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Abstract. This paper is concerned with the following quasilinear Schrödinger system
in RN : {

−ε2∆u + V1(x)u− ε2∆(u2)u = K1(x)|u|22∗−2u + h1(x, u, v)u,
−ε2∆v + V2(x)v− ε2∆(v2)v = K2(x)|v|22∗−2v + h2(x, u, v)v,

where N ≥ 3, Vi(x) is a nonnegative potential, Ki(x) is a bounded positive function,
i = 1, 2. h1(x, u, v)u and h2(x, u, v)v are superlinear but subcritical functions. Under
some proper conditions, minimax methods are employed to establish the existence of
standing wave solutions for this system provided that ε is small enough, more precisely,
for any m ∈ N, it has m pairs of solutions if ε is small enough. And these solutions
(uε, vε) → (0, 0) in some Sobolev space as ε → 0. Moreover, we establish the existence
of positive solutions when ε = 1. The system studied here can model some interaction
phenomena in plasma physics.

Keywords: quasilinear Schrödinger system, critical growth, standing wave solutions,
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1 Introduction

In this article we discuss the following coupled quasilinear Schrödinger system with critical
exponents in RN

{
−ε2∆u + V1(x)u− ε2∆(u2)u = K1(x)|u|22∗−2u + h1(x, u, v)u,

−ε2∆v + V2(x)v− ε2∆(v2)v = K2(x)|v|22∗−2v + h2(x, u, v)v.
(1.1)
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In recent years, much attention has been devoted to the quasilinear Schrödinger equation
of the form:

− ε2∆u + V(x)u− ε2∆(u2)u = h(x, u), (1.2)

where ε > 0 is a small parameter (e.g. see [28,31]). Part of the interest is due to the fact that the
solution of (1.2) is closely related to the existence of solitary wave solutions for the following
equation:

iε∂tw = −ε2∆w + V(x)w− f (|w|2)w− ε2k∆h(|w|2)h′(|w|2)w, (1.3)

where w : R×RN → C, V(x) is a given potential, k is a real constant, f , h are suitable func-
tions. In fact, the quasilinear equation (1.3) has been derived as models of several physical
phenomena. For example, it models the superfluid film equation in plasma physics [20], in
self-channeling of a high-power ultra short laser in matter [3, 6, 24], in condensed matter the-
ory [22] etc. It is worth pointing out that the related semilinear Schrödinger equation arises
in many mathematical physics problems and has been extensively studied. We only mention
[9, 11, 19, 23] and the references therein. Also, there are more and more papers being con-
cerned with semilinear Schrödinger system involving two condensate amplitudes w1, w2. For
example, Chen and Zhou [7] proved the uniqueness of positive solutions under some condi-
tions for a coupled Schrödinger system. Tang [27] was concerned with multi-peak solutions
to coupled Schrödinger systems with Neumann boundary conditions in a bounded domain
of RN for N = 2, 3 and proved that all peaks locate either near the local maxima or near the
local minima of the mean curvature at the boundary of the domain. Yang, Wei and Ding [30]
studied a Schrödinger system with nonlocal nonlineatities of Hartree type. Ye and Peng [32]
considered a coupled Schrödinger system with doubly critical exponents on RN , which can
be seen as a counterpart of the Brezis–Nirenberg problem.

Recently quasilinear systems also have been the focus for some researchers (e.g. [16,17,25]).
But compared with semilinear systems, only a few papers are known for them. Guo and Tang
[17] proved the existence of a ground state solution by using Nehari manifold and concentra-
tion compactness principle in a Orlicz space. Severo and Silva [25] established the existence
of standing wave solutions for quasilinear Schrödinger systems involving subcritical nonlin-
earities in Orlicz spaces. By referring to some arguments and methods in [11, 25, 30, 31], we
consider the quasilinear Schrödinger systems (1.1) with critical nonlinearities and discuss the
existence of a positive solution and multiple solutions as ε is small. Of particular interest to our
paper is the results in [31], where the authors investigated the quasilinear Schrödinger equa-
tion (1.2) with critical exponent h(x, u) = K(x)|u|22∗−2 + Hu(x, u) and proved it has at least
one positive solution and multiple solutions when ε is small,where Hu(x, u) is a superlinear
but subcritical function and satisfies some suitable conditions. The difficulty is caused by the
usual lack of compactness since these problems involve critical exponents and are dealt with
in the whole RN . We remark that most papers above use the Cerami condition. But in this
paper we prove that (PS)c condition also holds. We suppose that the following assumptions
are satisfied, where i = 1, 2:

(V1) Vi ∈ C(RN , R) and there is a constant b > 0 such that m{x ∈ RN : Vi(x) < b} < ∞,
where m denotes the Lebesgue measure;

(V2) 0 = Vi(0) ≤ Vi(x) ≤ max Vi < +∞;

(K) 0 < C ≤ Ki ∈ C(RN , R) ∩ L∞(RN).

The functions h1, h2 ∈ C(RN ×R×R, R+) and satisfy the following conditions.
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(H1) There is a constant 4 < µ < 22∗ satisfying µH(x, u, v) ≤ h1(x, u, v)u2 + h2(x, u, v)v2 for
all (x, u, v) ∈ RN ×R×R, where H(x, u, v) =

∫ u
0 h1(x, t, v)tdt =

∫ v
0 h2(x, u, t)tdt.

(H2) h1(x, u, v)u = o(|(u, v)|) and h2(x, u, v)v = o(|(u, v)|) uniformly in x ∈ RN as (u, v) →
(0, 0).

(H3) There exist constants C1, C2 > 0 and p ∈ [3, 22∗ − 1) such that |h1(x, u, v)u|+
|h2(x, u, v)v| ≤ C1 + C2|(u, v)|p−1 for all (x, u, v) ∈ RN ×R×R.

(H4) H(x, u, v) ≥ C[|(u, v)|2 + |(u, v)|]q, where q ∈ (2, 2∗) is a constant.

(H5) h1(x,−u, v) = h1(x, u, v) and h2(x, u,−v) = h2(x, u, v) for all (x, u, v) ∈ RN ×R×R.

Notations. We collect below a list of the main notation used throughout this paper.

• C will denote various positive constants whose value may change from line to line.

• If the functions f and g satisfy
∣∣ f (x)

g(x)

∣∣ ≤ C, x ∈ U0(x0), then we define f (x) = O(g(x))
as x → x0.

• |u| denote the Euclidean norm of u ∈ R2.

• The domain of integration is RN by default.

•
∫

f (x)dx will be represented by
∫

f (x).

• We use Ls(RN), 1 ≤ s ≤ ∞, to denote the usual Lebesgue spaces with the norms

|u|s :=
(∫
|u|s
) 1

s

, 1 ≤ s < ∞,

‖u‖∞ := inf{C > 0 : |u(x)| ≤ C almost everywhere in RN}.

• S denotes the best Sobolev constant for H1(RN).

Theorem 1.1. Assume that (V1)–(V2), (K) and (H1)–(H5) are satisfied. Then for any σ > 0, there
is τσ > 0 such that if ε ≤ τσ, system (1.1) has at least one positive solution uε = (uε, vε). Moreover,
for any m ∈ N and σ > 0, there is τσm > 0 such that if ε ≤ τσm, system (1.1) has at least m pairs of
solutions uε = (uε, vε)→ (0, 0) in E as ε→ 0, where E is stated later, satisfying

µ− 4
2µ

∫
[ε2(1 + 2u2

ε )|∇uε|2 + V1(x)u2
ε + ε2(1 + 2v2

ε )|∇vε|2 + V2(x)v2
ε ] ≤ σεN

and
1

2N

∫
[K1(x)|uε|22∗ + K2(x)|vε|22∗ ] +

µ− 4
4

∫
H(x, uε, vε) ≤ σεN .

The existence and multiplicity of solutions for system (1.1) depends on the small param-
eter ε. If the parameter ε is not small enough, such as ε ≡ 1, we cannot get the similar results
as Theorem 1.1 unless we add some suitable conditions, where i = 1, 2:

(V3) Vi ∈ C(RN , R) is 1-periodic in xj, 1 ≤ j ≤ N, and there is a constant a0 > 0 such that
Vi(x) ≥ a0 > 0, ∀x ∈ RN .

(K′) Ki ∈ C(RN , R) is 1-periodic in xj, 1 ≤ j ≤ N, and there is a point x0 ∈ RN such that
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(i) Ki(x0) = supx∈RN Ki(x) > 0.

(ii) Ki(x) = Ki(x0) + O(|x− x0|2), as x → x0.

The functions h1, h2 ∈ C(RN ×R×R, R+) and satisfy (H1)–(H4) and

(H6) h1, h2 is 1-periodic in xj, 1 ≤ j ≤ N.

Theorem 1.2. Let ε = 1. Assume that (V3), (K′), (H1)–(H4) and (H6) are satisfied. Then system
(1.1) has at least one positive solution u = (u, v) if N and q satisfy one of the following two conditions:

(N1) 3 ≤ N < 6 and N+2
N−2 < q < 2∗;

(N2) N ≥ 6 and 2 < q < 2∗.

Remark 1.1. Guo and Li in [18] discussed a class of modified nonlinear Schrödinger systems{
ΣN

i,j=1Dj(aij(u)Diu)− 1
2 ΣN

i,j=1Dsaij(u)DiuDju− a(x)u + Fu(u, v) = 0,

ΣN
i,j=1Dj(aij(v)Div)− 1

2 ΣN
i,j=1Dsaij(v)DivDjv− a(x)v + Fv(u, v) = 0,

(1.4)

where F(u, v) = |u|α|v|β + |u|p|v|q, α, β, p, q > 1, α + β = 22∗ and 4 < p + q < 22∗, and they
proved the existence of a ground state positive solution by using a perturbation method. For the special
case of aij(s) = (1 + 2s2)δij, system (1.4) can be rewritten as

−∆uj + Vj(x)uj − ∆(u2
j )uj = Σ2

i 6=jβij(|ui|αi |uj|β j + |ui|pi |uj|qj), j = 1, 2. (1.5)

Comparing with (1.5), the coupling term in the present paper is not critical growth, but is more general
than the coupling subcritical term of (1.5). The subcritical nonlinearities of (1.5) do not satisfy our
condition (H4). Hence, the proof in this paper is different from the one in [18].

The organization of this paper is as follows. In Section 2, we introduce the variational
framework and restate the problem in a equivalent form by replacing ε−2 with λ. Furthermore,
we reduce the quasilinear problem into a semilinear one by making change of variables and
show some preliminary results. In Section 3, we prove the behaviors of the bounded (PS)c

sequences and then show that the energy functional satisfies the (PS)c condition under some
suitable conditions. In Section 4, we verify the geometry of the mountain pass theorem and
estimate the minimax values. In Section 5, we complete the proof of Theorem 1.1. In the final
section, we prove Theorem 1.2.

2 An equivalent variational problem

To prove the existence of standing wave solutions of system (1.1) for small ε, we rewrite (1.1)
in a equivalent form. Let λ = ε−2. Then system (1.1) can be rewritten as{

−∆u + λV1(x)u− ∆(u2)u = λK1(x)|u|22∗−2u + λh1(x, u, v)u,

−∆v + λV2(x)v− ∆(v2)v = λK2(x)|v|22∗−2v + λh2(x, u, v)v,
(2.1)

for λ→ +∞.
We introduce the Hilbert spaces

Ei :=
{

u ∈ H1(RN) :
∫

Vi(x)u2 < ∞
}
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with inner products

(u, v)i :=
∫
∇u∇v + Vi(x)uv

and the associated norms
‖u‖2

i = (u, u)i, i = 1, 2.

We shall work in the product space E = E1 × E2 with elements u = (u, v). Thus, the norm
in E can be defined as ‖u‖2 = ‖u‖2

1 + ‖v‖2
2. It follows from (V1) and (V2) that Ei embeds

continuously in H1(RN) (e.g. see [12]) and consequently E embeds continuously in H1(RN)×
H1(RN). Notice that the norm ‖ · ‖i is equivalent to ‖ · ‖i,λ induced by the inner product

(u, v)i,λ :=
∫
∇u∇v + λVi(x)uv

for each λ > 0. Hence ‖ · ‖ is equivalent to the norm ‖ · ‖λ induced by

(u, v)λ :=
∫
∇u1∇v1 + λV1(x)u1v1 +

∫
∇u2∇v2 + λV2(x)u2v2.

It is thus clear that, for each s ∈ [2, 2∗], there is a νs > 0 being independent of λ such that if
λ ≥ 1

|u|s ≤ νs‖u‖ ≤ νs‖u‖λ, ∀u ∈ E,

where | · |s denotes the standard norm in Ls(RN)× Ls(RN).
Associated to system (2.1), the energy functional is

J(u1) :=
1
2

∫
(1 + 2u2

1)|∇u1|2 + λV1(x)u2
1 + (1 + 2v2

1)|∇v1|2 + λV2(x)v2
1

− λ

22∗

∫
K1(x)|u1|22∗ + K2(x)|v1|22∗ − λ

∫
H(x, u1, v1),

which is not well defined in H1(RN)× H1(RN). To save from this trouble, we make use of a
change of variables u := f−1(u1), v := f−1(v1) (see [8, 10, 13, 21]), where f is defined by

f ′(t) =
1√

1 + 2 f 2(t)
on [0,+∞) and f (t) = − f (−t) on (−∞, 0].

We list some properties of f . Their proofs may be found in the above references.

Lemma 2.1. The function f satisfies the following properties:

(i) f is uniquely defined, C∞ and invertible;

(ii) | f ′(t)| ≤ 1 for all t ∈ R;

(iii) | f (t)| ≤ |t| for all t ∈ R;

(iv) f (t)/t→ 1 as t→ 0;

(v) f (t)/
√

t→ 21/4 as t→ +∞;

(vi) f (t)/2 ≤ t f ′(t) ≤ f (t) for t ≥ 0;

(vii) | f (t)| ≤ 21/4|t|1/2 for all t ∈ R;
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(viii) there exists a positive constant C such that | f (t)| ≥ C|t| for |t| ≤ 1 and | f (t)| ≥ C|t|1/2 for
|t| ≥ 1;

(ix) | f (t) f ′(t)| < 1/
√

2 for all t ∈ R;

(x) there exists a positive constant A such that

f 22∗(t) = 2
N

N−2 t2∗ − At2∗−1 ln t + O(t2∗−1), as t→ +∞.

After the change of variables, we obtain the following functional

Φλ(u) :=
1
2

∫
|∇u|2 + λV1(x) f 2(u) + |∇v|2 + λV2(x) f 2(v)

− λ

22∗

∫
K1(x)| f (u)|22∗ + K2(x)| f (v)|22∗ − λ

∫
H(x, f (u), f (v)).

Then Φλ is well-defined on E and belongs to C1 under hypotheses (V1), (V2), (K) and (H3).
Furthermore, we can check that

〈Φ′λ(u), w〉 = 〈Φ′λ(u, v), (ϕ, ψ)〉

=
∫
∇u∇ϕ + λV1(x) f (u) f ′(u)ϕ +∇v∇ψ + λV2(x) f (v) f ′(v)ψ

− λ
∫

K1(x)| f (u)|22∗−2 f (u) f ′(u)ϕ + K2(x)| f (v)|22∗−2 f (v) f ′(v)ψ

− λ
∫

h1(x, f (u), f (v)) f (u) f ′(u)ϕ + h2(x, f (u), f (v)) f (v) f ′(v)ψ,

for all u, w ∈ E. We observe that if u = (u, v) ∈ E is a critical point of the functional Φλ, then
it is a weak solution of the following system associated with the functional Φλ{
−∆u + λV1(x) f (u) f ′(u) = λK1(x)| f (u)|22∗−2 f (u) f ′(u) + λh1(x, f (u), f (v)) f (u) f ′(u),

−∆v + λV2(x) f (v) f ′(v) = λK2(x)| f (v)|22∗−2 f (v) f ′(v) + λh2(x, f (u), f (v)) f (v) f ′(v).
(2.2)

Hence ( f (u), f (v)) is a weak solution of system (2.1) (cf. [8]). Theorem 1.1 can be restated as

Theorem 2.1. Assume that (V1)–(V2), (K) and (H1)–(H5) are satisfied. Then for any σ > 0, there is
Λσ > 0 such that if λ ≥ Λσ, system (2.2) has at least one positive solution uλ = (uλ, vλ). Moreover,
for any m ∈ N and σ > 0, there is Λσm > 0 such that if λ ≥ Λσm, system (2.2) has at least m pairs
of solutions uλ = (uλ, vλ), converging to (0, 0) in E as λ→ ∞ and satisfying

1
2N

∫
K1(x)| f (uλ)|22∗ + K2(x)| f (vλ)|22∗ +

µ− 4
4

∫
H(x, f (uλ), f (vλ)) ≤ σλ−

N
2

and
µ− 4

2µ

∫
|∇uλ|2 + λV1(x) f 2(uλ) + |∇vλ|2 + λV2(x) f 2(vλ) ≤ σλ1− N

2 .

Remark 2.1. In order to get the positive solution, we introduce

Φ+
λ (u) :=

1
2

∫
|∇u|2 + λV1(x) f 2(u) + |∇v|2 + λV2(x) f 2(v)

− λ

22∗

∫
K1(x)| f (u+)|22∗ + K2(x)| f (v+)|22∗ − λ

∫
H(x, f (u+), f (v+)),

where u+ := max{u, 0}, v+ := max{v, 0}. Then Φ+
λ ∈ C1 and the critical points of Φ+

λ are the
positive solutions of system (2.2).
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3 Behavior of (PS)c sequences

At this point, we recall that a sequence (un) ⊂ E is a (PS)c sequence at level c ((PS)c sequence
for short), if Φλ(un) → c and Φ′λ(un) → 0. Φλ is said to satisfy the (PS)c condition if any
(PS)c sequence contains a convergent subsequence. However, due to the unboundedness of
the domain and the critical term, we can not prove the (PS)c condition holds in general. By
establishing several lemmas, we will discuss the behaviors of (PS)c sequences.

Lemma 3.1. Suppose that (V2), (K) and (H1) hold. Let (un) ⊂ E be a (PS)c sequence for Φλ. Then
c ≥ 0 and (un) is bounded in E.

Proof. Set (un) to be a (PS)c sequence:

Φλ(un)→ c, Φ′λ(un)→ 0, n→ ∞.

By Lemma 2.1 (vi) and (H1), one sees that

c + o(1) + o(1)‖un‖λ ≥ Φλ(un)−
2
µ
〈Φ′λ(un), un〉

≥
(

1
2
− 2

µ

) ∫
|∇un|2 + λV1(x) f 2(un) + |∇vn|2 + λV2(x) f 2(vn)

−
(

1
22∗
− 1

µ

)
λ
∫

K1(x)| f (un)|22∗ + K2(x)| f (vn)|22∗ . (3.1)

Hence{∫
|∇un|2 + λV1(x) f 2(un) + |∇vn|2 + λV2(x) f 2(vn) ≤ c + o(1) + o(1)‖un‖λ,∫
K1(x)| f (un)|22∗ + K2(x)| f (vn)|22∗ ≤ c + o(1) + o(1)‖un‖λ.

(3.2)

From (3.2), we only need to prove that λ
∫

V1(x)|un|2 + V2(x)|vn|2 ≤ c + o(1) + o(1)‖un‖λ.
We write that

λ
∫

V1(x)|un|2 = λ
∫
|un|≥1

V1(x)|un|2dx + λ
∫
|un|≤1

V1(x)|un|2dx.

Combining (V2), (K), (3.2) and Lemma 2.1 (viii), we have

λ
∫
|un|≥1

V1(x)|un|2dx ≤ Cλ max V1

∫
|un|≥1

| f (un)|22∗dx

≤ C
∫
|un|≥1

K1(x)| f (un)|22∗dx

≤ c + o(1) + o(1)‖un‖λ

and

λ
∫
|un|≤1

V1(x)|un|2dx ≤ λ

C2

∫
|un|≤1

V1(x) f 2(un)dx

≤ c + o(1) + o(1)‖un‖λ.

Thus λ
∫

V1(x)|un|2 ≤ c + o(1) + o(1)‖un‖λ. Similarly, we can get λ
∫

V2(x)|vn|2 ≤ c + o(1) +
o(1)‖un‖λ. Then ‖un‖2

λ ≤ c + o(1) + o(1)‖un‖λ. Thus (un) is bounded in E. Taking the limit
in (3.1) we shows that c ≥ 0.
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By the above lemma, we know that every (PS)c sequence (un) is bounded. We may
assume up to a subsequence that un ⇀ u in E and in Ls × Ls, 2 ≤ s ≤ 2∗, un → u in
Ls

loc × Ls
loc, 1 ≤ s < 2∗ and un(x)→ u(x) a.e. in RN . Clearly u is a critical point of Φλ.

Lemma 3.2. Let (un) be stated as in Lemma 3.1 and s ∈ [2, 2∗). There is a subsequence (unj) such
that for each ε > 0, there exists Rε > 0 with

lim sup
j→∞

∫
Bj\BR

|unj |sdx ≤ ε

and

lim sup
j→∞

∫
Bj\BR

|vnj |sdx ≤ ε

for all R ≥ Rε.

Proof. The proof is similar as that in [11]. We omit it here.

For notational convenience, we can assume in the following that Lemma 3.2 holds for both
s = 2 and s = p+1

2 with the same subsequence. Let η : [0, ∞) → [0, 1] be a smooth function
satisfying η(t) = 1 if t ≤ 1, η(t) = 0 if t ≥ 2. Define ũj(x) = η

( 2|x|
j

)
u(x). It is known that

‖u− ũj‖λ → 0, as j→ ∞. (3.3)

Lemma 3.3. Let (unj) be stated as in Lemma 3.2. Then

lim
j→∞

∫
| f (unj)|p − | f (unj − ũj)|p − | f (ũj)|p = 0

and
lim
j→∞

∫
| f (vnj)|p − | f (vnj − ṽj)|p − | f (ṽj)|p = 0,

where p ∈ [2, 22∗].

Proof. We only show that the first equality holds. As in [29], for any fixed ε > 0, there exists
Cε > 0 such that, for all a, b ∈ R

||a + b|q − |a|q| ≤ ε|a|q + Cε|b|q, 1 ≤ q < +∞.

We deduce that, by Lemma 2.1 (ix), for any fixed ε > 0, there exists Cε > 0 such that

| f (unj)|p − | f (unj − ũj)|p = | f 2(unj)|
p
2 − | f 2(unj − ũj)|

p
2

≤ ε| f 2(unj − ũj)|
p
2 + Cε| f 2(unj)− f 2(unj − ũj)|

p
2

≤ ε| f (unj − ũj)|p + Cε|2 f (unj − θũj) f ′(unj − θũj)ũj|
p
2

≤ ε| f (unj − ũj)|p + Cε|ũj|
p
2 ,

where and below θ ∈ (0, 1). Then by Lemma 2.1 (vii)

Γε
nj

:= (| f (unj)|p − | f (unj − ũj)|p − | f (ũj)|p − ε| f (unj − ũj)|p)+

≤ | f (ũj)|p + Cε|ũj|
p
2

≤ Cε|u|
p
2 .
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The Lebesgue Dominated Convergence Theorem implies that
∫

Γε
nj
→ 0 as j→ ∞. Hence∫

| f (unj)|p − | f (unj − ũj)|p − | f (ũj)|p ≤
∫

Γε
nj
+ ε| f (unj − ũj)|p ≤ Cε.

Lemma 3.4. Let (unj) be stated as in Lemma 3.2. Denote by

hnj(x) := h1(x, f (unj), f (vnj)) f (unj) f ′(unj)− h1(x, f (ũnj), f (ṽnj)) f (ũnj) f ′(ũnj)

− h1(x, f (unj − ũj), f (vnj − ṽj)) f (unj − ũj) f ′(unj − ũj)

and

gnj(x) := h2(x, f (unj), f (vnj)) f (vnj) f ′(vnj)− h2(x, f (ũnj), f (ṽnj)) f (ṽnj) f ′(ṽnj)

− h2(x, f (unj − ũj), f (vnj − ṽj)) f (vnj − ṽj) f ′(vnj − ṽj).

We have

lim
j→∞

∫
hnj(x)ϕ = 0

and

lim
j→∞

∫
gnj(x)ψ = 0

uniformly for ‖w‖λ = ‖(ϕ, ψ)‖λ ≤ 1.

Proof. Note that (3.3) and the local compactness of the Sobolev embedding theorem imply
that, for any R > 0

lim
j→∞

∣∣∣∣∫BR

hnj(x)ϕdx
∣∣∣∣ = 0 (3.4)

uniformly for ‖ϕ‖1,λ ≤ 1. For any ε > 0, from (3.3) and the integrability of |u|s on RN , we can
choose R > 0 such that

lim sup
j→∞

∫
Bj\BR

|ũj|sdx ≤
∫

Bc
R

|u|sdx ≤ ε.

Combining (H2), (H3) and Lemma 2.1 (ii), (iii), (vii), we get that

|h1(x, f (u), f (v)) f (u) f ′(u)ϕ| ≤ C[|( f (u), f (v))|+ |( f (u), f (v))|p−1]|ϕ|

≤ C(|u||ϕ|+ |v||ϕ|+ |u|
p−1

2 |ϕ|+ |v|
p−1

2 |ϕ|). (3.5)

Therefore, it follows from (3.4), (3.5), the Hölder inequality and Lemma 3.2 that

lim sup
j→∞

∣∣∣∣∫ hnj(x)ϕ

∣∣∣∣
≤ lim sup

j→∞

∫
Bj\BR

|hnj(x)ϕ|dx

≤ C lim sup
j→∞

∫
Bj\BR

(|unj |+ |unj − ũj|+ |ũj|)|ϕ|

+ (|vnj |+ |vnj − ṽj|+ |ṽj|)|ϕ|+
(
|unj |

p−1
2 + |unj − ũj|

p−1
2 + |ũj|

p−1
2

)
|ϕ|

+
(
|vnj |

p−1
2 + |vnj − ṽj|

p−1
2 + |ṽj|

p−1
2

)
|ϕ|
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≤ C lim sup
j→∞

[ (∫
Bj\BR

|unj |2dx
) 1

2

+

(∫
Bj\BR

|ũj|2dx
) 1

2

+

(∫
Bj\BR

|vnj |2dx
) 1

2

+

(∫
Bj\BR

|ṽj|2dx
) 1

2
] (∫

|ϕ|2
) 1

2

+ C lim sup
j→∞

[ (∫
Bj\BR

|unj |
p+1

2 dx
) p−1

p+1

+

(∫
Bj\BR

|ũj|
p+1

2 dx
) p−1

p+1

+

(∫
Bj\BR

|vnj |
p+1

2 dx
) p−1

p+1

+

(∫
Bj\BR

|ṽj|
p+1

2 dx
) p−1

p+1
] (∫

|ϕ|
p+1

2 dx
) 2

p+1

≤ Cε
1
2 + Cε

p−1
p+1

uniformly for ‖ϕ‖1,λ ≤ 1. Similarly, we can get that the other equality holds.

Lemma 3.5. Let (unj) be stated as in Lemma 3.2. One has along a subsequence:

(i) Φλ(unj − ũj)→ c−Φλ(u).

(ii) Φ′λ(unj − ũj)→ 0.

Proof. (i) Obviously, we can see

Φλ(unj − ũj) = Φλ(unj)−Φλ(ũj)−
λ

2

∫
V1(x)[| f (unj)|2 − | f (unj − ũj)|2 − | f (ũj)|2]

− λ

2

∫
V2(x)[| f (vnj)|2 − | f (vnj − ṽj)|2 − | f (ṽj)|2]

+
λ

22∗

∫
K1(x)[| f (unj)|22∗ − | f (unj − ũj)|22∗ − | f (ũj)|22∗ ]

+
λ

22∗

∫
K2(x)[| f (vnj)|22∗ − | f (vnj − ṽj)|22∗ − | f (ṽj)|22∗ ]

+ λ
∫

H(x, f (unj), f (vnj))− H(x, f (unj − ũj), f (vnj − ṽj))− H(x, f (ũj), f (ṽj)).

We claim that

lim
j→∞

∫
V1(x)[| f (unj)|2 − | f (unj − ũj)|2 − | f (ũj)|2] = 0, (3.6)

lim
j→∞

∫
V2(x)[| f (vnj)|2 − | f (vnj − ṽj)|2 − | f (ṽj)|2] = 0, (3.7)

lim
j→∞

∫
K1(x)[| f (unj)|22∗ − | f (unj − ũj)|22∗ − | f (ũj)|22∗ ] = 0, (3.8)

lim
j→∞

∫
K2(x)[| f (vnj)|22∗ − | f (vnj − ṽj)|22∗ − | f (ṽj)|22∗ ] = 0, (3.9)

lim
j→∞

∫
H(x, f (unj), f (vnj))− H(x, f (unj − ũj), f (vnj − ṽj))− H(x, f (ũj), f (ṽj)) = 0. (3.10)

By conditions (V2), (K) and Lemma 3.3, we conclude that (3.6)–(3.9) hold. Similar to the
proof of Lemma 3.4, it is easy to see that (3.10) holds. Using the fact Φλ(unj) → c and
Φλ(ũj)→ Φλ(u), we get conclusion 1.
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(ii) We first notice that, for any given w = (ϕ, ψ) ∈ E satisying ‖w‖λ ≤ 1,

(Φ′λ(unj − ũj), w) = (Φ′λ(unj), w)− (Φ′λ(ũj), w)

− λ
∫

V1(x)[ f (unj) f ′(unj)− f (unj − ũj) f ′(unj − ũj)− f (ũj) f ′(ũj)]ϕ

− λ
∫

V2(x)[ f (vnj) f ′(vnj)− f (vnj − ṽj) f ′(vnj − ṽj)− f (ṽj) f ′(ṽj)]ψ

+ λ
∫

K1(x)
[
| f (unj)|22∗−2 f (unj) f ′(unj)

− | f (unj − ũj)|22∗−2 f (unj − ũj) f ′(unj − ũj)− | f (ũj)|22∗−2 f (ũj) f ′(ũj)
]

ϕ

+ λ
∫

K2(x)
[
| f (vnj)|22∗−2 f (vnj) f ′(vnj)

− | f (vnj − ṽj)|22∗−2 f (vnj − ṽj) f ′(vnj − ṽj)− | f (ṽj)|22∗−2 f (ṽj) f ′(ṽj)
]
ψ

+ λ
∫

hnj ϕ + λ
∫

gnj ψ,

where hnj(x) and gnj(x) are stated in Lemma 3.4. Noticing the boundedness of (unj) in E, the
equality

d| f (t)|22∗−2 f (t) f ′(t)
dt

= C| f (t)|22∗−2| f ′(t)|2 + | f (t)|22∗−2 f (t) f ′′(t)

= C| f (t)|22∗−2| f ′(t)|2 − 2| f (t)|22∗ | f ′(t)|4,

the mean value theorem, Lemma 2.1 (vii), (ix) and the Hölder inequality, we have for R > 0

∫
Bc

R

∣∣∣| f (unj)|22∗−2 f (unj) f ′(unj)− | f (unj − ũj)|22∗−2 f (unj − ũj) f ′(unj − ũj)
∣∣∣|ϕ|dx

≤ C
∫

Bc
R

[
| f (unj − θũj)|22∗−2| f ′(unj − θũj)|2 + | f (unj − θũj)|22∗ | f ′(unj − θũj)|4

]
|ũj||ϕ|dx

≤ C
∫

Bc
R

|unj − θũj|2
∗−2|ũj||ϕ|dx

≤ C
(∫
|unj − θũj|2

∗
) 2∗−2

2∗
(∫

Bc
R

|ũj|2
∗
dx
) 1

2∗
(∫
|ϕ|2∗

) 1
2∗

≤ C
(∫

Bc
R

|u|2∗dx
) 1

2∗

‖ϕ‖1,λ.

We have also that∫
Bc

R

∣∣∣| f (ũj)|22∗−2 f (ũj) f ′(ũj)
∣∣∣|ϕ|dx ≤ C

∫
Bc

R

|ũj|2
∗−1|ϕ|dx

≤ C
(∫

Bc
R

|ũj|2
∗
dx
) 2∗−1

2∗
(∫
|ϕ|2∗

) 1
2∗

≤ C
(∫

Bc
R

|u|2∗dx
) 2∗−1

2∗

‖ϕ‖1,λ.
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Thus, for every ε > 0, there exists R = Rε > 0 such that for any ‖ϕ‖1,λ ≤ 1∣∣∣∣ ∫Bc
R

[
| f (unj − ũj)|22∗−2 f (unj) f ′(unj)

− | f (unj − ũj)|22∗−2 f (unj − ũj) f ′(unj − ũj)− | f (ũj)|22∗−2 f (ũj) f ′(ũj)
]
|ϕ|dx

∣∣∣∣ ≤ ε.

On the other hand, applying the Rellich compact embedding theorem, we have

lim
n→∞

∫
BR

[
| f (unj − ũj)|22∗−2 f (unj) f ′(unj)

− | f (unj − ũj)|22∗−2 f (unj − ũj) f ′(unj − ũj)− | f (ũj)|22∗−2 f (ũj) f ′(ũj)
]
|ϕ|dx = 0

uniformly for ‖ϕ‖1,λ ≤ 1. Hence, by (K), we get that

lim
n→∞

∫
K1(x)

[
| f (unj)|22∗−2 f (unj) f ′(unj)

− | f (unj − ũj)|22∗−2 f (unj − ũj) f ′(unj − ũj)− | f (ũj)|22∗−2 f (ũj) f ′(ũj)
]

ϕ = 0

uniformly for ‖ϕ‖1,λ ≤ 1. Similarly, we know

lim
j→∞

∫
V1(x)

[
f (unj) f ′(unj)− f (unj − ũj) f ′(unj − ũj)− f (ũj) f ′(ũj)

]
ϕ = 0,

lim
j→∞

∫
V2(x)

[
f (vnj) f ′(vnj)− f (vnj − ṽj) f ′(vnj − ṽj)− f (ṽj) f ′(ṽj)

]
ψ = 0,

lim
j→∞

∫
K2(x)

[
| f (vnj)|22∗−2 f (vnj) f ′(vnj)

− | f (vnj − ṽj)|22∗−2 f (vnj − ṽj) f ′(vnj − ṽj)− | f (ṽj)|22∗−2 f (ṽj) f ′(ṽj)
]
ψ = 0

uniformly for ‖w‖λ ≤ 1. Since Φ′λ(unj) → 0 and Φ′λ(ũj) = 0, we get the conclusion 2 by
Lemma 3.4.

Lemma 3.6. If the conditions (V1), (K) and (H1)–(H3) hold. There is a constant α0 > 0 being
independent of λ such that, for any (PS)c sequence (un) for Φλ with un ⇀ u, either un → u along a
subsequence or c−Φλ(u) ≥ α0λ1− N

2 .

Proof. Set u1
j = unj − ũj = (u1

j , v1
j ). Then unj − u = u1

j + (ũj − u) and by (3.3), unj → u if and
only if u1

j → 0. If (un) has no convergent subsequence, we have lim infn→∞ ‖un − u‖λ > 0.
From Lemma 3.5, Φλ(u1

j ) → c−Φλ(u) and Φ′λ(u
1
j ) → 0 along a subsequence. Let Vi,b(x) =

max{Vi(x), b}, i ∈ {1, 2}. Since (V1) and the fact u1
j → 0 in L2

loc × L2
loc, we have that∫

V1(x)| f (u1
j )|2 +

∫
V2(x)| f (v1

j )|2 =
∫

V1,b(x)| f (u1
j )|2 +

∫
V2,b(x)| f (v1

j )|2 + o(1). (3.11)

It follows from (H2) and (H3) that

|h1(x, f (u1
j ), f (v1

j )) f 2(u1
j )|+ |h2(x, f (u1

j ), f (v1
j )) f 2(v1

j )|

≤ ε|( f (u1
j ), f (v1

j ))|2 + Cε|( f (u1
j ), f (v1

j ))|22∗

≤ ε(|( f (u1
j )|2 + | f (v1

j ))|2) + Cε(|( f (u1
j )|22∗ + | f (v1

j ))|22∗).
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Obviously, there exists a constant γ b
2
> 0 such that

K1(x)| f (u1
j )|22∗ + K2(x)| f (v1

j )|22∗ + |h1(x, f (u1
j ), f (v1

j )) f 2(u1
j )|+ |h2(x, f (u1

j ), f (v1
j )) f 2(v1

j )|

≤ b
2
(| f (u1

j )|2 + | f (v1
j )|2) + γ b

2
(| f (u1

j )|22∗ + | f (v1
j )|22∗). (3.12)

Then from Lemma 2.1 (vi), (vii), (3.11) and (3.12), we obtain that

S
2

2−
2

2∗
[
| f (u1

j )|22∗
22∗ + | f (v1

j )|22∗
22∗
] 2

2∗

≤ S
2
(| f (u1

j )|422∗ + | f (v1
j )|422∗)

≤ S(|u1
j |22∗ + |v1

j |22∗)

≤ 2
∫
|∇u1

j |2 + λV1(x) f (u1
j ) f ′(u1

j )u
1
j + |∇v1

j |2 + λV2(x) f (v1
j ) f ′(v1

j )v
1
j

− λ
∫
(V1(x) f 2(u1

j ) + V2(x) f 2(v1
j ))

= 2λ
∫ [

K1(x)| f (u1
j )|22∗−2 f (u1

j ) f ′(u1
j )u

1
j + K2(x)| f (v1

j )|22∗−2 f (v1
j ) f ′(v1

j )v
1
j

+ h1(x, f (u1
j ), f (v1

j )) f (u1
j ) f ′(u1

j )u
1
j + h2(x, f (u1

j ), f (v1
j )) f (v1

j ) f ′(v1
j )v

1
j

]
− λ

∫
(V1,b(x) f 2(u1

j ) + V2,b(x) f 2(v1
j )) + o(1)

≤ 2λ
∫ [

K1(x)| f (u1
j )|22∗ + K2(x)| f (v1

j )|22∗ + h1(x, f (u1
j ), f (v1

j )) f 2(u1
j )

+ h2(x, f (u1
j ), f (v1

j )) f 2(v1
j )
]
− λb

∫
( f 2(u1

j ) + f 2(v1
j )) + o(1)

≤ 2λγ b
2
(| f (u1

j )|22∗
22∗ + | f (v1

j )|22∗
22∗) + o(1).

Additionally, (K) and (H1) imply that

Φλ(u1
j )−

1
2

Φ′λ(u
1
j )u

1
j ≥

(
1
4
− 1

22∗

)
λ
∫ [

K1(x)| f (u1
j )|22∗ + K2(x)| f (v1

j )|22∗]
+ λ

∫ 1
4
[
h1(x, f (u1

j ), f (v1
j )) f 2(u1

j ) + h2(x, f (u1
j ), f (v1

j )) f 2(v1
j )
]

− H(x, f (u1
j ), f (v1

j ))

≥ λC
[
| f (u1

j )|22∗
22∗ + | f (v1

j )|22∗
22∗
]
.

So, we obtain that

| f (u1
j )|22∗

22∗ + | f (v1
j )|22∗

22∗ ≤
c−Φλ(u)

λC
+ o(1).

Hence, we get

S
2

2−
2

2∗ ≤ 2λγ b
2

[
| f (u1

j )|22∗
22∗ + | f (v1

j )|22∗
22∗
] 2∗−2

2∗ + o(1)

≤ Cλ
2

2∗ γ b
2
(c−Φλ(u))

2∗−2
2∗ + o(1),

that is, there is α0 > 0 being independent of the parameter λ such that α0λ1− N
2 ≤ c−Φλ(u).
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From Lemma 3.6, we have the following conclusions.

Corollary 3.1. There exists α0 > 0 being independent of λ such that Φλ satisfies the (PS)c condition
for all c < α0λ1− N

2 .

Corollary 3.2. There exists α0 > 0 being independent of λ such that Φ+
λ satisfies the (PS)c condition

for all c < α0λ1− N
2 .

4 The mountain pass geometry

The following lemmas imply that Φλ possesses the mountain pass geometry.

Lemma 4.1. There exist ρ, α > 0 such that
∫
|∇u|2 + λV1(x) f 2(u) + |∇v|2 + λV2(x) f 2(v) ≥

α‖u‖2
λ, whenever ‖u‖λ = ρ.

Proof. As in [15], suppose that there is un → 0 in E such that∫
|∇w1

n|2 + λV1(x)
f 2(un)

u2
n

(w1
n)

2 +
∫
|∇w2

n|2 + λV2(x)
f 2(vn)

v2
n

(w2
n)

2 → 0, (4.1)

where wn := (w1
n, w2

n) = ( un
‖un‖λ

, vn
‖un‖λ

). (4.1) is equivalent to the both limits

∫
|∇w1

n|2 + λV1(x)
f 2(un)

u2
n

(w1
n)

2 → 0 (4.2)

and ∫
|∇w2

n|2 + λV2(x)
f 2(vn)

v2
n

(w2
n)

2 → 0. (4.3)

We get that (un, vn) → (0, 0) in L2(RN)× L2(RN), (un, vn) → (0, 0) a.e., (w1
n, w2

n) ⇀ (w1, w2)

in E1 × E2, (w1
n, w2

n) → (w1, w2) in L2
loc × L2

loc, (w1
n, w2

n) → (w1, w2) a.e. up to a subsequence.
We consider two cases:

If w1 6= 0, Fatou’s lemma and Lemma 2.1 (iv) imply that

lim inf
n→∞

∫
|∇w1

n|2 + λV1(x)
f 2(un)

u2
n

(w1
n)

2 ≥
∫
|∇w1|2 + λV1(x)(w1)2 > 0,

which contradicts to (4.2).
The other case is w1 = 0. (4.2) ensures that∫

|∇w1
n|2 + λV1(x)(w1

n)
2 + λV1(x)

(
f 2(un)

u2
n
− 1
)
(w1

n)
2 → 0.

Since un → 0 in L2(RN), for every ε > 0, m{x ∈ RN : |un(x)| > ε} → 0 as n → ∞. By (V2),
Lemma 2.1 (iii) and the Hölder inequality, we have∣∣∣∣∫|un|>ε

λV1(x)
(

f 2(un)

u2
n
− 1
)
(w1

n)
2dx
∣∣∣∣ ≤ C

∫
|un|>ε

(w1
n)

2

≤ (m{x ∈ RN : |un(x)| > ε}) 2∗−2
2∗ |w1

n|22∗ → 0.

It follows that
∫
|un|<ε λV1(x)

( f 2(un)
u2

n
− 1
)
(w1

n)
2dx is small as ε is small. So w1

n → 0 in E1.

Similarly, we can get w2
n → 0 in E2, which contradicts to ‖wn‖λ = 1.
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Lemma 4.2. For the above ρ, there exists a constant β > 0 such that inf‖u‖λ=ρ Φλ(u) ≥ β.

Proof. Due to (K), Lemma 2.1 (7) and the Sobolev embedding inequality, it is easy to obtain
that ∫

K1(x)| f (u)|22∗ + K2(x)| f (v)|22∗ ≤ C
∫
(|u|2∗ + |v|2∗)

≤ CS−
2∗
2

(∫ |∇u|2
) 2∗

2

+

(∫
|∇v|2

) 2∗
2


≤ C‖u‖2∗

λ .

Based on Lemma 2.1 (iii), (vii), (H2) and (H3), it is obvious that for all ε > 0, there exists
Cε > 0 such that∫

H(x, f (u), f (v)) ≤ ε
∫
|( f (u), f (v))|2 + Cε

∫
|( f (u), f (v))|22∗

≤ ε
∫
(| f (u)|2 + | f (v)|2) + Cε

∫
(| f (u)|22∗ + | f (v)|22∗)

≤ ε
∫
(|u|2 + |v|2) + Cε

∫
(|u|2∗ + |v|2∗)

≤ εν2
2‖u‖2

λ + Cε‖u‖2∗
λ .

Therefore, combining the above inequalities and Lemma 4.1, we obtain that

Φλ(u) ≥
α

2
‖u‖2

λ − λC‖u‖2∗
λ − ελν2

2‖u‖2
λ − Cελ‖u‖2∗

λ

=
(α

2
− λν2

2ε
)

ρ2 − Cλρ2∗ − Cελρ2∗

for every ‖u‖λ = ρ. Choosing for all ε ∈
(
0, α

2λν2
2

)
and ρ sufficiently small, we derive that there

exists a constant β > 0 with inf‖u‖λ=ρ Φ(u) ≥ β.

Lemma 4.3. For any σ > 0, there exists Λσ > 0 such that for each λ ≥ Λσ, there is eλ ∈ E with
‖eλ‖λ > ρ, Φλ(eλ) < 0 and

max
t∈[0,1]

Φλ(teλ) < σλ1− N
2 .

Proof. By a standard argument, (H1) implies that given C1 > 0 there exists C2 > 0 such that

H(x, u, v) ≥ C1|(u, v)|µ − C2

for all (x, u, v) ∈ B̄1×R×R, where B̄1 is the unit ball in RN . Choosing any ϕ ∈ C∞
0 (RN , [0, 1])

and writing u = (ϕ, ϕ) such that supp ϕ = B̄1 and 0 < ϕ(x) ≤ 1 for all x ∈ B̄1, we have

Φλ(tu) ≤
t2

2

∫
B1

2|∇ϕ|2 + [V1(x) + V2(x)]ϕ2dx− λC1

∫
B1

|( f (tϕ), f (tϕ))|µ + C2|B1|.

By Lemma 2.1 (6), we know that f (t)
t is decreasing for t > 0. Since 0 < tϕ(x) ≤ t for x ∈ B1

and t > 0, we obtain f (tϕ(x)) ≥ f (t)ϕ(x), which implies that

Φλ(tu) ≤
t2

2

[∫
B1

2|∇ϕ|2 + [V1(x) + V2(x)]ϕ2dx− λC1
f µ(t)

t2

∫
B1

|ϕ|µ + C2

t2 |B1|
]

.
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It follows from Lemma 2.1 (5) that Φλ(tu)→ −∞ as t→ +∞. Notice that

inf
{∫
|∇ϕ|2 : ϕ ∈ C∞

0 (RN), |ϕ|q = 1
}

= 0.

For any δ > 0, one can choose ϕδ ∈ C∞
0 (RN) such that |ϕδ|q = 1, supp ϕδ ⊂ Brδ

(0) and
|∇ϕδ|22 < δ

2 . Set

e′λ(x) := (eλ(x), eλ(x)) = (ϕδ(λ
1
2 x), ϕδ(λ

1
2 x)).

For t ≥ 0, Lemma 2.1 (iii), (viii) and (H4) imply that

Φλ(te′λ) ≤
t2

2

∫
|∇eλ|2 +

λ

2

∫
V1(x) f 2(teλ) +

t2

2

∫
|∇eλ|2 +

λ

2

∫
V2(x) f 2(teλ)

− λ
∫

H(x, f (teλ), f (teλ))

≤ t2
∫
|∇eλ|2 +

λt2

2

∫
V1(x)|eλ|2 + V2(x)|eλ|2 − Cλ

∫
[ f 2(teλ) + f (teλ)]

q

≤ λ1− N
2

{
t2
∫
|∇ϕδ|2 +

t2

2

∫
(V1(λ

− 1
2 x) + V2(λ

− 1
2 x))|ϕδ|2 − Ctq

∫
|ϕδ|q

}
.

Since Vi(0) = 0 and supp ϕδ ⊂ Brδ
(0), there is Λ′δ > 0 such that

Vi(λ
− 1

2 x) <
δ

2|ϕδ|22
, ∀|x| ≤ rδ, λ > Λ′δ, i = 1, 2.

Consequently, there holds

max
t≥0

Φλ(te′λ) ≤ Cδ
q

q−2 λ1− N
2 , ∀λ > Λ′δ.

Choose δ > 0 small enough such that Cδ
q

q−2 ≤ σ and take Λσ = Λ′δ. Then Φλ(eλ) < 0 and
maxt∈[0,1] Φλ(teλ) ≤ σλ1− N

2 , where eλ = t1e′λ and t1 is large enough.

5 Proof of Theorem 2.1

In this section we will prove Theorem 2.1.

Proof of Theorem 2.1. Lemmas 4.2–4.3 imply that for any α0 > σ > 0 there exists Λσ > 0 such
that for each λ ≥ Λσ, there is β > 0 and a (PS)c sequence (un) satisfying 0 < β < c ≤ σλ1− N

2 .
In virtue of Corollary 3.1, we get that (PS)c condition holds for Φλ at c. Thus there is uλ =

(uλ, vλ) ∈ E such that Φ′λ(uλ) = 0 and Φλ(uλ) = c. So ( f (uλ), f (vλ)) must solve system (2.1).
In order to get the multiplicity of critical points, we will use the index theory defined by

the Krasnoselski genus. Define the set of all symmetric (in the sense that −A = A) and closed
subsets of E as Σ. For all A ∈ Σ, denote gen(A) by the Krasnoselski genus and

i(A) := min
h∈Γ

gen(h(A) ∩ Sλ),

where Γ is the set of all odd homeomorphisms h ∈ C(E, E) and Sλ is the closed symmetric set

Sλ := {u ∈ E : ‖u‖λ = ρ}
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satisfying Φλ|Sλ
≥ β > 0. Then i is a version of Benci’s pseudoindex (see [2]). (H5) implies

that Φλ is even. Let
cλj := inf

i(A)≥j
sup
u∈A

Φλ(u), 1 ≤ j ≤ m.

Then if cλj is finite and the (PS) condition holds for Φλ at cλj , we know that cλj is a critical
value for Φλ. However, the (PS) condition does not hold in general. In order to show that
Φλ satisfies the (PS) condition for λ large enough and cλj sufficiently small, as in [31] we
will construct here small minimax levels for Φλ when λ large enough. Similar to the proof in
Lemma 4.3, for any m ∈N, δ > 0 and j = 1, 2, . . . , m, one can choose m functions ϕ

j
δ ∈ C∞

0 (RN)

with supp ϕi
δ ∩ supp ϕk

δ = ∅ if i 6= k, |ϕj
δ|q = 1 and |∇ϕ

j
δ|22 < δ

2 . Let rδm > 0 be such that
supp ϕ

j
δ ⊂ Brδm(0). Set

ej
λ(x) := (ej

λ(x), ej
λ(x)) = (ϕ

j
δ(λ

1
2 x), ϕ

j
δ(λ

1
2 x))

and define
Hm

λ = Span{e1
λ, e2

λ, . . . , em
λ }.

Then i(Hm
λ ) = dim Hm

λ = m. Observe that for each v = Σm
j=1tje

j
λ ∈ Hm

λ ,

Φλ(v) = Σm
j=1Φλ(tje

j
λ)

and for tj ≥ 0

Φλ(tje
j
λ) ≤

t2
j

2

∫
|∇ej

λ|
2 +

λ

2

∫
V1(x) f 2(tje

j
λ) +

t2
j

2

∫
|∇ej

λ|
2 +

λ

2

∫
V2(x) f 2(tje

j
λ)

− λ
∫

H(x, f (tje
j
λ), f (tje

j
λ))

≤ λ1− N
2

{
t2

j

∫
|∇ϕ

j
δ|

2 + t2
j

∫
(V1(λ

− 1
2 x) + V2(λ

− 1
2 x))|ϕj

δ|
2 − Ctq

j

∫
|ϕj

δ|
q
}

.

Set
βδ := max

{
|ϕj

δ|
2
2 : j = 1, 2, . . . , m

}
.

Vi(0) = 0 and supp ϕ
j
δ ⊂ Brδm(0) imply that there is Λ′δm > 0 such that

Vi(λ
− 1

2 x) <
δ

2βδ
, ∀|x| ≤ rδm, λ > Λ′δm, i = 1, 2.

Consequently, there holds

sup
v∈Hm

λ

Φλ(v) ≤ mCδ
q

q−2 λ1− N
2 , ∀λ > Λ′δm.

Choose δ > 0 so small that mCδ
q

q−2 λ1− N
2 ≤ σ. Thus for any m ∈N and σ ∈ (0, α0), there exists

Λσm = Λ′δm such that for each λ > Λσm, we can choose a m-dimensional subspace Hm
λ with

max Φλ(Hm
λ ) ≤ σλ1− N

2 .
Now we can define the minimax values cλj by

cλj := inf
i(A)≥j

sup
u∈A

Φλ(u).
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Since Φλ|Sλ
≥ β > 0 and max Φλ(Hm

λ ) ≤ σλ1− N
2 , we know

β ≤ cλ1 ≤ · · · ≤ cλm ≤ sup
u∈Hm

λ

Φλ(u) ≤ σλ1− N
2 .

It follows from Corollary 3.1 that Φλ satisfies the (PS) condition at all levels cλj , since cλj <

α0λ1− N
2 . Then all cλj are critical values. Hence Φλ has at least m pairs of nontrival critical

points satisfying
β ≤ Φλ(uλ) ≤ σλ1− N

2 .

Therefore, Φλ has at least m pairs of solutions uλ = (uλ, vλ). And ( f (uλ), f (vλ)) solves
problem (2.1). Since uλ is a critical point of Φλ, there holds for ν ∈ [4, 22∗]

σλ1− N
2 ≥ Φλ(uλ)

= Φλ(uλ)−
2
ν
(Φ′λ(uλ), uλ)

≥
(

1
2
− 2

ν

) ∫
|∇uλ|2 + λV1(x) f 2(uλ) + |∇vλ|2 + λV2(x) f 2(vλ)

+

(
1
ν
− 1

22∗

)
λ
∫

K1(x)| f (uλ)|22∗ + K2(x)| f (vλ)|22∗

+ λ
(µ

ν
− 1
) ∫

H(x, f (uλ), f (vλ)).

Taking ν = 4 gives

1
2N

∫
K1(x)| f (uλ)|22∗ + K2(x)| f (vλ)|22∗ +

µ− 4
4

∫
H(x, f (uλ), f (vλ)) ≤ σλ−

N
2

and taking ν = µ gives

µ− 4
2µ

∫
|∇uλ|2 + λV1(x) f 2(uλ) + |∇vλ|2 + λV2(x) f 2(vλ) ≤ σλ1− N

2 .

From the above two inequalities and (H4) it follows that{∫
|∇uλ|2 + λV1(x) f 2(uλ) + |∇vλ|2 + λV2(x) f 2(vλ) ≤ Cσλ1− N

2 ,∫
K1(x)| f (uλ)|22∗ + K2(x)| f (vλ)|22∗ ≤ Cσλ−

N
2 .

(5.1)

We claim that

‖uλ‖2
λ ≤ Cσλ1− N

2 . (5.2)

In fact, from (5.1), we only need to prove that λ
∫

V1(x)u2
λ + V2(x)v2

λ ≤ Cσλ1− N
2 . We write

that
λ
∫

V1(x)u2
λ = λ

∫
|uλ|≥1

V1(x)u2
λdx + λ

∫
|uλ|≤1

V1(x)u2
λdx.

Combining (V2), (K), (5.1) and Lemma 2.1 (viii), we have

λ
∫
|uλ|≥1

V1(x)u2
λdx ≤ Cλ max V1

∫
|uλ|≥1

| f (uλ)|22∗dx

≤ Cλ
∫

K1(x)| f (uλ)|22∗dx

≤ Cσλ1− N
2
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and

λ
∫
|uλ|≤1

V1(x)u2
λdx ≤ λ

C2

∫
|uλ|≤1

V1(x) f 2(uλ)dx ≤ Cσλ1− N
2 .

Thus λ
∫

V1(x)u2
λ ≤ Cσλ1− N

2 . Similarly, we can get λ
∫

V2(x)v2
λ ≤ Cσλ1− N

2 . Then we conclude
that (5.2) holds, which shows (uλ, vλ) → (0, 0) in E as λ → ∞. Meanwhile, we also have by
Lemma 2.1 (ii)

µ− 4
2µ

∫
|∇ f (uλ)|2 + λV1(x) f 2(uλ) + |∇ f (vλ)|2 + λV2(x) f 2(vλ)

≤ µ− 4
2µ

∫
|∇uλ|2 + λV1(x) f 2(uλ) + |∇vλ|2 + λV2(x) f 2(vλ)

≤ σλ1− N
2 ,

which shows that ( f (uλ), f (vλ)) → (0, 0) in E as λ → ∞. It follows from λ = ε−2 that
Theorem 1.1 is completed.

Remark 5.1. The same arguments applied to Φ+
λ can give the existence of multiple positive

solutions for system (2.2).

6 Proof of Theorem 1.2

In this section, we shall give some crucial lemmas and prove Theorem 1.2 under the conditions
(V3), (K′), (H1)–(H4) and (H6).

Let ε = 1. We redefine the functional

Φ(u) : =
1
2

∫
|∇u|2 + V1(x) f 2(u) + |∇v|2 + V2(x) f 2(v)

− 1
22∗

∫
K1(x)| f (u)|22∗ + K2(x)| f (v)|22∗ −

∫
H(x, f (u), f (v)).

Similar to Lemmas 4.1–4.3, Φ satisfies the mountain pass geometry in E. And the (PS)c

sequence (un) for Φ is bounded in E by Lemma 3.1.
Some propositions and lemmas are needed and their proofs are similar as in [26]. We just

state them briefly and omit their proofs.

Proposition 6.1. Let (un) =
(
(un, un)

)
⊂ E be a (PS)c sequence with 0 < c < 1

N K
2−N

2∗ S
N
2 , where

K∗ = max{‖K1‖∞, ‖K2‖∞}, and un ⇀ 0 in E. Then there exists a sequence (yn) ⊂ RN and r, η > 0
such that |yn| → +∞ and

lim sup
n→∞

∫
Br(yn)

u2
n ≥ η > 0.

Given ε > 0, we study the function wε : RN → R defined by

wε(x) = C(N)
ε

N−2
2

(ε + |x|2) N−2
2

,

where C(N) = [N(N − 2)]
N−2

4 . Recall that by [1, 29], {wε}ε>0 is a family of functions at which
the infimum, that defines the best constant S, for the Sobolev imbedding D1,2(RN) ⊂ L2∗(RN),
is attained. Moreover, one has

wε ∈ L2∗(RN), ∇wε ∈ L2(RN),
∫
|∇wε|2 =

∫
|wε|2

∗
= S

N
2 .
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We also consider φ ∈ C∞
0 (RN , [0, 1]), φ ≡ 1 for |x − x0| ≤ r, φ ≡ 0 for |x − x0| ≥ 2r, where

r > 0 is a small enough constant. Define uε(x) = φ(x)wε(x − x0). We get the following
estimations (e.g. [4, 5]).

Lemma 6.1. uε(x) satisfies the following estimations: as ε→ 0,∫
|∇uε|2 = SN/2 + O

(
ε

N−2
2

)
,

∫
|uε|2

∗
= SN/2 + O

(
ε

N
2

)
,∫

|uε| ≤ Cε
N−2

4 ,
∫
|uε|2

∗−1 ≤ Cε
N−2

4 ,
∫
|∇uε| ≤ Cε

N−2
4

and

∫
|uε|2 =


Cε + O

(
ε

N−2
2

)
, N ≥ 5,

Cε ln |ε|+ O
(

ε
N−2

2

)
, N = 4,

Cε1/2, N = 3.

Lemma 6.2. There exists u0 ∈ E\{0} such that

sup
t≥0

Φ(tu0) <
1
N

K
2−N

2∗ S
N
2 . (6.1)

Proof. Write uε = (uε, uε). For ε > 0 small enough, since Φ(0) = 0 and limt→+∞ Φ(tuε) = −∞,
there exists a constant tε > 0 such that

Φ(tεuε) = max
t≥0

Φ(tuε)

and there exist positive constants A1 and A2 being independent of ε such that

0 < A1 ≤ tε ≤ A2 < +∞. (6.2)

Notice that supp uε ⊂ B2r(x0), by (V3), Lemma 2.1 (vii), (x) and (H4), we can see that

Φ(tεuε) ≤ t2
ε

∫
|∇uε|2 + Ctε

∫
uε −

2
N

N−2

22∗

∫
tεuε≥T

(K1(x) + K2(x))(tεuε)
2∗

+ C2

∫
tεuε≥T

(tεuε)
2∗−1 ln(tεuε) + C3

∫
tεuε≥T

(tεuε)
2∗−1 − Ctq

ε

∫
uq

ε, (6.3)

where T > 1 is large enough. From Lemma 6.1 and (6.2), as ε→ 0, it follows that

0 <
∫

tεuε≥T
(tεuε)

2∗−1 ln(tεuε)

≤
∫
(tεuε)

2∗−1(C4 + C5| ln ε|)

= O
(

ε
N−2

4 | ln ε|
)

. (6.4)

Choosing ε0 ∈ (0, r2) such that for ε ≤ ε0, uε = wε ≥ Cε−
N−2

4 and tεuε ≥ T when |x− x0| ≤√
ε, by Lemma 6.1 one can verify that∫

uq
ε ≥

∫
B√ε(x0)

uq
ε = O

(
ε

N
2 −

q(N−2)
4

)
(6.5)
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and for i = 1, 2 ∫
tεuε≥T

Ki(x)(uε)
2∗ ≥

∫
B√ε(x0)

Ki(x)(wε)
2∗ = Ki(x0)SN/2 + O(ε). (6.6)

Combining (6.2)–(6.6) and Lemma 6.1, we have

Φ(tεuε) ≤ t2
εSN/2 + O

(
ε

N−2
2

)
+ O

(
ε

N−2
4

)
− 2

2
N−2

2∗
(K1(x0) + K2(x0))SN/2t2∗

ε

+ O(ε) + O
(

ε
N−2

4 | ln ε|
)
−O

(
ε

N
2 −

q(N−2)
4

)
≤ 1

N
K

2−N
2∗ SN/2 + O(ε) + O

(
ε

N−2
4 | ln ε|

)
−O

(
ε

N
2 −

q(N−2)
4

)
=:

1
N

K
2−N

2∗ SN/2 + J. (6.7)

In the case of 3 ≤ N < 6, N+2
N−2 < q < 2∗, we can see that N

2 −
q(N−2)

4 < N−2
4 < 1, which gives

that J < 0 as ε > 0 sufficiently small. In the other case of N ≥ 6, 2 < q < 2∗, we can see that
N
2 −

q(N−2)
4 < 1 ≤ N−2

4 , which gives that J < 0 as ε > 0 sufficiently small. Taking u0 = uε for
ε small enough, we see that (6.1) holds.

Proof of Theorem 1.2. Similar to the proof of Theorem 2 in [26], we can complete the proof of
Theorem 1.2 and omit it here.
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