p2)

for a > 4. (3.7)
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Since

aγ(a)− p2(a) =
a(a− 1)(a− 2)− a

√
a2 − 4a

2
>

a(a− 1)(a− 2)− a2

2

=
a
(
a2 − 4a + 2

)
2

> 0 for a ≥ ǎ > 4,

we see that p1(a) < p2(a) < aγ(a) for a ≥ ǎ. Since f ′(u) > 0 for u > 0, and by (3.7), we
compute and observe that

θ(aγ)− θ(p1) =
∫ aγ

p1

θ′(t)dt =
∫ p2

p1

θ′(t)dt +
∫ aγ

p2

θ′(t)dt

≥ f (p2)

[∫ p2

p1

t2 −
(
a2 − 2a

)
t + a2

(a + t)2 dt +
∫ aγ

p2

t2 −
(
a2 − 2a

)
t + a2

(a + t)2 dt

]

= f (p2)
∫ aγ

p1

t2 −
(
a2 − 2a

)
t + a2

(a + t)2 dt = f (p2)

[
t− a3

a + t
− a2 ln(a + t)

]aγ

p1

=
a

2 (a2 − 2a + 2)
[

a−
√

a (a− 4)
]K(a), (3.8)

where

K(a) ≡ a(a4 − 6a3 + 20a2 − 32a + 20)−
√

a(a− 4)(a4 − 6a3 + 12a2 − 16a + 4)

− 2a(a2 − 2a + 2)
[

a−
√

a(a− 4)
]

ln

(
a2 − 2a + 2

a−
√

a(a− 4)

)
.

From Figure 3.1, we observe that K(a) is a strictly increasing and positive function of a ≥ 4.06.

Figure 3.1: The graph of K(a) for a ≥ 4.06.

Since ǎ > a0 (≈ 4.069) > 4.06, and by (3.8), we have that θ(aγ)− θ(p1) > 0 for a ≥ ǎ. Since
θ(0) = 0, and by (3.7), we observe that θ(α) > θ(u) for 0 < u < aγ(a), α ≥ aγ(a) and a ≥ ǎ.
So by (2.2), we obtain that T′a(α) > 0 for α ≥ aγ(a) and a ≥ ǎ. It follows that αm(a) < aγ(a)
for a ≥ ǎ. So by (1.6)–(1.9) and (3.1), we see that

aγ(a)
p1(a)

>
αm(a)
αM(a)

=
‖uλ∗‖∞
‖uλ∗‖∞

>
p2(a)
‖uλ0‖∞

for a ≥ ǎ,
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lim
a→∞

‖uλ∗‖∞
‖uλ∗‖∞

= lim
a→∞

αm(a)
αM(a)

> lim
a→∞

p2(a)
‖uλ0‖∞

=
1

‖uλ0‖∞
lim
a→∞

a (a− 2) + a
√

a(a− 4)
2

= ∞.

Thus (1.12) holds.
The proof of Lemma 1.2 is complete.

Remark 3.1. By numerical simulations, we find that â ≈ 4.088 and ǎ ≈ 4.077.
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