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ABSTRACT

We are interested in the existence of nontrivial solutions for the second order non-

linear differential equation (E): y′′(t) = f
(
t, y(t)

)
= 0, 0 < t < 1 subject to multi-

point boundary conditions at t = 1 and either Dirichlet or Neumann conditions at

t = 0. Assume that f(t, y) satisfies |f(t, y)| ≤ k(t)|y| + h(t) for non-negative func-

tions k, h ∈ L1(0, 1) for all (t, y) ∈ (0, 1) × R and f(t, 0) 6≡ 0 for t ∈ (0, 1). We show

without any additional assumption on h(t) that if ‖k‖1 is sufficiently small where ‖ · ‖1

denotes the norm of L1(0, 1) then there exists at least one non-trivial solution for such

boundary value problems. Our results reduce to that of Sun and Liu [11] and Sun [10]

for the three point problem with Neumann boundary condition at t = 0.

Key Words: Second Order nonlinear differential equations, Multi-point boundary

value problem, Sign-changing nonlinearities
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1. Introduction

We are interested in the existence of non-trivial solutions to the second order non-

linear differential equation:

y′′ + f(t, y) = 0, 0 < t < 1, (1.1)

where f(t, y) ∈ C
(
(0, 1) × R, R

)
satisfies

|f(t, y)| ≤ k(t)|y| + h(t) (1.2)

with k, h ∈ L1(0, 1), subject to the following non-resonant boundary conditions:

(BC1) y′(0) = 0, y(1) = 〈α, y(η)〉+ 〈β, y′(η)〉

(BC2) y(0) = 0, y′(1) = 〈α, y(η)〉+ 〈β, y′(η)〉

(BC3) y(0) = 0, y(1) = 〈α, y(η)〉+ 〈β, y′(η)〉

where

〈α, y(η)〉 =
m∑

i=1

αiy(ηi); 〈β, y′(η)〉 =
m∑

i=1

βiy
′(ηi).

Here η = (η1, η2, · · · , ηm); 0 < η1 < η2 < · · · < ηm < 1 and αi ≥ 0, βi ≥ 0 for all

i = 0, 1, · · · , m. Also, y(η) =
(
y(η1), · · · , y(ηm)

)
, y′(η) =

(
y′(η1), · · · , y′(ηm)

)
are m-

vectors and 〈α, y(η)〉 denotes usual scalar product between two vectors α and y(η) in

Rm.

Solvability of boundary value problems (1.1) subject to boundary conditions (BC1),

(BC2), (BC3) with m = 1 has been studied by Gupta [3], Ma [7], Marano [8], Ren and

Ge [9] where f(t, y) is allowed to change signs subject to condition (1.2). We refer to

(1.1), (BC1); (1.1), (BC2); (1.1), (BC3) as (BVP1), (BVP2), (BVP3) respectively. In

recent papers by Sun and Liu [11] and Sun [10], the three-point boundary value problem

subject to special cases of (BC1), was studied where they applied the Leray-Schauder

nonlinear alternative theorem to prove existence of non-trivial solutions.

In [11], Sun and Liu studied the three point boundary value problem, equation (1.1)

subject to the boundary condition

y′(0) = 0, y(1) = αy(η), (1.3)
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where 0 < η < 1 and α 6= 1. Their main result is

Theorem A (Sun and Liu [14]) Suppose that f(t, 0) 6≡ 0 in [0, 1] and there exists

nonnegative functions k, h ∈ L1(0, 1) such that (1.2) holds. If α 6= 1, and

(
1 +

∣∣∣∣
1

1 − α

∣∣∣∣

) ∫ 1

0

(1 − s)k(s)ds +

∣∣∣∣
α

1 − α

∣∣∣∣
∫ η

0

(η − s)k(s)ds < 1, (1.4)

then the boundary value problem (1.1), (1.3) has a non-trivial solution.

In [10], Sun considered a similar boundary value problem also with Neumann bound-

ary condition at t = 0, i.e. equation (1.1) subject to

y′(0) = 0, y(1) = βy′(η), (1.5)

and proved

Theorem B (Sun [10]) Suppose that f(t, y) satisfies the same assumptions as in

Theorem A. If k(t) satisfies

2

∫ 1

0

(1 − s)k(s)ds + |β|
∫ η

0

k(s)ds < 1, (1.6)

then the boundary value problem (1.1), (1.5) has a nontrivial solution.

The boundary condition at t = 1 which includes both (1.3) and (1.5) can be written

as

y′(0) = 0, y(1) = αy(η) + βy′(η). (1.7)

Condition (1.7) is a special case of (BC1) with m = 1. In this note, we prove similar

results for the more general m-point problems with boundary conditions (BC1), (BC2),

(BC3). We show that the methodology given in [10], [11] is equally applicable to (BVP1),

(BVP2), (BVP3). The fixed point theorem required is the following (See [2; p.61], [1;

p27]) :

Theorem (Schauder Fixed Point Theorem) Let T : X → X be a completely

continuous mapping on a Banach space X . Suppose that there exists r > 0 such that for

all x ∈ X with ‖x‖ = r, Tx 6= λx if λ > 1, then T has a fixed point in X .
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2. Integral operators with Hammerstein kernels.

We shall represent the solutions of (BVP1), (BVP2), (BVP3) as fixed point of inte-

gral equations with kernel functions incorporating the three boundary conditions (BC1),

(BC2), (BC3). We define the mapping

Ajy(t) = Gj [y](t) + Cjt + Dj , j = 1, 2, 3 (2.1)

where

Gj [y](t) =

∫ 1

0

gj(t, s)f
(
s, y(s)

)
ds (2.2)

and

g1(t, s) =

{
1 − s, 0 ≤ t ≤ s ≤ 1,

1 − t, 0 ≤ s ≤ t ≤ 1;
(2.3)

g2(t, s) =

{
s, 0 ≤ s ≤ t ≤ 1

t, 0 ≤ t ≤ s ≤ 1;
(2.4)

g3(t, s) =

{
t(1 − s), 0 ≤ t ≤ s ≤ 1

s(1 − t) 0 ≤ s ≤ t ≤ 1.
(2.4)

The Green′s functions gj(t, s), j = 1, 2, 3, given in (2.3), (2.4), (2.5), arise from two point

homogeneous boundary conditions, i.e. associated with boundary conditions (BC1),

(BC2), (BC3) with α = β = 0. Thus we have G′
1(0) = G1(1) = 0, G2(0) = G′

2(1) = 0

and G3(0) = G3(1) = 0 upon evaluating (2.2) at t = 0 and t = 1. The constants

Cj , Dj , j = 1, 2, 3 are determined from the boundary conditions (BC1), (BC2), (BC3) to

be

C1 = 0, D1 =
1

1 − α
{〈α, G1(η)〉 + 〈β, G′

1(η)〉} (2.6)

C2 =
1

△ {〈α, G2(η)〉 + 〈β, G′
2(η)〉} , D2 = 0 (2.7)

C3 =
1

△ {〈α, G3(η)〉 + 〈β, G′
3(η)〉} , D3 = 0 (2.8)

where △ = 1 − 〈α, η〉 − β, and α =
m∑

i=1

αi, β =
m∑

i=1

βi.

To apply Schauder fixed point theorem, we need to show that the operators Aj

defined by (2.1) are completely continuous operators. Let U = {ϕ ∈ C[0, 1] : ‖ϕ‖ ≤ 1}.

We need to show that the set Aj(U) ⊂ C[0, 1] is uniformly bounded and equicontinuous.
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Note firstly that sup
0≤t≤1

∣∣∣
∫ 1

0
gj(t, s)ϕ(s)ds

∣∣∣ ≤ ‖ϕ‖ ≤ 1, and likewise constants Cj , Dj are

bounded, so sup
ϕ∈U

|Aj(ϕ)| is bounded by a constant independent of ϕ. To show that Ajϕ(t)

is equicontinuous, we observe

|Ajϕ(t1) − Ajϕ(t2)| ≤ sup
0≤s≤1

|gj(t1, s) − gj(t2, s)|+ Cj |t1 − t2|

≤ (1 + Cj) |t1 − t2| .

This proves that A′
js are completely continuous for j = 1, 2, 3.

Remark 2 The boundary conditions involving the derivative of a solution at some

interior points in general give rise to kernels associated with the operators Aj in (2.1)

which are discontinuous in two variables t, s. However, they are shown above to be

completely continuous operators.

In [10], [11], the authors used the more customary integral operator I(t) defined by

I[y](t) =

∫ t

0

(t − s)f
(
s, y(s))ds (2.9)

instead of the Green’s operator Gj [y](t) given in (2.1).

Writing I(t) = I[y](t), Gj(t) = Gj [y](t) for short, we can relate Gj(t) with I(t) as

follows:

G1(t) = −I(t) + I(1) (2.10)

G2(t) = −I(t) + I ′(1)t (2.11)

G3(t) = −I(t) + I(1)t (2.12)

Using (2.10), (2.11), (2.12), we can rewrite the operator equations in (2.1) as follows:

A1y(t) = −I(t) +
1

1 − α
{I(1) − 〈α, I(η)〉 − 〈β, I ′(η)〉} (2.13)

A2y(t) = −I(t) +
t

△ {I ′(1) − 〈α, I(η)〉 − 〈β, I ′(η)〉} (2.14)

A3y(t) = −I(t) +
t

△ {I(1) − 〈α, I(η)〉 − 〈β, I ′(η)〉} (2.15)

Results in [10], [11] can then be proved using the operator equation (2.13) for the

(BVP1), i.e. (1.1), (BC1).
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3. Boundary value problem (1.1), (BC1)

We now prove a result generalizing both Theorems A and B for the boundary value

problem (BVP1).

Theorem 1 Suppose that f(t, 0) 6≡ 0 in [0, 1] and condition (1.2) holds with

k, h ∈ L1(0, 1). If k(t) satisfies for α 6= 1 that

Λ1(k) = Max0≤t≤1G1[k](t) +
1

|1 − α| {〈|α|, G1[k](η)〉 + 〈|β|, G′
1[k](η)〉} < 1 (3.1)

where

α =

m∑

i=1

αi, |α| = (|α1|, · · · , |αm|) , |β| = (|β1|, · · · , |βm|) (3.2)

and

Gj(t) = Gj [k](t) =

∫ 1

0

gj(t, s)k(s)ds, j = 1, 2, 3 (3.3)

with gj(t, s) as given in (2.3) (2.4), (2.5) then the (BVP1) has at least one non-trivial

solution.

Proof. Since f(t, 0) 6≡ 0, we note from (1.2) and (2.10) that

sup
0≤t≤1

G1[h](t) =

∫ 1

0

(1 − s)h(s)ds

≥
∫ 1

0

(1 − s)|f(s, 0)|ds > 0,

so by (3.1), we have Λ(h) > 0. Condition (3.1) now permits us to define r > 0 by

r = Λ1(h)
(
1 − Λ1(k)

)−1
and Ωr = {y(t) ∈ C[0, 1] : ‖y‖ < r}.

Now suppose that there exists y0 ∈ ∂Ωr, i.e. ‖y0‖ = r, and A1y0 = λy0 for some

λ > 1. Using (3.1), we obtain from (2.1), (2.2), (2.6) and (1.2) that the operator A1

satisfies

‖A1y0‖ ≤ Λ1(k)‖y0‖ + Λ1(h),

or

λ‖y0‖ ≤ Λ1(k)‖y0‖ + Λ1(h). (3.4)
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Substituting r = Λ1(h)
(
1−Λ1(k)

)−1
for ‖y0‖ in (3.4), we find λr ≤ r which contradicts

the assumption that λ > 1. Thus by Schauder’s Fixed point theorem, A1 has a fixed point

in Ωr which is not the identically zero function because of f(t, 0) 6≡ 0. This completes

the proof.

Theorem 2 Under the same assumptions as in Theorem 1, if k(t) satisfies for

α 6= 1 that

Γ1(k) =

(
+

1

|1 − α|

)
I[k](1) +

1

|1 − α| {〈|α|, I[k](η)〉+ 〈|β|, I ′[k](η)〉} < 1 (3.5)

then the (BVP1) has at least one non-trivial solution where I[k](t) and I ′[k](t) are defined

like (2.9) by

I[k](t) =

∫ 1

0

(t − s)k(s)ds, I ′[k](t) =

∫ t

0

k(s)ds. (3.6)

Proof. We use the integral representation (2.13) for the operator A1. Since f(t, 0) 6≡

0 in [0, 1], we also have Γ1(h) > 0 by (1.2). Using (3.5) we define the positive constant

r1 > 0 by

r1 = Γ1(h)
(
1 − Γ1(k)

)−1
, Ωr1

= {y ∈ C[0, 1] : ‖y‖ < r1} (3.7)

To apply the Schauder Fixed Point Theorem, we suppose that there exists y ∈ ∂Ωr1
=

{
y ∈ Ωr1

: ‖y‖ = r1

}
such that A1y = λy for some λ > 1. Now apply (1.2), (3.5) to the

integral representation given by (2.13), and obtain by (3.7)

λr1 = ‖A1y‖ ≤ Γ1(k)‖y‖ + Γ1(h) ≤ Γ1(h)
(
1 − Γ1(k)

)−1
= r1

which contradicts the assumption that λ > 1. Now Schauder′s Fixed point theroem

shows that there exists ŷ ∈ Ωr1
such A1ŷ = ŷ. Since f(t, 0) 6≡ 0, so ŷ cannot be the

identically zero solution. This complets of the proof.

Corollary 1 Suppose that f(t, y) satisfies the assumptions of Theorem 1. If

k ∈ L1(0, 1) satisfies either

Λ̂1(k) =

(
1 +

∣∣∣∣
α

1 − α

∣∣∣∣

) ∫ 1

0

(1 − s)k(s)ds +
|β|

|1 − α|

∫ η

0

(s)ds < 1 (3.8)
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or

Γ̂1(k) =

(
1 +

∣∣∣∣
1

1 − α

∣∣∣∣

) ∫ 1

0

(1 − s)k(s)ds +
|α|

|1 − α|

∫ η

0

(η − s)(s)ds

+
|β|

|1 − α|

∫ η

0

k(s)ds < 1, (3.9)

then the three-point boundary value problem (1.1), (1.7) has at least one non-trivial

solution.

Proof. From (2.10), we have G1[k](η) = −I[k](η) + I[k](1) so |α|G1[k](η) ≤

|α|I[k](1). Using this in (3.1), we obtain (3.8). Next we note that (3.9) is simply (3.5)

with m = 1. This completes the proof.

Remark 3 Condition (3.9) reduces to (1.4) when β = 0 and it becomes (1.6) when

α = 0. Thus Corollary 1 includes both Theorem A and B. Condition (3.8) is sharper

than condition (1.6) when α = 0 where the “2” can be replaced by “1”, so Corollary

1 improves upon Theorem B. When β = 0, conditions (3.8) and (3.9) are not strictly

comparable because their values depend on α and η.

4. Boundary value problem (BVP2), (BVP3)

We now use the integral representations (2.1), (2.2), (2.4) and (2.1), (2.2), (2.5) and

state analogues of Theorems 1 and 2 for (BVP2),(BVP3).

Theorem 3 Suppose that f(t, 0) 6≡ 0 in [0, 1] and condition (1.2) holds with

k, h ∈ L1(0, 1). If k(t) satisfies for △ = 1 − 〈α, η〉 + β 6= 0

Λ2(k) = Max
0≤t≤1

G2[k](t) +
1

△{〈|α|, G2[k](η)〉 + 〈|β|, G′
2[k](η)〉} < 1, (4.1)

where G2[k](t) is given by (3.3), then the (BVP2) has at least one non-trivial solution.

Theorem 4 Under the same assumptions as in Theorem 3, if k(t) satisfies

Λ3(k) = Max
0≤t≤1

G3[k](t) +
1

△{〈|α|, G3[k](η)〉 + 〈|β|, G′
3[k](η)|〉} < 1, (4.2)

where G3[k](t) is defined by (3.3), then the (BVP3) has at least one non-trivial solution.
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Likewise we use representations (2.14), (2.15) for operators A2, A3 in terms of I[y](t)

as defined by (2.9) and can prove the following results for (BVP2), (BVP3).

Theorem 5 Under the same assumptions of Theorem 3, if k(t) satisfies

Γ2(k) = I[k](1) +
1

△{I ′[k](1) + 〈|α|, I[k](η)〉+ 〈|β|, I ′[k](η)〉} < 1, (4.3)

then the boundary value problem (BVP2) has at least one non-trivial solution.

Theorem 6 Under the same assumptions of Theorem 5, if k(t) satisfies

Γ3(k) = I[k]

(
1 +

1

△

)
+

1

△{〈|α|, I[k](η)〉+ 〈|β|, I ′[k](η)〉} < 1, (4.4)

then the boundary value problem (BVP3) has at least one non-trivial solution.

The proofs of Theorems 3, 4, 5, 6 are similar to those given for Theorem 1 and 2

and we shall not repeat them here.

Remark 4 Denote K1 = I[k](1), K2 = I ′[k](1). We can give upper bounds of

Γ1(k), Γ2(k), Γ3(k) in terms of K1, K2 as follows

Γ1(k) ≤ K1

{
1 +

1

|1 − α|(1 + |α̂|)
}

+ K2

|β̂|
|1 − α| ,

Γ2(k) ≤ K1

(
1 +

1

△|α̂|
)

+ K2

(
1 +

1

△|β̂|
)

,

Γ3(k) ≤ K1

{
1 +

1

△ (1 + |α̂|)
}

+ K2

|β̂|
△ ,

where |α̂| =
m∑

i=1

|αi|, |β̂| =
m∑

i=1

|βi|. This provides a convenient method to establish

existence of a non-trivial solution for (BVP1), (BVP2), (BVP3).

5. Discussion

We illustrate our results with examples in three point boundary value problems and

begin with two examples discussed in [10], [11].

Example 1 Consider the boundary value problem

(E1)

{
y′′ + c

√
t(1 + y4)−1y3 − sin t = 0, 0 < t < 1

y′(0) = 0, y(1) = 2y( 1
2
), c > 0,
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which was discussed in [11, Example 3] with c = 1 and was shown to possess at least

one non-trivial solution. Here f(t, y) = c
√

ty3(1 + y4)−1 so |f(t, y)| ≤ k(t)|x|+ h(t) with

k(t) = c
2

√
t and h(t) = sin t. Apply Corollary 1 with β = 0, α = 2 and η = 1

2
, we find

c < 60(16 + 7
√

2)−1, so in particular (E1) has a non-trivial solution for c = 2.

Example 2 Consider the boundary value problem

(E2)

{
y′′ + (t − t2)|y| siny − t2y + t3 − 2 sin t = 0, 0 < t < 1,

y′(0) = 0, y(1) = αy( 1
2
), +βy′( 1

2
).

This example was studied in [10; Example 4.1] with α = 0, β = 4. Here f(t, y) satisfies

(1.2) with k(t) = t, h(t) = t3 + 2 sin t. Apply (3.9) in Corollary 1, we find |β| < 16/3

the same as from Theorem B. However, using (3.8) in Corollary 1 with α = 0, we obtain

|β| < 20/3 which ensures the existence of a nontrivial solution of (E2). When β = 0,

(3.8) requires

1

6

(
1 +

|α|
|1 − α|

)
+

1

2

1

|1 − α| < 1.

Solving the above inequality, we require α /∈ [ 1
3
, 1

2
] for the existence of a non-trivial

solution of (E2).

Example 3 Consider the boundary value problem

(E3)

{
y′′ + σ√

t
(|y| siny + t2) + cos t√

t
= 0, 0 < t < 1,

y(0) = 0, y′(1) = 3
10

y( 1
3
) + 1

10
y′( 1

3
).

where σ > 0 and (1.2) is satisfied with k(t) = σt−
1

2 and h(t) = t−
1

2 + σ. The boundary

value problem is a special case of (BVP2) and we can apply Theorem 3 to compute Λ2(k)

as defined by (4.1). Here △ = 4/5.

Max
0≤t≤1

G2[k](t) = Max
0≤t≤1

∫ 1

0

g2(t, s)k(s)ds ≤ σ

∫ 1

0

√
sds =

2σ

3
,

G2[k]

(
1

3

)
=

(
2

3
− 4

9
√

3

)
σ, G′

2[k]

(
1

3

)
=

(
2 − 2√

3

)
σ,

hence Λ2(k) ≤
(

7
6
− 5

√
3

36

)
σ = 0.9261σ < 1. In particular when σ = 1, the boundary

value problem (E3) has a non-trivial solution.
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Example 4 Consider the three point BVP

(E4)

{
y′′ + 2ty2e−y

t2+y2 + 3 sin2 t − cos et = 0, 0 < t < 1

y(0) = 0, y(1) = 4y
(

1
2

)
+ βy′ ( 1

2

)
.

A similar equation in (E4) was discussed in [10; Example 4.5] as a special case of (BVP1).

The boundary value problem (E4) is a special case of (BVP3). Here (1.2) is satisfied

with k(t) ≡ 1, h(t) = 3 sin2 t + cos et. We now apply Theorem 4 and compute Λ3(k) as

given in (4.2). Observe that

Max
0≤t≤1

G3[k](t) : Max
0≤t≤1

∫ 1

0

g3(t, s)k(s)ds =

∫ 1

0

s(1 − s)ds =
1

6
,

G3[k]
(

1
2

)
= 5

16
, G′

3[k]
(

1
2

)
= 0. Using these in (4.2), we find

∣∣∣ 1
β+1

∣∣∣ < 2
3
, alternatively β /∈

[
−5

2
, 1

2

]
, which shows that the boundary value problem (E4) has a non-trivial solution,

when β ≥ 1
2
.

We close our discussion with several additional remarks:

1. The condition that α 6= 1 for (BVP1) and 〈α, η〉+β 6= 1 for (BVP2), (BVP3) are

known as non-resonance conditions. These conditions ensure that the constants Cj , Dj

in (2.6), (2.7), (2.8) can be determined by requiring Ajy(t), as defined by the operator

equation (2.1) (2.2), to satisfy the boundary conditions (BC1), (BC2), (BC3).

2. Consider the simple three point boundary value problem

(E5) y′′ + y = 1, y′(0) = 0, y(1) = βy′
(

1

2

)
,

a special case of (BVP1). With k(t) ≡ 1 in (1.6), Theorem B is not applicable. We can

use (3.8) in Corollary 1 and find Λ̂1(k) = 1
2
(1 + |β|) < 1, or |β| < 1. However, (E5)

admits an exact unique solution y(t) = 1− (cos 1+β sin 1
2
)−1 cost for all β 6= cos 1/ sin 1

2
.

This shows that conditions (3.8) and (3.9) are not the best possible.

3. We refer the reader to the papers by Liu and Yu [5] which discussed similar

problem in resonant cases where ‖k‖ is also required to be small as compared with the

value 1. There are also recent papers by Han and Wu [4], and Liu, Liu and Wu [6]

which dealt with sign-changing nonlinearities like condition (1.2) by comparison with the

smallest positive eigenvalue of certain associated linear boundary value problem.
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