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ABSTRACT

We are interested in the existence of nontrivial solutions for the second order non-
linear differential equation (E): y”(¢t) = f(t,y(t)) = 0,0 < t < 1 subject to multi-
point boundary conditions at ¢ = 1 and either Dirichlet or Neumann conditions at
t = 0. Assume that f(t,y) satisfies |f(t,y)| < k(t)|y| + h(t) for non-negative func-
tions k,h € L1(0,1) for all (¢,y) € (0,1) x R and f(¢,0) # 0 for t € (0,1). We show
without any additional assumption on h(t) that if ||k||; is sufficiently small where || - ||1
denotes the norm of L'(0,1) then there exists at least one non-trivial solution for such
boundary value problems. Our results reduce to that of Sun and Liu [11] and Sun [10]

for the three point problem with Neumann boundary condition at t = 0.
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1. Introduction

We are interested in the existence of non-trivial solutions to the second order non-
linear differential equation:
v+ f(t,y) =0, 0<t<l, (1.1)
where f(t,y) € C((0,1) x R, R) satisfies
[f (& y)] < k(@)]yl + h(t) (1.2)

with k, h € L'(0, 1), subject to the following non-resonant boundary conditions:

(BC1) y'(0) =0, y(1) = (o, y(n) + (3,9 (n))
(BC2) y(0) =0, ¥'(1) = (a,y(n) + (8,9 (n))
(BC3) y(0) =0, y(1) = (a,y(n)) + (B,¥'(n))

where
(s y(m) = aiy(m); (B,4'(m) =D B/ (ms)-
i=1 i=1
Here n = (M1,m2, - y0m);0 <1 < m2 < -+ < My < 1l and oy > 0,5; > 0 for all

i =0,1,---,m. Also, y(n) = (y(m), -, y(m)), ¥(n) = &' (m),--,y (nm)) are m-

vectors and (a,y(n)) denotes usual scalar product between two vectors o and y(n) in
R™.

Solvability of boundary value problems (1.1) subject to boundary conditions (BC1),
(BC2), (BC3) with m = 1 has been studied by Gupta [3], Ma [7], Marano [8], Ren and
Ge [9] where f(t,y) is allowed to change signs subject to condition (1.2). We refer to
(1.1), (BC1); (1.1), (BC2); (1.1), (BC3) as (BVP1), (BVP2), (BVP3) respectively. In
recent papers by Sun and Liu [11] and Sun [10], the three-point boundary value problem
subject to special cases of (BC1), was studied where they applied the Leray-Schauder
nonlinear alternative theorem to prove existence of non-trivial solutions.

In [11], Sun and Liu studied the three point boundary value problem, equation (1.1)

subject to the boundary condition

y'(0) =0, y(1) = ay(n), (1.3)
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where 0 < 7 < 1 and « # 1. Their main result is

Theorem A (Sun and Liu [14]) Suppose that f(¢,0) # 0 in [0, 1] and there exists

nonnegative functions k, h € L'(0,1) such that (1.2) holds. If « # 1, and

([ [ |25

then the boundary value problem (1.1), (1.3) has a non-trivial solution.

/On(n — s)k(s)ds < 1, (1.4)

In [10], Sun considered a similar boundary value problem also with Neumann bound-

ary condition at t = 0, i.e. equation (1.1) subject to

y'(0)=0, y(1)=py(n), (1.5)

and proved

Theorem B (Sun [10]) Suppose that f(¢,y) satisfies the same assumptions as in

Theorem A. If k(t) satisfies

2/0 (1—s)k(s)ds+\ﬁ|/onk(s)ds <1, (1.6)

then the boundary value problem (1.1), (1.5) has a nontrivial solution.
The boundary condition at ¢ = 1 which includes both (1.3) and (1.5) can be written

as

ay(n) + By’ (n). (1.7)
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—~
(=)
S~—
I
=
<
—~
—_
S~—
I

Condition (1.7) is a special case of (BC1) with m = 1. In this note, we prove similar
results for the more general m-point problems with boundary conditions (BC1), (BC2),
(BC3). We show that the methodology given in [10], [11] is equally applicable to (BVP1),

(BVP2), (BVP3). The fixed point theorem required is the following (See [2; p.61], [1;

p27]) :

Theorem (Schauder Fixed Point Theorem) Let T': X — X be a completely
continuous mapping on a Banach space X. Suppose that there exists » > 0 such that for

all x € X with ||z|| = r,Tx # Az if A > 1, then T has a fixed point in X.
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2. Integral operators with Hammerstein kernels.

We shall represent the solutions of (BVP1), (BVP2), (BVP3) as fixed point of inte-
gral equations with kernel functions incorporating the three boundary conditions (BC1),

(BC2), (BC3). We define the mapping
Ajy(t) = G5[yl(t) + Cjt + Dy, j =1,2,3 (2.1)

where
Gjlyl(t) = /0 gi(t,s)f(s,y(s))ds (2.2)

and

t,s (2.3)

1—s5, 0<t<s<1,
gl(? ):
1—¢t, 0<s<t<;

(t,5) = s, 0<s<t<1 (2.4)
PET=V0 o<t<s<1: '
{t(l—s), 0<t<s<1

s(1—t) 0<s<t<l.

gs(t, s) (2.4)

The Green'’s functions g;(¢,s),j = 1,2, 3, given in (2.3), (2.4), (2.5), arise from two point
homogeneous boundary conditions, i.e. associated with boundary conditions (BC1),
(BC2), (BC3) with @« = 3 = 0. Thus we have G| (0) = G1(1) = 0,G2(0) = G4(1) =0
and G3(0) = G3(1) = 0 upon evaluating (2.2) at t = 0 and ¢ = 1. The constants

Cj,Dj,j =1,2,3 are determined from the boundary conditions (BC1), (BC2), (BC3) to

be
Cy = 0,1 = —— {0, Ga () + (5, G (n)}} (2.6
Ca = {{a, Galn)) + (8, Gh(m)}, D2 = 0 2.7
Ca = {0, Ga(n)) + (8, G ()}, Ds = 0 2.

where A =1— (a,n) —B,anda = > a;, 3= B;.
i=1 i=1
To apply Schauder fixed point theorem, we need to show that the operators A;
defined by (2.1) are completely continuous operators. Let U = {¢ € C[0,1] : ||¢|| < 1}.

We need to show that the set A;(U) C C[0, 1] is uniformly bounded and equicontinuous.
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Note firstly that sup ‘fol g;(t,s)e(s)ds| < ||l <1, and likewise constants C;, D, are
0<t<1

bounded, so sup |A4;(¢)| is bounded by a constant independent of ¢. To show that A;p(t)
peU
is equicontinuous, we observe

|Aj(t1) — Ajp(tz)] < S lg;(t1,5) — g;(ta2, 8)| + Cj [t — ta|

<(A+3C))lt —ta.
This proves that A;-.s are completely continuous for j = 1,2, 3.

REMARK 2 The boundary conditions involving the derivative of a solution at some
interior points in general give rise to kernels associated with the operators A; in (2.1)
which are discontinuous in two variables t,s. However, they are shown above to be
completely continuous operators.

In [10], [11], the authors used the more customary integral operator I(t) defined by

Ty)(t) = / (t = 5)f (s, y(s))ds (2.9)

instead of the Green’s operator G,[y](t) given in (2.1).
Writing I(t) = I[y](t), G;(t) = G;[y](t) for short, we can relate G;(t) with I(t) as

follows:

Gi(t)=—1I(t)+1I(1) (2.10)
Go(t) = —I(t)+ I'(1)t (2.11)
Gs(t) = —I(t) +I(1)t (2.12)

Using (2.10), (2.11), (2.12), we can rewrite the operator equations in (2.1) as follows:

1

Avy(t) = =1(8) + 7—={1(1) = (e, I(m)) = (B, I'(m)) } (2.13)
Agy(t) = —I(t) + % {I'(1) = (e, () — (B, I"(m)) } (2.14)
Azy(t) = —I(t) + % {Z(1) = (e, I(m)) = (B, I'(n))} (2.15)

Results in [10], [11] can then be proved using the operator equation (2.13) for the

(BVP1), ie. (1.1), (BCL).
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3. Boundary value problem (1.1). (BC1)

We now prove a result generalizing both Theorems A and B for the boundary value

problem (BVP1).

Theorem 1 Suppose that f(¢,0) # 0 in [0,1] and condition (1.2) holds with

k,h € L1(0,1). If k(t) satisfies for @ # 1 that

mm=Mwmqaww+ﬁéa«wﬂwwm+wumwm»<1 (3.1)
where
a=> o ol = (o1l laml), 18] = (1B1], -+, |Bm]) (3.2)
and
@w:@mmzlgmwmmmrﬂﬂs (3:3)

with g;(t,s) as given in (2.3) (2.4), (2.5) then the (BVP1) has at least one non-trivial
solution.

Proof. Since f(t,0) # 0, we note from (1.2) and (2.10) that

sup G1lh|(t) :/0 (1 —s)h(s)ds

0<t<1

1
> [ = 9)lfs,0)lds >0,
0
so by (3.1), we have A(h) > 0. Condition (3.1) now permits us to define r > 0 by
r= M) - Auk) " and Q= {y(t) € Cl0,1] : yl] < ).

Now suppose that there exists yo € 9., i.e. |yo|| = r, and A1yo = Ayo for some
A > 1. Using (3.1), we obtain from (2.1), (2.2), (2.6) and (1.2) that the operator A,
satisfies

| A1yoll < Av(F)llyoll + As(h),

Mlyoll < A (B)lyoll + Ar(h). (3-4)
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Substituting 7 = A (h)(1 — Al(k))_1 for ||yo| in (3.4), we find Ar < r which contradicts
the assumption that A > 1. Thus by Schauder’s Fixed point theorem, A; has a fixed point
in Q, which is not the identically zero function because of f(¢,0) #Z 0. This completes

the proof.

Theorem 2  Under the same assumptions as in Theorem 1, if k(¢) satisfies for

a # 1 that

1

) ITR](1) + i—al {{lal, ITkI(m)) + (IBL, I'K)(m)} <1 (3.5)

1
[1—a

Ty (k) = <+

then the (BVP1) has at least one non-trivial solution where I[k](t) and I’ [k](t) are defined
like (2.9) by
1 t
I[k](t) = / (t — s)k(s)ds, I'[k](t) = / k(s)ds. (3.6)
0 0

Proof. We use the integral representation (2.13) for the operator A;. Since f(¢,0) #
0 in [0, 1], we also have I'y (k) > 0 by (1.2). Using (3.5) we define the positive constant
ry > 0 by

r=Ty(h)(1=T1(k)) ", = {y € CI0,1] : |yl < ri} (3.7)

To apply the Schauder Fixed Point Theorem, we suppose that there exists ¥ € 0€2,., =
{y € Q, : |ly|| = r1} such that A;7 = Ay for some A > 1. Now apply (1.2), (3.5) to the

integral representation given by (2.13), and obtain by (3.7)
_ _ -1
Ay = | Ayl < T1(®) 7 +Ta(h) < Ti(R) (1 - Ta(k)) — =m

which contradicts the assumption that A > 1. Now Schauder’s Fixed point theroem
shows that there exists ¥ € Q,, such A,y = 7. Since f(¢,0) # 0, so § cannot be the

identically zero solution. This complets of the proof.

Corollary 1  Suppose that f(¢,y) satisfies the assumptions of Theorem 1. If

k € L'(0,1) satisfies either

) /1(1 —s)k(s)ds + 5] n(s)ds <1 (3.8)
0

11 —al Jo

Ay (k) = <1+’

1l -«
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or

~

fu = (14| 22]) [ a- oo+ 2 M- s
g

11 —al Jo

+

k(s)ds < 1, (3.9)

then the three-point boundary value problem (1.1), (1.7) has at least one non-trivial

solution.

Proof. From (2.10), we have Gi[k](n) = —I[k](n) + I[k](1) so |a|G1]k](n) <

|a|I]k](1). Using this in (3.1), we obtain (3.8). Next we note that (3.9) is simply (3.5)

with m = 1. This completes the proof.

REMARK 3 Condition (3.9) reduces to (1.4) when $ = 0 and it becomes (1.6) when
a = 0. Thus Corollary 1 includes both Theorem A and B. Condition (3.8) is sharper
than condition (1.6) when @ = 0 where the “2” can be replaced by “1”, so Corollary
1 improves upon Theorem B. When ( = 0, conditions (3.8) and (3.9) are not strictly

comparable because their values depend on o and 7.

4. Boundary value problem (BVP2), (BVP3)

We now use the integral representations (2.1), (2.2), (2.4) and (2.1), (2.2), (2.5) and

state analogues of Theorems 1 and 2 for (BVP2),(BVP3).

Theorem 3 Suppose that f(¢,0) # 0 in [0,1] and condition (1.2) holds with

k,h € L*(0,1). If k(t) satisfies for A =1 — {a,n) + B #0

Az (k) = Max Galk](t) + %{<|a|,G2Uf](n)> +(18], Ga[k](n))} < 1, (4.1)

0<t<1

where G[k](t) is given by (3.3), then the (BVP2) has at least one non-trivial solution.

Theorem 4 Under the same assumptions as in Theorem 3, if k(¢) satisfies

As(k) = Max Gs[k](t) + %{<|a|,G3[k](n)> + (18], Gs[kl(m))} < 1, (4.2)

0<t<1
where G3[k](t) is defined by (3.3), then the (BVP3) has at least one non-trivial solution.
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Likewise we use representations (2.14), (2.15) for operators Ag, A3 in terms of I[y](t)

as defined by (2.9) and can prove the following results for (BVP2), (BVP3).

Theorem 5 Under the same assumptions of Theorem 3, if k(t) satisfies

To(k) = I[k](1) + %{I'[k](l) + (lal, ITk] () + (I8, 'K ()} < 1,

then the boundary value problem (BVP2) has at least one non-trivial solution.

Theorem 6 Under the same assumptions of Theorem 5, if k(t) satisfies

ra(k) = 16 (14 & ) + % Cal. T00) + 81 T < .

then the boundary value problem (BVP3) has at least one non-trivial solution.

(4.3)

(4.4)

The proofs of Theorems 3, 4, 5, 6 are similar to those given for Theorem 1 and 2

and we shall not repeat them here.

REMARK 4 Denote Ky = I[k](1), Ko = I'[k](1). We can give upper bounds of

I'1(k),a(k),Ts(k) in terms of K1, K5 as follows

_ 3]
k) <K;<1 1 K
() < 80 {1 o a) R
Do(k) < Ky (14 ~[a]) + K (1+—|3)
2 > g A o 2 A )
I3(k) < Ky 1+i(1+|a|) +K2@
— A A )
where |&| = 3 |ail,|3] = 3. |B. This provides a convenient method to establish
i=1 i=1

existence of a non-trivial solution for (BVP1), (BVP2), (BVP3).

5. Discussion

We illustrate our results with examples in three point boundary value problems and

begin with two examples discussed in [10], [11].

Example 1  Consider the boundary value problem

(El){ Y +evt(l+yH)1y® —sint =0, 0<t<l1
y(0)=0, y(1)=2y(3), c>0,
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which was discussed in [11, Example 3] with ¢ = 1 and was shown to possess at least
one non-trivial solution. Here f(t,y) = cvty3(1+y*)~! so |f(¢,y)| < k(t)|z|+ h(t) with
k(t) = §v/t and h(t) = sint. Apply Corollary 1 with 8 = 0,a = 2 and n = 1 we find

2

¢ < 60(16 4+ 7v/2)7!, so in particular (E1) has a non-trivial solution for ¢ = 2.

Example 2  Consider the boundary value problem

y" + (t —t?)|y|siny — 2y + 3 — 2sint =0, 0 <t < 1,

<E2){ YO =0, y(1) = ay(b), +8y (L),

This example was studied in [10; Example 4.1] with « = 0, § = 4. Here f(t,y) satisfies
(1.2) with k(t) = t,h(t) = t3 + 2sint. Apply (3.9) in Corollary 1, we find |3| < 16/3
the same as from Theorem B. However, using (3.8) in Corollary 1 with a = 0, we obtain

|8| < 20/3 which ensures the existence of a nontrivial solution of (E2). When § = 0,

Ly ol Y 1 1
6 T-al) " 21—a

Solving the above inequality, we require o ¢ |

(3.8) requires

% %] for the existence of a non-trivial

solution of (E2).

Example 3  Consider the boundary value problem

=0, 0<t <1,
)+%y()~

(E3>{ '+ Z(lylsiny + %) + <
y(0)=0,  ¢'(1)= 15yl

Wl

where o > 0 and (1.2) is satisfied with k(t) = ot~ 2 and h(t) = t~2 + . The boundary
value problem is a special case of (BVP2) and we can apply Theorem 3 to compute Az (k)

as defined by (4.1). Here A =4/5.

Max Gsk](t) = Max / g2(t, s)k(s)ds < 0/0 \/sds = 230,

o (3) = (3~ 3) = ()
M

hence Ay (k) < (% - )a = 0.92610 < 1. In particular when o = 1, the boundary

value problem (E3) has a non-trivial solution.
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Example 4  Consider the three point BVP
(E4){ Yy’ + 2;5_72_2?}+381n2t—6088t =0,0<t<1
y(0)=0,  y(1)=4y(3) +5Y (3)-
A similar equation in (E4) was discussed in [10; Example 4.5] as a special case of (BVP1).
The boundary value problem (E4) is a special case of (BVP3). Here (1.2) is satisfied
with k(t) = 1, h(t) = 3sin®t + cose’. We now apply Theorem 4 and compute Az(k) as

given in (4.2). Observe that

Max Gs[k](¢) Max/o gg(t,s)k(s)ds:/o s(l—S)dSZ%,

0<t<1 0<t<1

Gslk] (3) = 3%, G4[k] (3) = 0. Using these in (4.2), we find ‘ﬁ) < 2, alternatively 3 ¢

[—g, %], which shows that the boundary value problem (E4) has a non-trivial solution,

We close our discussion with several additional remarks:

1. The condition that @ # 1 for (BVP1) and (o, n) + 3 # 1 for (BVP2), (BVP3) are
known as non-resonance conditions. These conditions ensure that the constants C;, D;
in (2.6), (2.7), (2.8) can be determined by requiring A;y(¢), as defined by the operator
equation (2.1) (2.2), to satisfy the boundary conditions (BC1), (BC2), (BC3).

2. Consider the simple three point boundary value problem

E5) ' ru=1 g0 =0 )=/ (3),

a special case of (BVP1). With k(¢) = 1 in (1.6), Theorem B is not applicable. We can
use (3.8) in Corollary 1 and find Ay (k) = 11+ |8)) <1, or |B| < 1. However, (E5)
admits an exact unique solution y(t) = 1— (cos 1+ Bsin 3) ™! cost for all 3 # cos1/sin 1.
This shows that conditions (3.8) and (3.9) are not the best possible.

3. We refer the reader to the papers by Liu and Yu [5] which discussed similar
problem in resonant cases where ||k|| is also required to be small as compared with the
value 1. There are also recent papers by Han and Wu [4], and Liu, Liu and Wu [6]
which dealt with sign-changing nonlinearities like condition (1.2) by comparison with the

smallest positive eigenvalue of certain associated linear boundary value problem.

EJQTDE, 2010 No. 41, p. 11



1]

REFERENCES
R. F. Brown, A topological introduction to nonlinear analysis, Birkhauser, Boston
1993.
J. Dugundji and A. Granas, Fixed point theory, vol I, Monografie Matematyczne
vol 61, Warsaw 1982.
C. P. Gupta, Solvability of a three-point nonlinear boundary value problem for a
second order ordinary differential equations, J. Math. Anal. Appl., 168(1992), 540-
551.
G. Han and Y. Wu, Nontrivial solutions of m-point boundary value problems with
sign-changing nonlinear terms, J. Math. Anal. Appl., 325(2007), 1327-1338.
B. Liu and Y. Yu, Solvability of Multi-point boundary value problems at resonance
ITI, Appl. Math. Comput., 129(2004), 119-143.
L. Liu, B. Liu and Y. Wu, Nontrivial solutions of m-point boundary value problems
for singular second order differential equations with a sign-changing nonlinear term,
J. Comput. & Appl. Math., 224(2009), 373-382.
R. Ma, Existence of theorem for a second order three-point boundary value problem,
J. Math. Anal. Appl., 212(1997), 430-442.
S. A. Marano, A remark on a second order 3-point boundary value problem, J. Math.
Anal. Appl., 183(1994), 518-522.
J. Ren and W. Ge, Positive solutions for three point boundary value problems with
sign-changing nonlinearities, Appl. Math. Letters, 17(2004), 451-458.
Y. P. Sun, Nontrivial solutions for a three-point boundary value problem, Electronic
J. Diff. Equ., 2004 (2004), 1-10.
Y. P. Sun and L. Liu, Solvability for a nonlinear second order three point boundary

value problem, J. Math. Anal. Appl., 296(2004), 265-275.

(Received December 14, 2009)

EJQTDE, 2010 No. 41, p. 12



