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Abstract

In this paper, the following fractional order ordinary differential equation bound-

ary value problem:

Dα

0+u(t) = f(t, u(t), Dα−1
0+ u(t)) + e(t), 0 < t < 1,

I2−α

0+ u(t) |t=0= 0, Dα−1
0+ u(1) =

m−2
∑

i=1

βiD
α−1
0+ u(ηi),

is considered, where 1 < α ≤ 2, is a real number, Dα

0+ and Iα

0+ are the standard

Riemann-Liouville differentiation and integration, and f : [0, 1] × R2 → R is con-

tinuous and e ∈ L1[0, 1], and ηi ∈ (0, 1), βi ∈ R, i = 1, 2, · · · , m − 2, are given

constants such that
∑

m−2

i=1 βi = 1. By using the coincidence degree theory, some

existence results of solutions are established.
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lem; At resonance; Coincidence degree
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1 Introduction

The subject of fractional calculus has gained considerable popularity and impor-

tance during the past decades or so, due mainly to its demonstrated applications in

numerous seemingly and widespread fields of science and engineering. It does indeed

provide several potentially useful tools for solving differential and integral equations,

and various other problems involving special functions of mathematical physics as well

as their extensions and generalizations in one and more variables. For details, see [1-9,

13-18, 21-25] and the references therein.

Recently, m-point integer-order differential equation boundary value problems have

been studied by many authors, see [4, 12, 13, 14]. However, there are few papers

∗This work is sponsored by the Tianyuan Youth Grant of China (10626033).
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consider the nonlocal boundary value problem at resonance for nonlinear ordinary dif-

ferential equations of fractional order. In [6] we investigated the nonlinear nonlocal

non-resonance problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1,

u(0) = 0, βu(η) = u(1),

where 1 < α ≤ 2, 0 < βηα−1 < 1. In [7], we investigated the boundary value problem

at resonance

Dα
0+u(t) = f(t, u(t),Dα−1

0+ u(t)) + e(t), 0 < t < 1,

I2−α
0+ u(t) |t=0= 0, u(1) =

m−2
∑

i=1

βiu(ηi),

where βi ∈ R, i = 1, 2, · · · ,m − 2, 0 < η1 < η2 < · · · < ηm−2 < 1 are given constants

such that
∑m−2

i=1 βiη
α−1
i = 1.

In this paper, the following fractional order ordinary differential equation boundary

value problem:

Dα
0+u(t) = f(t, u(t),Dα−1

0+ u(t)) + e(t), 0 < t < 1, (1.1)

I2−α
0+ u(t) |t=0= 0, Dα−1

0+ u(1) =
m−2
∑

i=1

βiD
α−1
0+ u(ηi), (1.2)

is considered, where 1 < α ≤ 2 is a real number, Dα
0+ and Iα

0+ are the standard

Riemann-Liouville differentiation and integration, and f : [0, 1]×R2 → R is continuous

and e ∈ L1[0, 1], ηi ∈ (0, 1), βi ∈ R, i = 1, 2, · · · ,m−2, are given constants such that
∑m−2

i=1 βi = 1.

The m-point boundary value problem (1.1), (1.2) happens to be at resonance in the

sense that its associated linear homogeneous boundary value problem

Dα
0+u(t) = 0, 0 < t < 1,

I2−α
0+ u(t) |t=0= 0, Dα−1

0+ u(1) =

m−2
∑

i=1

βiD
α−1
0+ u(ηi),

has u(t) = ctα−1, c ∈ R as a nontrivial solution.

The purpose of this paper is to study the existence of solution for boundary value

problem (1.1), (1.2) at resonance case, and establish an existence theorem under nonlin-

ear growth restrictions of f . Our method is based upon the coincidence degree theory

of Mawhin [22]. Finally, we also give an example to demonstrate our result.
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Now, we briefly recall some notation and an abstract existence result.

Let Y,Z be real Banach spaces, L : dom(L) ⊂ Y → Z be a Fredholm map of

index zero and P : Y → Y, Q : Z → Z be continuous projectors such that Im(P ) =

Ker(L), Ker(Q) = Im(L) and Y = Ker(L) ⊕ Ker(P ), Z = Im(L) ⊕ Im(Q). It

follows that L|dom(L)∩Ker(P ) : dom(L)∩Ker(P ) → Im(L) is invertible. We denote the

inverse of the map by KP . If Ω is an open bounded subset of Y such that dom(L)∩Ω 6=

∅, the map N : Y → Z will be called L-compact on Ω if QN(Ω) is bounded and

KP (I − Q)N : Ω → Y is compact.

The main tool we use is the Theorem 2.4 of [22].

Theorem 1.1 Let L be a Fredholm operator of index zero and let N be L-compact on

Ω. Assume that the following conditions are satisfied:

(i) Lx 6= λNx for every (x, λ) ∈ [(dom(L)\Ker(L)) ∩ ∂Ω] × (0, 1);

(ii) Nx 6∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω;

(iii) deg
(

QN |Ker(L),Ω ∩ Ker(L), 0
)

6= 0, where Q : Z → Z is a projection as above

with Im(L) = Ker(Q).

Then the equation Lx = Nx has at least one solution in dom(L) ∩ Ω.

The rest of this paper is organized as follows. In section 2, we give some notations

and lemmas. In section 3, we establish a theorem of existence of a solution for the

problem (1.1), (1.2). In section 4, we give an example to demonstrate our result.

2 Background materials and preliminaries

For the convenience of the reader, we present here some necessary basic knowledge and

definitions about fractional calculus theory. Which can be found in [6, 16, 24].

We use the classical Banach spaces C[0, 1] with the norm ‖u‖∞ = maxt∈[0,1] |u(t)|,

L1[0, 1] with the norm ‖u‖1 =
∫ 1
0 |u(t)|dt. For n ∈ N , we denote by ACn[0, 1] the space

of functions u(t) which have continuous derivatives up to order n−1 on [0, 1] such that

u(n−1)(t) is absolutely continuous:

ACn[0, 1] =
{

u | [0, 1] → R and (Dn−1u)(t) is absolutely continuous in [0, 1]
}

.
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Definition 2.1 The fractional integral of order α > 0 of a function y : (0,∞) → R is

given by

Iα
0+y(t) =

1

Γ(α)

∫ t

0
(t − s)α−1y(s)ds

provided the right side is pointwise defined on (0,∞).

Definition 2.2 The fractional derivative of order α > 0 of a function y : (0,∞) → R

is given by

Dα
0+y(t) =

1

Γ(n − α)

(

d

dt

)n ∫ t

0

y(s)

(t − s)α−n+1
ds,

where n = [α] + 1, provided the right side is pointwise defined on (0,∞).

It can be directly verified that the Riemann-Liouvell fractional integration and

fractional differentiation operators of the power functions tµ yield power functions of

the same form. For α ≥ 0, µ > −1, there are

Iα
0+tµ =

Γ(µ + 1)

Γ(µ + α + 1)
tµ+α, Dα

0+tµ =
Γ(µ + 1)

Γ(µ − α + 1)
tµ−α.

Lemma 2.1 [17](Page 74, Lemma 2.5) Let α > 0, n = [α] + 1. Assume that u ∈

L1(0, 1) with a fractional integration of order n−α that belongs to ACn[0, 1]. Then the

equality

(Iα
0+Dα

0+u)(t) = u(t) −
n
∑

i=1

((In−α
0+ u)(t))(n−i) |t=0

Γ(α − i + 1)
tα−i,

holds almost everywhere on [0, 1].

Now, we define another spaces which are fundamental in our work.

Definition 2.3 Given µ > 0 and N = [µ] + 1 we can define a linear space

Cµ[0, 1] = {u(t)|u(t) = I
µ
0+x(t) + c1t

µ−1 + · · · + cN−1t
µ−(N−1), x ∈ C[0, 1], t ∈ [0, 1]},

where ci ∈ R, i = 1, . . . , N − 1.

Remark 2.1 By means of the linear functional analysis theory, we can prove that with

the norm

‖u‖Cµ = ‖Dµ
0+u‖∞ + · · · + ‖D

µ−(N−1)
0+ u‖∞ + ‖u‖∞

Cµ[0, 1] is a Banach space.

Remark 2.2 If µ is a natural number, then Cµ[0, 1] is in accordance with the classical

Banach space Cn[0, 1].
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Definition 2.4 Let Iα
0+(L1(0, 1)), α > 0, denote the space of functions u(t), repre-

sented by fractional integral of order α of a summable function: u = Iα
0+v, v ∈ L1(0, 1).

In the following Lemma, we use the unified notation of both for fractional integrals

and fractional derivatives assuming that Iα
0+ = Dα

0+ for α < 0.

Lemma 2.2 [16]The relation

Iα
0+I

β
0+ϕ = I

α+β
0+ ϕ

is valid in any of the following cases:

1) β ≥ 0, α + β ≥ 0, ϕ(t) ∈ L1(0, 1);

2) β ≤ 0, α ≥ 0, ϕ(t) ∈ I
−β
0+ (L1(0, 1));

3) α ≤ 0, α + β ≤ 0, ϕ(t) ∈ I
−α−β
0+ (L1(0, 1)).

Lemma 2.3 [11] (Page 74, Property 2.3) Denote by D = d
dt . If (D0+uα)(t) and

(D0+uα+m)(t) all exist, then there holds (DmDα
0+u)(t) = (Dα+m

0+ )u(t).

Lemma 2.4 [7] F ⊂ Cµ[0, 1] is a sequentially compact set if and only if F is uniformly

bounded and equicontinuous. Here uniformly bounded means there exists M > 0 such

that for every u ∈ F

‖u‖Cµ = ‖Dµ
0+u‖∞ + · · · + ‖D

µ−(N−1)
0+ u‖∞ + ‖u‖∞ < M,

and equicontinuous means that ∀ε > 0, ∃δ > 0, for all t1, t2 ∈ [0, 1], |t1 − t2| < δ, u ∈

F, i ∈ {0, · · · , N − 1}, there hold

|u(t1) − u(t2)| < ε, |Dµ−i
0+ u(t1) − D

µ−i
0+ u(t2)| < ε.

3 Existence result

In this section, we always suppose that 1 < α ≤ 2 is a real number and
∑m−2

i=1 βi = 1.

Let Z = L1[0, 1]. Y = Cα−1[0, 1] = {u(t)|u(t) = Iα−1
0+ x(t), x ∈ C[0, 1], t ∈ [0, 1]} with

the norm ‖u‖Cα−1 = ‖Dα−1
0+ u‖∞ + ‖u‖∞. Then Y is a Banach space.

Given a function u such that Dα
0+u = f(t) ∈ L1(0, 1) and I2−α

0+ u(t) |t=0= 0, there

holds u ∈ Cα−1[0, 1]. In fact, with Lemma 2.1, one has

u(t) = Iα
0+f(t) + c1t

α−1 + c2t
α−2.
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Combine with I2−α
0+ u(t) |t=0= 0, there is c2 = 0. So,

u(t) = Iα
0+f(t) + c1t

α−1 = Iα−1
0+

[

I1
0+f(t) + c1Γ(α)

]

,

Thus u ∈ Cα−1[0, 1]. Define L to be the linear operator from dom(L) ∩ Y to Z with

dom(L) =
{

u ∈ Cα−1[0, 1]
∣

∣

∣

∣

∣

Dα
0+u ∈ L1(0, 1), I2−α

0+ u(0) = 0,Dα−1
0+ u(1) =

m−2
∑

i=1

βiD
α−1
0+ u(ηi)

}

,

and

Lu = Dα
0+u, u ∈ dom(L). (3.1)

Define N : Y → Z by

Nu(t) = f
(

t, u(t),Dα−1
0+ u(t)

)

+ e(t), t ∈ [0, 1].

Then boundary value problem (1.1), (1.2) can be written as

Lu = Nu.

Lemma 3.1 Let L be defined as (3.1), then

Ker(L) = {ctα−1|c ∈ R} (3.2)

and

Im(L) =

{

y ∈ Z

∣

∣

∣

∣

∣

m−2
∑

i=1

βi

∫ 1

ηi

y(s)ds = 0

}

. (3.3)

Proof. By Lemma 2.1, Lemma 2.2, Dα
0+u(t) = 0 has solution

u(t) =
(I2−α

0+ u(t))′ |t=0

Γ(α)
tα−1 +

I2−α
0+ u(t) |t=0

Γ(α − 1)
tα−2

=
Dα−1

0+ u(t) |t=0

Γ(α)
tα−1 +

I2−α
0+ u(t) |t=0

Γ(α − 1)
tα−2

Combine with (1.2), one has (3.2) holds.

If y ∈ Im(L), then there exists a function u ∈ dom(L) such that y(t) = Dα
0+u(t).

By Lemma 2.1,

Iα
0+y(t) = u(t) − c1t

α−1 − c2t
α−2.

where

c1 =
Dα−1

0+ u(t) |t=0

Γ(α)
, c2 =

I2−α
0+ u(t) |t=0

Γ(α − 1)
.
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By the boundary condition I2−α
0+ u(t) |t=0= 0, one has c2 = 0. So,

u(t) = Iα
0+y(t) + c1t

α−1

and by Lemma 2.2,

Dα−1
0+ u(t) = Dα−1

0+ I0+y(t) + Dα−1
0+ (c1t

α−1) = I1
0+y(t) + c1Γ(α)

In view of the condition Dα−1
0+ u(1) =

∑m−2
i=1 βiD

α−1
0+ u(ηi), we have

m−2
∑

i=1

βi

∫ 1

ηi

y(s)ds = 0,

thus, we obtain (3.3).

On the other hand, suppose y ∈ Z and satisfies:

m−2
∑

i=1

βi

∫ 1

ηi

y(s)ds = 0.

Let u(t) = Iα
0+y(t), then u ∈ dom(L) and Dα

0+u(t) = y(t). So, y ∈ Im(L). ¶

Lemma 3.2 There exists k ∈ {0, 1, · · · ,m − 2} satisfies
∑m−2

i=1 βiη
k+1
i 6= 1.

Proof. Suppose it is not true, we have











η1 η2 · · · ηm−2

η1
1 η1

2 · · · η1
m−2

...
...

. . .
...

ηm−2
1 ηm−2

2 · · · ηm−2
m−2





















β1

β2
...

βm−2











=











1
1
...
1











.

It is equal to















η1 η2 · · · ηm−2 1
η1
1 η1

2 · · · η1
m−2 1

...
...

. . .
...

...

ηm−3
1 ηm−3

2 · · · ηm−3
m−2 1

ηm−2
1 ηm−2

2 · · · ηm−2
m−2 1





























β1

β2
...

βm−2

−1















=















0
0
...
0
0















.

However, it is well known that the Vandermonde Determinant is not equal to zero, so

there is a contradiction. ¶

Lemma 3.3 L : dom(L) ∩ Y → Z is a Fredholm operator of index zero. Furthermore,

the linear continuous projector operators Q : Z → Z and P : Y → Y can be defined by

Qu = Cutk, for every u ∈ Z,
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Pu(t) = Dα−1
0+ u(t) |t=0 tα−1, for every u ∈ Y,

where

Cu =

∑m−2
i=1 βi

∫ 1
ηi

u(s)ds

(k + 1)(1 −
∑m−2

i=1 βiη
k+1
i )

Here k ∈ {0, 1, · · · ,m − 2} satisfies
∑m−2

i=1 βiη
k+1
i 6= 1. And the linear operator KP :

Im(L) → dom(L) ∩ Ker(P ) can be written by

KP (y) = Iα
0+y(t).

Furthermore

‖KP y‖Cα−1 ≤

(

1 +
1

Γ(α)

)

‖y‖1, for all y ∈ Im(L).

Proof. For y ∈ Z, let y1 = y − Qy, then y1 ∈ Im(L) (since
∑m−2

i=1 βi

∫ 1
ηi

y1(s)ds = 0).

Hence Z = Im(L) + {ctk | c ∈ R}. Since Im(L) ∩ {ctk | c ∈ R} = {0}, we have

Z = Im(L) ⊕ {ctk | c ∈ R}. Thus

dim Ker(L) = dim {ctk | c ∈ R} = co dim Im(L) = 1.

So, L is a Fredholm operator of index zero.

With definitions of P,KP , it is easy to show that the generalized inverse of L :

Im(L) → dom(L) ∩ Ker(P ) is KP . In fact, for y ∈ Im(L), we have

(LKP )y = Dα
0+Iα

0+y = y,

and for u ∈ dom(L) ∩ Ker(P ), we know

(KP L)u(t) = Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2,

where

c1 =
Dα−1

0+ u(t) |t=0

Γ(α)
, c2 =

I2−α
0+ u(t) |t=0

Γ(α − 1)
.

In view of u ∈ dom(L) ∩ Ker(P ), Dα−1
0+ u(t) |t=0= 0, I2−α

0+ u(t) |t=0= 0, we have c1 =

c2 = 0, thus

(KP L)u(t) = u(t).

This shows that KP = (L|dom(L)∩Ker(P ))
−1.
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Again since

‖KP y‖Cα−1 = ‖Iα
0+y‖Cα−1

= ‖Dα−1
0+ Iα

0+y‖∞ + ‖Iα
0+y‖∞

= ‖I1
0+y‖∞ + ‖Iα

0+y‖∞

=

∥

∥

∥

∥

∫ t

0
y(s)ds

∥

∥

∥

∥

∞

+
1

Γ(α)

∥

∥

∥

∥

∫ t

0
(t − s)α−1y(s)ds

∥

∥

∥

∥

∞

≤ ‖y‖1 +
1

Γ(α)
‖y‖1

=

(

1 +
1

Γ(α)

)

‖y‖1.

The proof is complete. ¶

Lemma 3.4 [7] For given e ∈ L1[0, 1], KP (I−Q)N : Y → Y is completely continuous.

Theorem 3.1 Let f : [0, 1] × R2 → R be continuous. Assume that

(A1) There exist functions a, b, c, r ∈ L1[0, 1], and constant θ ∈ [0, 1) such that for all

(x, y) ∈ R2, t ∈ [0, 1] either

|f(t, x, y)| ≤ a(t)|x| + b(t)|y| + c(t)|y|θ + r(t) (3.4)

or else

|f(t, x, y)| ≤ a(t)|x| + b(t)|y| + c(t)|x|θ + r(t). (3.5)

(A2) There exists constant M > 0 such that for u ∈ dom(L), if |Dα−1
0+ u(t)| > M for

all t ∈ [0, 1], then

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, u(s),Dα−1
0+ u(s)) + e(s)

]

ds 6= 0.

(A3) There exists M∗ > 0 such that for any c ∈ R, if |c| > M∗, then either

c

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, csα−1, cΓ(α)) + e(s)
]

ds

)

< 0.

or else

c

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, csα−1, cΓ(α)) + e(s)
]

ds

)

> 0.

Then, for every e ∈ L1[0, 1], the boundary value problem (1.1), (1.2) has at least one

solution in Cα−1[0, 1] provided that

‖a‖1 + ‖b‖1 <
1

C
,

where C = Γ(α) + 2 + 1
Γ(α) .
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Proof. Set

Ω1 = {u ∈ dom(L)\Ker(L)|Lu = λNu for some λ ∈ (0, 1)}.

Then for u ∈ Ω1, Lu = λNu, and Nu ∈ Im(L), hence

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, u(s),Dα−1
0+ u(s)) + e(s)

]

ds = 0.

Thus, from (A2), there exists t0 ∈ [0, 1] such that |Dα−1
0+ u(t) |t=t0 | ≤ M . For u ∈ Ω1,

there holds Dα−1
0+ u ∈ Cα−1[0, 1],Dα

0+u ∈ (L1(0, 1)). By Lemma 2.3,

DDα−1
0+ u(t) = Dα

0+u(t).

So,

Dα−1
0+ u(t) |t=0= Dα−1

0+ u(t) |t=t0 −I1
0+Dα

0+u(t) |t=t0 .

Thus,
∣

∣Dα−1
0+ u(t) |t=0

∣

∣ ≤ M + ‖Dα
0+u(t)‖1 = M + ‖Lu‖1 ≤ M + ‖Nu‖1. (3.6)

Again for u ∈ Ω1, u ∈ dom(L)\Ker(L), then (I − P )u ∈ dom(L) ∩ Ker(P ) and

LPu = 0. Thus from Lemma 3.3, we have

‖(I − P )u‖Cα−1 = ‖KP L(I − P )u‖Cα−1

≤

(

1 +
1

Γ(α)

)

‖L(I − P )u‖1

=

(

1 +
1

Γ(α)

)

‖Lu‖1

≤

(

1 +
1

Γ(α)

)

‖Nu‖1. (3.7)

From (3.6), (3.7), we have

‖u‖Cα−1 ≤ ‖Pu‖Cα−1 + ‖(I − P )u‖Cα−1

= (Γ(α) + 1)
∣

∣Dα−1
0+ u(t) |t=0

∣

∣+ ‖(I − P )u‖Cα−1

≤ (Γ(α) + 1)(M + ‖Nu‖1) +

(

1 +
1

Γ(α)

)

‖Nu‖1

= (Γ(α) + 1)M +

(

Γ(α) + 2 +
1

Γ(α)

)

‖Nu‖1

= (Γ(α) + 1)M + C‖Nu‖1. (3.8)

If (3.4) holds, then from (3.8), we get

‖u‖Cα−1 ≤ C
[

‖a‖1‖u‖∞ + ‖b‖1‖D
α−1
0+ u‖∞

+ ‖c‖1‖D
α−1
0+ u‖θ

∞ + ‖r‖1 + ‖e‖1

]

+ (Γ(α) + 1)M. (3.9)
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Thus, from ‖u‖∞ ≤ ‖u‖Cα−1 and (3.9), we obtain

‖u‖∞ ≤
C

1 − C‖a‖1

[

‖b‖1‖D
α−1
0+ u‖∞

+ ‖c‖1‖D
α−1
0+ u‖θ

∞
+ ‖r‖1 + ‖e‖1 +

(Γ(α) + 1)M

C

]

. (3.10)

Again, from (3.9), (3.10), one has

‖Dα−1
0+ u‖∞ ≤

C‖c‖1

1 − C(‖a‖1 + ‖b‖1)
‖Dα−1

0+ u‖θ
∞

+
C

1 − C(‖a‖1 + ‖b‖1)

[

‖r‖1 + ‖e‖1 +
(Γ(α) + 1)M

C

]

. (3.11)

Since θ ∈ [0, 1), from the above last inequality, there exists M1 > 0 such that

‖Dα−1
0+ u‖∞ ≤ M1,

thus from (3.10) and (3.11), there exists M2 > 0 such that

‖u‖∞ ≤ M2,

hence ‖u‖Cα−1 = ‖u‖∞ + ‖Dα−1
0+ u‖∞ ≤ M1 + M2. Therefore Ω1 ⊂ Y is bounded.

If (3.5) holds, similar to the above argument, we can prove that Ω1 is bounded too.

Let

Ω2 = {u ∈ Ker(L)|Nu ∈ Im(L)}.

For u ∈ Ω2, there is u ∈ Ker(L) = {u ∈ dom(L)|u = ctα−1, c ∈ R, t ∈ [0, 1]}, and

Nu ∈ Im(L), thus

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, csα−1, cΓ(α)) + e(s)
]

ds = 0.

From (A2), we get |c| ≤ M
Γ(α) , thus Ω2 is bounded in Y .

Next, according to the condition (A3), for any c ∈ R, if |c| > M∗, then either

c

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, csα−1, cΓ(α)) + e(s)
]

ds

)

< 0. (3.12)

or else

c

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, csα−1, cΓ(α)) + e(s)
]

ds

)

> 0. (3.13)

If (3.12) holds, set

Ω3 = {u ∈ Ker(L)| − λV u + (1 − λ)QNu = 0, λ ∈ [0, 1]},
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here V : Ker(L) → Im(Q) is the linear isomorphism given by V (ctα−1) = ctk,∀c ∈

R, t ∈ [0, 1]. For u = c0t
α−1 ∈ Ω3,

λc0t
k = (1 − λ)

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, c0s
α−1, c0Γ(α)) + e(s)

]

ds

)

.

If λ = 1, then c0 = 0. Otherwise, if |c0| > M∗, in view of (3.12), one has

c0(1 − λ)

(

m−2
∑

i=1

βi

∫ 1

ηi

[

f(s, c0s
α−1, c0Γ(α)) + e(s)

]

ds

)

< 0,

which contradicts to λc2
0 ≥ 0. Thus Ω3 ⊂ {u ∈ Ker(L) | u = ctα−1, |c| ≤ M∗} is

bounded in Y .

If (3.13) holds, then define the set

Ω3 = {u ∈ Ker(L)|λV u + (1 − λ)QNu = 0, λ ∈ [0, 1]},

here V as in above. Similar to above argument, we can show that Ω3 is bounded too.

In the following, we shall prove that all conditions of Theorem 1.1 are satisfied. Set

Ω be a bounded open set of Y such that
⋃3

i=1 Ωi ⊂ Ω. By Lemma 3.4, KP (I − Q)N :

Ω → Y is compact, thus N is L−compact on Ω. Then by above arguments, we have

(i) Lx 6= λNx for every (x, λ) ∈ [(dom(L)\Ker(L)) ∩ ∂Ω] × (0, 1);

(ii) Nx 6∈ Im(L) for every x ∈ Ker(L) ∩ ∂Ω.

Finally, we will prove that (iii) of Theorem 1.1 is satisfied. Let H(u, λ) = ±λV u+(1−

λ)QNu. According to the above argument, we know

H(u, λ) 6= 0, for all u ∈ Ker(L) ∩ ∂Ω.

Thus, by the homotopy property of degree

deg(QN |Ker(L),Ω ∩ Ker(L), 0) = deg(H(·, 0),Ω ∩ Ker(L), 0)

= deg(H(·, 1),Ω ∩ Ker(L), 0)

= deg(±V,Ω ∩ Ker(L), 0) 6= 0.

Then by Theorem 1.1, Lu = Nu has at least one solution in dom(L) ∩ Ω, so that the

problem (1.1), (1.2) has one solution in Cα−1[0, 1]. The proof is complete. ¶
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4 An example

Example 4.1 Consider the boundary value problem

D
3

2

0+u(t) =
1

10
sin (u(t)) +

1

10
D

1

2

0+u(t) + 3 sin

(

D
1

2

0+u(t)

)
1

3

+ 1 + cos2 t, (4.1)

I
1

2

0+u(0) = 0, Dα−1
0+ u(1) = 6D

1

2

0+u

(

1

3

)

− 5D
1

2

0+u

(

1

2

)

. (4.2)

Let β1 = 6, β2 = −5, η1 = 1
3 , η2 = 1

2 and

f(t, x, y) =
sin x

10
+

y

10
+ 3 sin

(

y
1

3

)

, e(t) = 1 + cos2 t,

then

β1 + β2 = 1. |f(t, x, y)| ≤
|x|

10
+

|y|

10
+ 3|y|

1

3 .

Again, taking a(t) = b(t) ≡ 1
10 , then

‖a‖1 + ‖b‖1 =
1

5
<

1

Γ
(

3
2

)

+ 2 + 1
Γ( 3

2
)

≈
1

4
.

Finally, taking M = 52, for any u ∈ C
1

2

⋂

I
3

2

0+(L1[0, 1]), assume |D
1

2

0+u(t)| > M holds

for any t ∈ [0, 1]. Since the continuity of D
1

2

0+u, then either D
1

2

0+u(t) > M or D
1

2

0+u(t) <

−M holds for any t ∈ [0, 1]. If D
1

2

0+u(t) > M holds for any t ∈ [0, 1], then

f

(

t, u(t),D
1

2

0+u(t)

)

+ e(t) ≥
M − 21

10
> 0,

so

6

∫ 1

1

36

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds − 5

∫ 1

1

25

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds

>

∫ 1

1

36

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds

≥
35(M − 21)

360
> 0.

If D
1

2

0+u(t) < −M hold for any t ∈ [0, 1], then

f

(

t, u(t),D
1

2

0+u(t)

)

+ e(t) ≤
51 − M

10
< 0,

so

6

∫ 1

1

36

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds − 5

∫ 1

1

25

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds

<

∫ 1

1

36

[

f

(

s, u(s),D
1

2

0+u(s)

)

+ e(s)

]

ds

≤
35(51 − M)

360
< 0.
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Thus, the condition (A2) holds. Again, taking M∗ = 52
Γ(3/2) , for any c ∈ R, if |c| > M∗,

we have

c

(

6

∫ 1

1

36

[

f

(

s, cs
1

2 , cΓ

(

3

2

))

+ e(s)

]

ds − 5

∫ 1

1

25

[

f

(

s, cs
1

2 , cΓ

(

3

2

))

+ e(s)

]

ds

)

> 0.

So, the condition (A3) holds. Thus, with Theorem 3.1, the boundary value problem

(4.1), (4.2) has at least one solution in C
1

2 [0, 1].
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