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Abstract In this paper, we consider the existence of multiple positive solutions for the 2n-th order

m-point boundary value problems:

x(?n)( t) = f(t,z(t),x ( ), ~~-,x(2("‘1))(t))7 0<t<1,

AR () Z 2@, 2@®(1) = 3 Bia®(g), 0<i<n—1,
i=

where a;;,8;; (0<i<n-—-11<j<m-2)¢€ ZaZ],ZﬂZ] ), 0< & <& <
. < &m—2 < 1. Using Leggett-Williams fixed point theorem7 we pr0v1de sufficient conditions for

the existence of at least three positive solutions to the above boundary value problem.

Keywords Higher order m-point boundary value problem, Leggett-Williams fixed point theorem,

Green’s function, Positive solution.

1. Introduction
The multi-point boundary value problems for ordinary differential equations arises in a variety
of different areas of applied mathematics and physics. Linear and nonlinear second order multi-

point boundary value problems have also been studied by several authors. We refer the reader to
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[2-8] and references therein. Davis et al. [9,10] studied the following 2n-th Lidstone BVP

2@ = f(a(t), 2" (1), -+, 2D (), te0,1], (1)

2(29(0) = 229(1) = 0, 0<i<n-—1,

[0,00) is continuous. They obtained the existence of three symmetric

where (-1)"f : R" —
positive solutions of the BVP (1).
Y. Guo et al. [11] studied the following 2n-th BVP

"’ ~~,z(2(”*1>)(t)), <t<
(2)

2Cm(t) = f(t,x(t),z" (¢),
m—2

) (0) — B;z2FV(0) =0, V(1) = 3 kiyy®I (&), 0<i<n—1.
Jj=1

They obtained the existence of at least two positive solution for the above BVP

Recently, Y. Guo et al. [13] studied the following 2n-th BVP

2@ (1) = f(t,2(t), 2" (t), -, 2@ D(1),  0<t<1,
(3)

56(21)(0):0, ZL'(2Z)(1): 2_: ’Ljy (5]) OS’LSTL*l
Jj=1

By using Leggett-Williams fixed point theorem, they got at least three positive solutions for the

BVP(3).
The authors [14,15] investigated the following two BVPs
a0 (t) = f(t,x(t), 2" (), -, 2@ (), 0<t <1,
(4)

m—2 m—2
2®)(0) = 3 a;z®(g), 2BV(1) = Y Bi;a®(E), 0<i<n-—1,
j=1 j=1

and
2 (t) = f(t,x(t), 2 (t),- -, 22=D)(1), 0<t <,
. . m72 .
2 (0) — a;a @D (0) = Z iz (&),

#20(1) + b (1) = z Bya®) (&), 0<i<n-—1,

Motivated by the above results, in this paper, we study the existence of multiple positive

solutions for the following 2n-th order m-point boundary value problem

2@ (t) = ft,x(t), 2" (t),- -, 2@ (), 0<t <1,
i . (6)
2D (0) = 22 220, 2(1) =S Bue®)(E), 0<i<n-— L,
=1

To the best of our knowledge, existence results for positive solutions of above boundary value

problems have not been studied previously.
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Throughout the paper, we assume the following conditions satisfied:
m—2 m—2
(H1) i, Bi; (0 <i<n—-1,1<j<m=2)¢€ [0,00), > aj, >, Biy € (0,1), and
j=1 j=1
0<6 <6< <éna<l;

(Hz) (=1)"f:]0,1] x R™ — [0, 00) is continuous;

2. Preliminaries

Our main results will depend on the Leggett-Williams fixed point theorem. For convenience,
we present here the necessary definitions from the theory of cones in Banach spaces.

Definition 2.1 Let E be a real Banach space . A nonempty convex closed set P C FE is said
to be a cone provided that

(i) au € P for all uw € P and all a > 0 and

(ii) u, —u € P implies u = 0.

Note that every cone P C E induces an ordering in F given by z <y ify —xz € P.

Definition 2.2 The map « is said to be a nonnegative continuous concave functional on a

cone P of a real Banach space E provided that a: P — [0,00) is continuous and
atr + (1 - t)y) > ta(z) + (1 - t)a(y)

forall z,y € Pand 0 <t <1.
Similarly, we say the map [ is a nonnegative continuous convex functional on a cone P of a

real Banach space E provided that 8 : P — [0, 00) is continuous and
Btz + (1 —t)y) <tB(x) + (1 —1)B(y)

forall z,y € Pand 0 <t < 1.
Definition 2.3 An operator is called completely continuous if it is continuous and maps
bounded sets into pre-compact sets.

For positive real numbers a, b, we define the following convex sets:
P =A{z e P||lz| <r},

Pa,a,b) ={x € Pl a < a(z), ||z]| < b},
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Theorem 2.1 [1] (Leggett-Williams Fixed Point Theorem) Let A : P. — P, be a completely
continuous operators and let « be a nonnegative continuous concave function on P such that
a(x) < ||z|| for all x € P.. Suppose there exists 0 < a < b < d < ¢ such that

(C1) {z € P(a,b,d)| a(x) >b} #0 and «(Ax) >b for x € P(a,b,d),

(C2) [|Az|| < a for [z|| <a, and

(C3) a(Ax) > b for x € P(a,b,c) with ||Az| > d.

Then A has at least three fixed points z1, x5 and x3 such that ||z1]] < a, b < a(z2), and ||z3]| > a

with a(z3) < b.

3. Multiple positive solutions of (6)
In order to apply Theorem 2.1, we must define an appropriate operator on a Banach space. We
first consider the the unique solution of the following second order boundary value problem:

Lemma 3.1[12] Let (1 — i (1 — Z B:) # 0. Then for f(t) € C[0,1], the problem

has a unique solution

where

1 i
A = az f(s
1721‘:1 @i

1 1
- s [ / (1= 9)f(s)ds —

m—2 i
D v 1@&( o ff )]
17211 QG

m—2 m—2
Lemma 3.2[12] Suppose «a;,(3; >0 (G =1,2,---.m—2),0< > a;<1,0< > B <1.
i=1 i=1

If f(t) € C[0,1] and f > 0, then the unique solution of (7) satisfies

inf z(t) >
it a(t) > ],

where
Y Bl = &)

Ty s
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Lemma 3.3 Suppose «;,0; >0 (i = 1,2,

ce.mo—

let M =(1-— ~

Z; (1_ Z ﬁz

m—2
L, 0< Y a;<1,0< > B <1, and
i=1 i=
Then the Green’s function for the boundary value problem

—2"(t) =0, 0<t<1,

m—2
'(0) Z oz’ (&), x(1) = ; Biz (&),
is given by
(1= 8i6) —t(1 = Y12 6))
0<t<1,

S ey [(1 -

[

0<s<&, s<t;

2G6) — 11— Y ﬂn}
j=1
1= 32 Big) —

m—2
s -0 )]
0<t<1, 0<s<&, t<s;

S e [ I vy IO RISy }
+(1 - 3 ;) [(1 — B — s =Y gj)} ,
M

§i-1<s<¢&, 2<i<m-—2

t<s;
Mt =)+ 275 0 (1= X757 66) — #1 - 757 6)]
1= 5 ay) (0= S i) — s - 00 80)]
§i-1<s<&, 2<i<m-—-2, s<t
(-

man) [ -0+ B - 9]

Em—2<s<1,

1-3" )1 -s),

s <t

Jj=1

0<t<1], €moa<s<l t<s

Lemma 3.4 Suppose «;,3; >0 (i=1,2,---

— m—2
),0< > a;<1,0< > B <1. Then
i=1

i=1
for (¢,s) €10,1] x [0,1].
Proof. We only check that if s < ¢, then

G*(t,s) >0

=1
m—2 m—2
+H1-) ) l(l =Y Bi&) —s(1=_ 8| =0
j=1 =i =i
In fact

m—2 m—2 m—2 m—2 m—2

QR = Z%(l— 5])(1_75)"'20‘1( Bi— ﬁjf])
Jj=1 Jj=1 Jj=t Jj=1 Jj=1
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Lemma 3.5 Suppose (H;) holds. Then g;(¢,s) <0 (0 <i <n—1), where g;(¢, s) is the Green’s

function for the BVP

Proof. It is easy to see that g;(¢,s) < 0 by using Lemma 3.4.

Let G1(t, 8) = gn—2(t, s), then for 2 < j < n — 1 we recursively define
1
Gi(t:5) = [ gy (t.1)Gsa ()
0

Lemma 3.6 Suppose (H;) holds. If f(¢) € C[0,1], then the boundary value problem

u(t) = f(1), 0<t<1,
. m72 .
uHD(0) = .21 R T (39 (8)
iz
m—2
u® (1) = Y Buoigio1,;uD(E), 0<i<i-1,
j=1

has a unique solution for each 1 <1 < n — 1, Gi(t, s) is the associated Green’s function for the

boundary value problem (8).

Proof. We prove the result by using induction. Obviously, the result holds by using Lemma

3.3forl=1.

We assume that the result holds for I — 1. Now we consider the case for I. Let u”(t) = v(t),
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then (8) is equivalent to

u'(0) = an_i—1,;u' (&), 9)
Jj=1
m—2
U(l) = Bn—l—l,]u(gj)a
J=1
and
v(2(lfl))(t> = f(t), 0<t<1,
m—2 .
’U(2i+1)(0) = Z an—l+i,jv(2z+1)(£j)a (10)
j=1
m—2 X
V(1) = Y Baoiga (&), 0<i<i-2.
Jj=1

Lemma 3.3 implies that (9) has a unique solution u(t) = fol gn—1—1(t,r)o(r)dr, and (10) has also
a unique solution v(t) = fol Gi-1(t, s) f(s)ds by the inductive hypothesis. Thus, (8) has a unique

solution

u(t) = /Ogn,l,l(t,r)/o Gi_1(r, s) f(s)dsdr

_ Al<Al%1guwGlﬂn@m>f@yg

/ Gi(t,s)f(s)ds
0

Therefore, the result hold for . Lemma 3.6 is now completed.

For each 1 <! <n —1, we define 4; : C[0, 1] — CI0, 1] by

1
Ap(t) = / Gi(t,m)v(T)dr.
0
With the use of Lemma 3.6, for each 1 <1 <n — 1, we have

(A)PD(t) = v(t), 0<t<1

m—2
(A0) D (0) = 3 i j (Aw) FHD(E)),
j=1

. m_2 .
(Av)@) (1) = 3 Booigio1,;(Aw)3(E), 0<i<I-1
j=1

Therefore (6) has a solution if and only if the boundary value problem

"

v (t) = f(t, Apo1v(t), An_ov(t), -+, Aro(t),v(t),0 < t < 1,
m—2 m—2 (11)
v'(0) = ; an—1,v'(§), v(1)= ; Br—1,50(&5),

has a solution. If 2 is a solution of (6), then v = 2(2(»=1) is a solution of (11). Conversely, if v is

a solution of (11), then z = A,,_yv is a solution of (6).
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Define A : C[0,1] — C0,1] by

Av(t) :/0 gn-1(t,8)f(s, Ap_1v(s), Ap_2v(s), -, Ajv(s),v(s))ds.

It now follows that there exists a solution of BVP (6) if, and only if , there exists a continuous
fixed point of A. Moreover, the relationship between a solution of BVP (6) and a fixed point of A
is given by = = A, _1v(t), or equivalently, z(2(»=1) = ¢,

Note that z is a positive solution of (6) if, and only if, (—1)"~12z(2("=1) = (—1)"~1y is positive,
where v is the corresponding continuous fixed point of A.

For each 0 <t < 1,0 < i <n— 1, there are only finitely many points s such that g;(¢,s) = 0.

Let

1
M; = = mi i(t,5)|d
s, oo, = g, [Clade ol

obviously, M; > m; > 0.

Let X = C0,1] with the maximum norm ||z| = Jnax |z(t)| and define the cone P C X by

P= {m € X : (=) 'a(t) >0,(—1)""'z is concave on [0, 1], and Ir[%nl](—l)"_lx(t) > 7|x||} .
te

Let a: P — [0,00) be the nonnegative continuous concave functional

= min (—=1)""1z(t) f eP
a(z) tgféﬂ]( )" w(t) for x

We now present our main result.

Theorem 3.1. Suppose (Hy) — (Hz) hold. In addition there exist nonnegative numbers a, b,
and ¢ such that 0 < a < b < min{y,m,—1/M,—1}c and f(¢t, up—1,Un—2, -, u1,up) satisfies the
following growth conditions:

(H3) (—1)"f(t,upn—1,--,ug) <a/Mn_1 for (t,|un—1l, |un—2|,---,uol) € [0,1]x

Hg —n-110, HJJrl M;,—;a] x [0, al;

(Hs) (=1)"f(t,un—1,"-+,u0) < c¢/Mn—y for (£, |un—1],|un—2l,-,luol) € [0,1]x
Hjl‘:n—l[oa zi; Mn*ic] X [O,C];
(H5) (71)nf(t7un*17"'7u0) Zb/mn,1 for (ta |un*1|7|un*2|a"'a|u0|) € [0,1]X

ITjcs [T mamib TTE5 Mumib/A] % [b,6/7):
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Then the boundary value problem (6) has at least three positive solutions z1, x2 and z3 such
that

o™ < a, b < min (~1)" a0,

and

(2(n—1)) . < 1yn—1,.(2(n=1))
Je" "l > with - min (~1)" e 0) <0

Proof. At first we show that A: P — P. Let z € P then (—1)""1Axz(t) > 0. Moreover,
(=1)" N (A2)" (1) = (=1)" 7 f (t, Apra(t), Anaa(t), -+, Ara(t), 2(t)) <0

By lemma 3.2, mingejo17(—1)" "t Az(t) > v||Az||, this implies that A : P — P. Also, it is easy to
see that the operator A is completely continuous.

Choose = € P,, then ||z| < c. Note that

/O 1 G, (t, s)a(s)ds

Thus, according to assumption (H4) we have

J+1 J+1
|4y = max < [1 Mazillall < [ Mu-sc.
’ 1=2 1=2

[Aal = max |As(r)
- Org}gl{ [ o101 Aua(6) Al Axn(s) (6 |
< max{/ |gn1ts|ds}

n 1 0<t<1
= C.

Therefore, A : P, — P..
In a completely analogous argument, assumption (Hs) implies that Condition (C2) of the
Leggett-Williams Fixed Point Theorem is satisfied.

We now show that condition (C1) is satisfied. Note that for 0 <¢ < 1.

x(t) = (—1)”_19 epP (a,b, 9) and a(x) = b > b.
v v v

Thus,

{z € P(a,b, %)| a(z) > b} # 0.
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Also, if z € P(a,b, %), then a(z) = Ir[lci)nl](—l)”_lx(t) > b foreach 0 <t <1,s0 (—=1)""1a(t) > b,
teo,

0 <t <1, this implies

()" 2Az(t) = /O—Gl(t,s)(—l)"flx(s)ds

Y

1
b/ (G (t, 8)[ds > b _a.
0

Inductively, we have
Jj+l

(—1)" I A (t >Hmn by 0<t<1,1<j<n-—1

and it is easy to see that
J+1 b
[ Aja(t)] < [ Ma—j—.
i=2 v

Applying condition (Hs) we get

(1" A al6), An (), Aveld), () = U=, 0t
So,
a(Az) = 021221(—1)"_11430(15)
_ Orggl{ [ e 0 s Arao), Ao, Ara) <s>>ds}

mm/ |gn—1(t, s)|ds

My _1 0<t<1

= b

Therefore, condition (C1) is satisfied.
Finally, we show that condition (C3) is also satisfied. That is, we show that if € P(«,b,c)

and ||Az|| > d = b/~, then a(Az) > b. This follows since A : P — P, then
a(Azx) = 21121 (—1)" L Ax(t) > || Az| > b.

Therefore, condition (C3) is also satisfied. So we complete the proof.

4. Example

In this section, we present an example to demonstrate the application of Theorem 3.1. Consider
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the boundary value problem

@ (t) = f(t, z(t), 2" 0<t<1,
1 _1 (1
:E :—ZL' - . . )
2 3"\ 2
1 1 3 1
( (3 - g/ -
x <2> =3 <2)
where
1
t+4 y°, —00,1/32
1000sm + :c+1000 $€2( 00, 1/32],
1 15584 3 64 1
it = XL 1/32,3/32
fto) — Tooo i o5 (Jc 32) +25+1000 SHY /32],
" 1 32768 13 64 1
L 2ol (29 2= 2,13/32
1000 ° +16875< 32> +27+1000 € [3/52,13/32,
64 1
int 4+ — 4+ —— 13/32 .
1OOOSm +27+1000y,$€[ /32, 400)
By Lemma 3.3, we have
3 0ci<lo<s<t s<t
1 20 VSPELUSss5, 85 h
11 1
3oLl o<i<tocs<lt<s
po(ts) =4 4 4 4 2
L 115 L 0<t<1 1< <1, s <4
2 1" 3% USPSh gsss L ssh
11 0<t<1 L <1, t<
g 2% VSIS LgESsLtes
5 1 1
I <t < < s < — < t:
3 4t, 0_t_1,0_5_2;5_ta
ol 3 g<i<1lo<s<lii<
- — —1l— —8, ~ >~ 1, =SS o, = S5
ot =4 & 16 16 2
3 3 9 1
St ——s 0<t<1, =<s<1, s<t;
4 16 16 2
3 3 1
—_ _ <t < — < < <
4 45, 0 t 172_5_17t—5

We first consider the condition 7 = 0.

1) For 0 <t < %,We have

1

1 t 3
/ go(t,8)lds = / g0t 5)|ds + / got,9)ds+ [ lgo(t, 5)|ds
0 0 t

1
2

tr3 o1 /3 1 1 1711
- 2_Zt)d 2 _Zi—Zs)d S _Zs)d
[G-a)es [ (Gai)or [ (5-3)e

2) For % <t <1, we have

1 1 t 1
/ go(t,9)lds = / g0 (¢, 8)ds + / go(t, 5)|ds + / lgo(t, 5)|ds
0 0 1 t
1
2 /3 1 711 1 L7101
- °_Zt)d St Zs)d S Zs)d
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So,

1 1
13 . 5
My = 01332{1/0 190(t, s)lds = =5, mo = Ogltlgl/o l90(2, s)lds = =5

Next, we consider the condition i = 1.

3)For 0 <t < %,We have

1 t 1 1
/ (¢, 5)|ds = / g1 (¢, 5)|ds + / g1 (¢, 5)|ds + / 191 (¢, 5)|ds
0 0 t 3

trs 1 /5 1 3 1/3 3

4) For % <t <1, we have
1 3 t 1
/ o (t,5)lds = / g (¢, 8)lds + / g1 (t,5)|ds + / g1 (¢, 9)|ds
0 0 1 t

1
2 /5 1 tr3 3 9 tr73 3

= S —t)d St Zs)d S _Zs)a
/0(8 4)S+/%(4 16 168) S+/t (4 45)5

_ ﬁ _ it _ it2
128 32 32
So,
1 1
49 . 33
M; = Org%xl/o lg1(t, s)|ds = 128’ mip = 0?1&121/0 lg1(t, s)|ds = 128"
3 33 3
Asy = 5 my /My = 19’ so we can let a = E’b: 5 ¢ 1, then
128
Fltym,) < af/My = g2 for (& el lyl) € 0.1] x [0,1/32] x 0,1/13],
128
ft,z,y) <c/M; = T for (¢,]z|, |y]) € [0,1] x [0,13/32] x [0, 1],
128
f(tvxay) > b/ml = E for (t7 |$|a |y|) € [Oa 1] X [3/323 13/32] X [3/5a 1]

By Theorem 3.1, problem (12) has at least three positive solutions.
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