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Abstract. With the consideration of the mechanism of prevention and control for the
spread of dengue fever, a mathematical model of dengue fever dynamical transmission
between mosquitoes and humans, incorporating a vector control strategy of impulsive
culling of mosquitoes, is proposed in this paper. By using the comparison principle, Flo-
quet theory and some of analytical methods, we obtain the basic reproductive number
R0 for this infectious disease, which illustrates the stability of the disease-free periodic
solution and the uniform persistence of the disease. Further, the explicit conditions deter-
mining the backward or forward bifurcation are obtained and we show that the culling
rate φ has a major effect on the occurrence of backward bifurcation. Finally, numerical sim-
ulations are given to verify the correctness of theoretical results and the highest efficiency
of vector control strategy.
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1 Introduction

Dengue fever is a fast emerging pandemic-prone viral disease in many parts of the world, which
was first discovered in Cairo of Egypt, Indonesia-Jakarta and Philadelphia 1779 and was named
arthritis fever and break-bone fever according to clinical symptoms [8, 18]. Dengue fever is a
re-emergent disease affecting people in more than 100 countries in the tropical and subtropical
areas. The symptoms of the disease are characterized by high fever, frontal headache, pain behind
the eyes, joint pains, nausea, vomiting etc [27,33]. Every year, 500,000 cases reports of dengue are
received by the World Health Organization (WHO), with more than 2.5 billion people at risk. It
is well know that dengue fever is a mosquito-borne infectious disease, the female mosquitoes of
Aedes aegypti and Aedes albopictus are the prominent carriers of dengue fever virus of Flaviviridae
family [7, 33]. The infected mosquitoes transfer infection on biting susceptible persons, and then
susceptible mosquito bites an infected person, it gets infected.

The control and hence eradication of infectious diseases is one of the major concerns in the
study of mathematical epidemiology [1,2,11,21,31] and the references therein. In the past nearly
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twenty years, the prevention and control of the spread of dengue fever (or other vector-borne
diseases) are also caused extensive attention of many scholars (see, for instance, [5,12,13,24] and
the references therein). Especially, Esteva et al. [24] proposed a host–vector dengue fever model
with varying total population size and obtained the global asymptotic stability of equilibria for
this model. Derouich et al. [10] introduced a mathematical model to simulate the succession
of dengue with variable human populations, and analysed the stability of equilibria for this
model. Garba et al. [16] structured a basic single strain dengue model, which incorporates the
dynamics of exposed humans and vectors, and obtained the basic reproduction number and
the phenomenon of backward bifurcation, where the stable disease-free equilibrium coexists
with a stable endemic equilibrium. Further, they also extended the model to incorporate an
imperfect vaccine against the spread of dengue. For more research results also can be found in
[3, 9, 14, 15, 19, 28–30] and the references therein.

Dengue vaccination research and development are began in 1940s, but no specific vaccine
and treatment are available for this vector-borne disease in recent years due to the limited appre-
ciation of global disease burden and the potential markets. Therefore, how to prevent, control
and put an end to the spread of dengue fever have always been hot issues in medicine and
mathematical epidemiology. Considering mosquitoes are the principal vectors in spread of the
disease, hence vector population control through insecticides is the possible ways to prevent hu-
man population from dengue fever virus. Based on this idea, significant advances were made
by Macdonald [25] who proposed that the most effective control strategy against vector-borne
infections is to kill adult mosquitoes. From a theoretical perspective, many mathematical models
have been developed to describe the control of vector population. Examples can be found in [26]
where they studied the effects of awareness and mosquito control on dengue fever, and indicated
that the sufficiently large amount of vector control is required to control the disease. And in
[4], Amaku et al. considered the impact of vector-control strategies on the human prevalence of
dengue. Other examples also can be found in [17, 20] and the references therein, to just a few.

A noticed fact is that most of above mathematical models considering control measures on
vector population invariably assume that the pesticides affect vector population continuously.
Generally, however, the culling of vector population is usually put in practice at discrete certain
times. So for this reason, Xu et al. [34] presented a mathematical model to describe the transmis-
sion of West Nile virus between vector mosquitoes and birds, incorporating a control strategy of
culling mosquitoes and defined by impulsive differential equations.

Motivated by these facts, we propose, in this paper, a mathematical model of dengue with
saturation and bilinear incidence, and impulsive culling of mosquitoes. The dynamical behaviour
of this model was investigated and the influence of impulsive vector control for the preventing of
the disease was discussed. The rest of the paper is structured as follows. We formulate a mathe-
matical model and give some useful lemmas in Section 2. Some threshold value conditions of the
disease-free periodic solution are presented in Section 3 to control the disease. We discuss the
uniform persistence of the disease in Section 4 and also provide a explicit conditions determining
the backward or forward bifurcation in Section 5. Finally, we give the numerical simulation and
discussion in the last section.

2 Model formulation and preliminaries

In this section, we propose a mathematical model of dengue fever with impulsive culling mosqui-
toes. For convenience, we separate human population into three classes: susceptible Sh, infectious
Ih, recovered Rh, and female mosquitoes are divided into two classes: uninfected Sm, infectious
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Im. For establishing this model, we come up with the following assumptions.

(A1) The human population is recruited at the rate of µhK, K is the maximum size of people
and µh is natural death rate, and because dengue fever also causes mortality in humans,
we assume that dh is the disease-induced death rate for humans, γh is the recovery rate of
humans, Nh is the total size of human population.

(A2) Assuming that Λm is the recruitment rate of mosquitoes, Nm is the total number of mosqui-
toes and µm is the natural birth/death rate of mosquitoes.

(A3) Average biting rate of mosquitoes is b, ρhm and ρmh are the transmission probabilities from
human to mosquitoes and from mosquitoes to human respectively. We assume that the
incidence of infected mosquito to susceptible humans is the saturation incidence due to
the “psychological” effect or the inhibition effect, and assume that the incidence of infected
humans to susceptible mosquito is bilinear incidence since it is not impacted by these issues.
They are given by

bρhm Im(t)Sh(t)
1 + αIm

, bρmh Ih(t)Sm(t),

respectively, where α is positively constant.

(A4) We suppose that impulsive culling of infectious and susceptible mosquitoes happens at a
rate φ.

Based on the above assumptions, we have the following mathematical model with impulsive
control 

dSh(t)
dt

= µhK− bρhm Im(t)Sh(t)
1 + αIm

− µhSh(t)

dIh(t)
dt

=
bρhm Im(t)Sh(t)

1 + αIm
− (µh + dh + γh)Ih(t)

dRh(t)
dt

= γh Ih(t)− µhRh(t)

dSm(t)
dt

= Λm − bρmh Ih(t)Sm(t)− µmSm(t)

dIm(t)
dt

= bρmh Ih(t)Sm(t)− µm Im(t)



t 6= nT,

Sh(t+) = Sh(t)

Ih(t+) = Ih(t)

Rh(t+) = Rh(t)

Sm(t+) = (1− φ)Sm(t)

Im(t+) = (1− φ)Im(t)


t = nT, n = 1, 2, . . .

(2.1)

From the first to fifth equations of model (2.1), we obtain that the total numbers of humans
and vectors at time t satisfy

dNh(t)
dt

= µhK− µhNh(t)− dh Ih(t),
dNm(t)

dt
= Λm − µhNm(t).

Obviously, from the above two equations, it is easy to get

µhK
µh + dh

≤ lim inf
t→+∞

Nh(t) ≤ lim sup
t→+∞

Nh(t) ≤ K, lim
t→+∞

Nm(t) =
Λm

µm
. (2.2)
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Table 2.1: Parameter values for model (2.1)

Param. Description Range Source

µhK Recruitment rate of human population 0.36 Garba S.M. [16]

Λm Recruitment rate of mosquitoes (day−1) 28 Estimate

b Bites per mosquito (day−1) 0.5 Garba S.M. [16]

α Saturation constant (0, 1) Estimate

ρhm Transmission rate of mosquito to human (day−1) 2.6071e−5 ∼ 4.0018e−4 Pandey [28]

ρmh Transmission rate of human to mosquito (day−1) 5.6478e−5 ∼ 7.3135e−4 Pandey [28]

µh The natural death rate of human (day) 1/25000 Garba S.M. [16]

µm The natural death rate of mosquito (day−1) 0.0378 ∼ 0.0781 Pandey [28]

dh The diseased death rate of human (day−1) 1e−3 Amaku M. [4]

γh The rate of recovery in human (day−1) 0.1521 ∼ 0.4440 Pandey [28]

φ The culling rate for mosquitoes (day−1) 0 ∼ 1 Estimate

Therefore, from biological considerations, we only need to analyze the dynamical behavior of
model (2.1) in the region

Ω =

{
(Sh, Ih, Rh, Sm, Im) ∈ R5

+ | 0 ≤ Sh(t) + Ih(t) + Rh(t) ≤ K, 0 ≤ Sm(t) + Im(t) ≤
Λm

µm

}
,

where R5
+ = {(x1, . . . , x5) : xi ≥ 0, i = 1, . . . , 5}. Obviously, Ω is positively invariant with respect

to model (2.1).
Now, let Q(t) be a bounded, continuous, cooperative and irreducible j × j matrix function

and Q(t) = Q(t + ω), P = diag{p1, p2, . . . , pj}. Consider the following impulsive differential
equation 

dx(t)
dt

= Q(t)x(t), t 6= nT,

x(t+) = Px(t), t = nT, n = 1, 2, . . . .
(2.3)

Let ΦQ(·)(t) be the fundamental solution matrix of system (2.3) and ρ(ΦQ(·)(ω)) be the spectral
radius of ΦQ(·)(ω). By the Perron–Frobenius theorem, ρ(ΦQ(·)(ω)) is the principle eigenvalue of
ΦQ(·)(ω) in the sense that it is simple and admits an eigenvector ν∗ � 0. Then, similar to Lemma
2.1 in [32, 35], we have the following result.

Lemma 2.1. Let µ = ln{ρ(PΦQ(·)(ω))}/ω, then there exists a positive ω-periodic function ν(t) such
that eµtν(t) is a solution of system (2.3).

Proof. Let ν∗ � 0 be a eigenvector of ρ(PΦQ(·)(ω)). By the change of variable{
x(t) = eµtν(t), t 6= nT,

x(t+) = eµtν(t+), t = nT, n = 1, 2, . . . ,

we have 
dν(t)

dt
= (Q(t)− µI)ν(t), t 6= nT,

ν(t+) = Pν(t), t = nT, n = 1, 2, . . .

Then, ν(t) := Φ(Q(·)−µI)(t)Pν∗ is a positive solution of system (2.3). Obviously, eµtPΦ(Q(·)−µI)(t)=
PΦQ(·)(t). Moreover,

ν(ω) = PΦQ(·)−µI(ω)ν∗ = e−µωPΦQ(·)(ω)ν∗ = e−µωρ(PΦQ(ω))ν∗ = ν∗ = ν(0+).



The effect of vector control strategy against dengue 5

Thus, ν(t) is a positive ω-periodic function. So, x(t) = eµtν(t) is a solution of system (2.3). This
completes the proof.

The following Lemma 2.2 is from [23], although very simple, but very useful.

Lemma 2.2. Consider the following impulsive differential equation

dx1(t)
dt

= a− bx1(t)

dx2(t)
dt

= c− dx1(t)

 t 6= nT,

x1(t+) = x1(t)

x2(t+) = (1− p)x2(t)

}
t = nT, n = 1, 2, . . . ,

(2.4)

where a, b, c, d are positive constants and p ∈ (0, 1). Then equation (2.4) has a unique positive periodic
solution (x̃1(t), x̃2(t)) which is globally asymptotically stable, where

x̃1(t) =
a
b

, x̃2(t) =

(
1− pe(−d(t−nT))

1− (1− p)e−dT

)
c
d

, nT < t ≤ (n + 1)T.

3 Stability of the disease-free periodic solution

In this section, we discuss the existence and stability of the disease-free periodic solution of model
(2.1), in which infected individuals are completely absent. That is, Ih(t) = 0 and Im(t) = 0. In
this case, model (2.1) reduces to the following subsystem

dSh(t)
dt

= µhK− µhSh(t)

dRh(t)
dt

= −µhRh(t)

dSm(t)
dt

= Λm − µmSm(t)


t 6= nT,

Sh(t+) = Sh(t)

Rh(t+) = Rh(t)

Sm(t+) = (1− φ)Sm(t)

 t = nT, n = 1, 2, . . . .

(3.1)

Obviously, from the second equation of model (3.1), we have limt→+∞ Rh(t) = 0. In view of
Lemma 2.2, model (3.1) has a unique disease-free periodic solution (S̃h(t), 0, S̃m(t)) which is
globally asymptotically stable, where

S̃h(t) = K, S̃m(t) =
Λm

µm

(
1− φe−µm(t−nT)

1− (1− φ)e−µmT

)
, nT < t ≤ (n + 1)T. (3.2)

Therefore, model (2.1) admits a unique disease-free periodic solution (S̃h(t), 0, 0, S̃m(t), 0).
For discussion of the stability of disease-free periodic solution of model (2.1), we define the

following matrix functions

F =

(
0 ρhmbS̃h(t)

ρmhbS̃m(t) 0

)
, V =

(
µh + γh + dh 0

0 µm

)
.
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Let A(t) be an n × n matrix function, ΦA(·)(t) be the fundamental solution matrix of the
linear ordinary differential system dX(t)/dt = A(t)X(t), and ρ(ΦA(·)(T)) be the spectral radius
of ΦA(·)(T). Let Sh(t) = sh(t) + S̃h(t), Ih(t) = ih(t), Rh(t) = rh(t), Sm(t) = sm(t) + S̃m(t), Im(t) =
im(t) and X(t) = (ih(t), im(t), sh(t), sm(t), rh(t))T , where CT denotes the transpose of C. Then
model (2.1) becomes 

dX(t)
dt

= A(t)X(t), t 6= nT,

X(t+) = PX(t), t = nT, n = 1, 2, . . . ,
(3.3)

where

A(t) =
(

F−V 0
−J M

)
, P =

(
P1 0
0 P2

)
, P1 =

(
1 0
0 1− φ

)
,

and

J =

 0 −ρhmbS̃h(t)
−ρmhbS̃m(t) 0

γh 0

 , M =

−µh 0 0
0 −µm 0
0 0 −µh

 , P2 =

1 0 0
0 1− φ 0
0 0 1

 .

Obviously, the monodromy matrix of model (3.3) equals(
P1 0
0 P2

)(
ΦF−V(T) 0
∗ ΦM(T)

)
,

where ∗ stands for a non-zero block matrix. Further, the Floquet multiplier of model (2.1) is
the eigenvalue of ρ(P1ΦF−V(T)) and ρ(ΦM(T)). We can easily get the following theorem if
R0 = ρ(P1ΦF−V(T)) < 1.

Theorem 3.1. IfR0 = ρ(P1ΦF−V(T)) < 1 holds, then model (2.1) admits a disease-free periodic solution
(S̃h(t), 0, 0, S̃m(t), 0) which is locally asymptotically stable.

The following Theorem 3.2 is on the global asymptotic stability of the disease-free periodic
solution of model (2.1).

Theorem 3.2. IfR0 < 1 holds, then the disease-free periodic solution (S̃h(t), 0, 0, S̃m(t), 0) of model (2.1)
is globally asymptotically stable.

Proof. From Theorem 3.1, we have verified the local asymptotic stability of the disease-free pe-
riodic solution of model (2.1). So we only need to prove the global attractivity of this solu-
tion. By R0 = ρ(P1Φ(F−V)(T)) < 1, we can choose small enough constant ε > 0, such that
ρ(P1Φ(F−V−G(ε))(T)) < 1, where

G(ε) =

(
0 bρhmε

bρmhε 0

)
.

From the first, fourth, sixth and ninth equations of model (2.1), one has

dSh(t)
dt

≤ µhK− µhSh(t)

dSm(t)
dt

≤ Λm − µmSm(t)

 t 6= nT,

Sh(t+) = Sh(t)

Sm(t+) = (1− φ)Sm(t)

}
t = nT, n = 1, 2, . . .
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Consider the auxiliary system

dω1(t)
dt

= µhK− µhω1(t)

dω2(t)
dt

= Λm − µmω2(t)

 t 6= nT,

ω1(t+) = ω1(t)

ω2(t+) = (1− φ)ω2(t)

}
t = nT, n = 1, 2, . . .

(3.4)

By Lemma 2.2, model (3.4) has a unique positively periodic solution (ω̃1(t), ω̃2(t)) which is
globally asymptotically stable, where

ω̃1(t) = K = S̃h(t), ω̃2(t) =
Λm

µm

(
1− φe(−µm(t−nT))

1− (1− φ)e(−µmT)

)
= S̃m(t), nT < t ≤ (n + 1)T.

Let (Sh(t), Ih(t), Rh(t), Sm(t), Im(t)) be a solution of model (2.1) with Sh(0+) = S0
h ≥ 0, Sm(0+) =

S0
m ≥ 0, and (ω1(t), ω2(t)) be a solution of model (3.4) with the initial value ω1(0+) = S0

h,
ω2(0+) = S0

m. By the comparison theorem of impulsive differential equations (more detail see
Lakshmikantham et al. [6, 23]), there exists an integer n1 > 0 such that

Sh(t) ≤ ω1(t) ≤ ω̃1(t) +
ε

2
, Sm(t) ≤ ω2(t) ≤ ω̃2(t) +

ε

2
, nT < t ≤ (n + 1)T, n ≥ n1.

That is,

Sh(t) ≤ ω1(t) ≤ S̃h(t) + ε, Sm(t) ≤ ω2(t) ≤ S̃m(t) + ε, nT < t ≤ (n + 1)T, n ≥ n1. (3.5)

Further, from (3.5) and the second, fifth, seventh and tenth equations of model (2.1), we can get

dIh(t)
dt

≤ bρhm(S̃h(t) + ε)Im(t)− (µh + γh + dh)Ih

dIm(t)
dt

≤ bρmh(S̃m(t) + ε)Ih(t)− µm Im

 t 6= nT,

Ih(t+) = Ih(t)

Im(t+) = (1− φ)Im(t)

}
t = nT, n = n1, n1 + 1, . . .

Now, we consider the following auxiliary system
dY(t)

dt
= (F−V + G(ε))Y(t), t 6= nT,

Y(t+) = P1Y(t), t = nT, n = n1, n1 + 1, . . . ,
(3.6)

where Y = (y1, y2)T . From Lemma 2.1, model (3.6) has a positive T-periodic solution Y∗(t) such
that Y(t) = Y∗(t)eµt, where µ = {ln ρ(Φ(F−V+G(ε))(T))}/T. Condition ρ(P1Φ(F−V−G(ε))(T)) < 1
implies µ < 0. So, Y(t)→ 0 as t→ +∞. Therefore, it implies that

lim
t→+∞

Ih(t) = 0, lim
t→+∞

Im(t) = 0. (3.7)

From these, for any ε1 > 0, there exists an integer n2 ≥ n1, such that Ih(t) < ε1 and Im(t) < ε1 for
t ≥ n2T. From the first, fourth, sixth and ninth equations of model (2.1), it can be easily shown
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that 

dSh(t)
dt

≥ µhK− bρhmSh(t)ε1

1 + αε1
− µhSh(t)

dSm(t)
dt

≥ Λm − bρmhSm(t)ε1 − µmSm(t)

 t 6= nT,

Sh(t+) = Sh(t)

Sm(t+) = (1− φ)Sm(t)

}
t = nT, n = 1, 2, . . .

Consider the auxiliary system

dz1(t)
dt

= µhK−
(

bρhmε1

1 + αε1
+ µh

)
z1(t)

dz2(t)
dt

= Λm − (bρmhε1 + µm)z2(t)

 t 6= nT,

z1(t+) = z1(t)

z2(t+) = (1− φ)z2(t)

}
t = nT, n = 1, 2, . . .

(3.8)

By Lemma 2.2, system (3.8) exists a unique positively solution (z̃1(t), z̃2(t)) which is globally
asymptotically stable, where

z̃1(t) =
µhK

bρhmε1
1+αε1

+ µh
,

z̃2(t) =
Λm

bρmhε1 + µm

(
1− φe−(bρmhε1+µm)(t−nT)

1− (1− φ)e−(bρmhε1+µm)T

)
, nT < t ≤ (n + 1)T, n ≥ n2.

Then by the comparison theorem, there exists a integer n3 ≥ n2 such that

Sh(t) ≥ z̃1(t)− ε1, Sm(t) ≥ z̃2(t)− ε1, nT < t ≤ (n + 1)T, n ≥ n3.

Since ε1 is arbitrarily small, it follows from the above inequality and (3.5) that z̃1(t) → S̃h(t),
z̃2(t)→ S̃m(t) as t→ +∞. Therefore,

lim
t→+∞

Sh(t) = S̃h(t), lim
t→+∞

Sm(t) = S̃m(t). (3.9)

Finally, from the second equation of model (2.1), we have limt→+∞ Rh(t) = 0. From this and (3.7),
(3.9), we have that the disease-free periodic solution of model (2.1) is globally attractive. The
proof is complete.

4 Uniform persistence of the disease

In this section, we turn to the uniform persistence of the disease for model (2.1).

Theorem 4.1. If R0 = ρ(P1ΦF−V(T)) > 1 holds, then the disease of model (2.1) is uniform persistent,
namely, there exists a constant η > 0 such that lim inft→+∞ Ii(t) ≥ η, i = h, m.

Proof. From R0 = ρ(P1ΦF−V(T)) > 1, we can chose small enough positive constants η, ε1 and ε2

such that
ρ(P1Φ(F(η,ε1,ε2)−V)(T)) > 1, (4.1)
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where

F(η, ε1, ε2) =

(
0 b ρhm(S̃h(t)−ε1−ε2)

1+αη

bρmh(S̃m(t)− ε1 − ε2) 0

)
,

and (S̃h(t), S̃m(t)) are given by (3.2).
Firstly, we prove

lim sup
t→+∞

Ii(t) ≥ η, i = h, m. (4.2)

Otherwise, there exists a t1 > 0 such that Ih(t) < η or Im(t) < η for all t ≥ t1. Without loss
generality, we suppose that Ih(t) < η and Im(t) < η for all t ≥ t1. By the first, fourth, sixth and
ninth equations of model (2.1), we have

dSh(t)
dt

≥ µhK− bρhmSh(t)η
1 + αη

− µhSh(t)

dSm(t)
dt

≥ Λm − bρmhSm(t)η − µmSm(t)

 t 6= nT,

Sh(t+) = Sh(t)

Sm(t+) = (1− φ)Sm(t)

}
t = nT, n = 1, 2, . . .

Consider the auxiliary system

du1(t)
dt

= µhK− bρhmu1(t)η
1 + αη

− µhu1(t)

du2(t)
dt

= Λm − bρmhu2(t)η − µmu2(t)

 t 6= nT,

u1(t+) = u1(t)

u2(t+) = (1− φ)u2(t)

}
t = nT, n = 1, 2, . . .

(4.3)

By Lemma 2.2, system (4.3) exists a unique positive solution (ũ1(t), ũ2(t)) and which is globally
asymptotically stable, where

ũ1(t) =
µhK

bρhmη
1+αη + µh

, ũ2(t) =
Λm

bρmhη + µm

(
1− φe−(bρmhη+µm)(t−nT)

1− (1− φ)e−(bρmhη+µm)T

)
, nT < t ≤ (n+ 1)T.

Obviously,
lim
η→0

(ũ1(t), ũ2(t)) = (S̃h(t), S̃m(t)).

Thus, there exists a positive constant η̃1 small enough for the above ε1, such that ũ1(t) ≥ S̃h(t)− ε1

and ũ2(t) ≥ S̃m(t)− ε1 for η < η̃1. By the comparison principle, there exists t2 ≥ t1 for the above
ε2 > 0 such that

Sh(t) ≥ u1(t) > S̃h(t)− ε1 − ε2, Sm(t) ≥ u2(t) > S̃m(t)− ε1 − ε2, t ≥ t2.

From the second, fifth, seventh and tenth equations of model (2.1), we have

dIh(t)
dt

≥ bρhm Im(t)(S̃h(t)− ε1 − ε2)

1 + αη
− (µh + dh + γ)Ih(t)

dIm(t)
dt

≥ bρmh Ih(t)(S̃m(t)− ε1 − ε2)− µm Im

 t 6= nT,

Ih(t+) = Ih(t)

Im(t+) = (1− φ)Im(t)

}
t = nT, n = 1, 2, . . .
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Considering the following auxiliary system
dZ(t)

dt
= (F(η, ε1, ε2)−V)Z(t), t 6= nT,

Z(t+) = P1Z(t), t = nT, n = 1, 2, . . . ,
(4.4)

where Z = (z1, z2)T . From Lemma 2.1, system (4.4) has a positive T-periodic solution Z̃(t) such
that Z(t) = Z̃(t)eµ1t, where µ1 = {ln ρ(Φ(F(η,ε1,ε2)−V)(T))}/T. Further, from the condition (4.1),
we get µ1 > 0. Thus Z(t)→ +∞, as t→ +∞. That is,

lim
t→+∞

Ih(t) = +∞, lim
t→+∞

Im(t) = +∞. (4.5)

These contradict the boundedness of Ih(t) and Im(t). So (4.2) is valid.
In the following, we prove that lim inft→+∞ Ii(t) ≥ η, i = h, m. From the above discussion,

we consider only the following two possibilities:

(i) Ii(t) ≥ η for all large t, i = h, m;

(ii) Ii(t) oscillates about η for all large t, i = h, m.

If case (i) holds, then we have completely the result. Next, we turn to case (ii).
Owing to lim supt→+∞ Ii(t) ≥ η, there exists a t1 ∈ (m1T, (m1 + 1)T] and t2 ∈ (m2T, (m2 + 1)T]

such that Ii(t1) ≥ η, Ii(t2) ≥ η, i = h, m, where m2 −m1 ≥ 0 is finite. Then we will consider the
solution of the following equation from model (2.1) in the time interval [t1, t2]. From the second
equation of model (2.1), one have

dIh(t)
dt

≥ −(µh + dh + γ)Ih(t).

Integrating the above equation from t1 to t, we get

Ih(t) ≥ Ih(t1)e−(µh+dh+γ)(t−t1) ≥ ηe−(µh+dh+γ)(m2−m1+1)T.

Moreover, from the fifth and tenth equations of model (2.1), it follows that
dIm(t)

dt
≥ −µm Im(t), t 6= nT,

Im(t+) = (1− φ)Im(t), t = nT, n = 1, 2, . . .

And, integrating the equation from t1 to t, we have

Im(t) ≥ Im(t1)(1− φ)m2−m1 e−µm(t−t1) ≥ η(1− φ)m2−m1 e−µm(m2−m1+1)T.

Let η1 = min{ηe−(µh+dh+γ)(m2−m1+1)T, η(1− φ)m2−m1 e−µm(m2−m1+1)T}, then η1 ≥ 0 cannot be in-
finitely small since m2 ≥ m1 is finite. So, we have Ii(t) ≥ η1 > 0, i = h, m.

For t > t2, the similar arguments can be continued and we similarly get non-infinitesimal
positive η2. Therefore, we can get the sequence {ηk}, where

ηk = min{ηe−(µh+dh+γ)(mk+1−mk+1)T, η(1− φ)mk+1−mk e−µm(mk+1−mk+1)T}, k = 1, 2, . . . ,

is non-infinitesimal since mk+1 − mk ≥ 0 is finite. So the solution of model (2.1) satisfies
Ii(t) ≥ ηk > 0, i = h, m in the time interval [tk, tk+1], where tk ∈ (mkT, (mk + 1)T],
tk+1 ∈ (mk+1T, (mk+1 + 1)T]. Let η = mink{ηk} = ηl > 0, l ∈ N and ηl ∈ {ηk}. Hence from
the above discuss, we get Ii(t) ≥ η > 0, i = h, m for all t ≥ t1. The proof is complete.
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5 Forward and backward bifurcation of endemic periodic solutions

In this section, we proceed to study bifurcation using the bifurcation theory (more details can
be found in Lakmeche et al. [22]). Let the culling rate φ be the bifurcation parameter. We
define the solution vector X(t) := (Sh(t), Sm(t), Rh(t), Sm(t), Im(t)), the mapping F(X(t)) =

(F1(X(t)), . . . , F5(X(t))) : R5 → R5 by the right hand side of the first to fifth equations of model
(2.1), and the mapping

I(φ, X(t)) = (I1(φ, X(t)), . . . , I5(φ, X(t))) = (X1(t), (1− φ)X2(t), X3(t), X4(t), (1− φ)X5(t)).

Furthermore, we define Φ(t, X0), 0 < t ≤ T, to be the solution of model consisting of the first
to fifth equations of model (2.1), where X0 = X(0). Then X(T) = Φ(T, X0) := Φ(X0) and
X(T+) = I(φ, Φ(X0)). We define the operator Ψ by Ψ(φ, X) := I(φ, Φ(X)), where Ψ(φ, X) =

(Ψ1(φ, X), . . . , Ψ5(φ, X)). Denote DXΨ the derivative of Ψ with respect to X. Then X is a periodic
solution of period T for model (2.1) if and only if its initial value X0 is a fixed point for Ψ(φ, X).
Namely, Ψ(φ, X0) = X0. Consequently, to establish the existence of nontrivial periodic solutions
of model (2.1), one needs to prove the existence of the nontrivial fixed point of Ψ.

Let us fix all parameters except the culling rate φ, and denote by φ0 the critical culling rate,
which corresponds to ρ(P1ΦF−V(T)) = 1. We are interested in the bifurcation of nontrivial
periodic solutions near the disease-free periodic solution X̃ = (S̃h(t), S̃m(t), 0, 0, 0)). Assuming
that X0 is the starting point for the disease-free periodic solution with the culling rate φ0. It is
obviously that Φ3(X0) = Φ4(X0) = Φ5(X0) = 0. To find a nontrivial periodic solution with
initial value X and culling rate φ, we need to solve the fixed point problem Ψ(φ, X) = X. Denote
φ = φ0 + φ and X = X0 + X̃, the fixed point problem reads as

N(φ, X̃) = 0, (5.1)

where N(φ, X̃) = (N1(φ, X̃), . . . , N5(φ, X̃)) = X0 + X̃−Ψ(φ0 + φ, X0 + X̃). We have

DX̃ N(φ, X̃) = E5 − DX̃ I(φ, Φ(X))DX̃Φ(X). (5.2)

Since
d
dt

(DXΦ(t, X0)) = DX F(Φ(t, X0))DXΦ(t, X0) (5.3)

with the initial condition DXΦ(0, X0) = E5 and Φ(t, X0) = (Φ1(t, X0), Φ2(t, X0), 0, 0, 0), then (5.3)
takes the form

d
dt

(DXΦ(t, X0))(t, X0) = B(t)DXΦ(t, X0)(t, X0),

where

B(t) =
(

M −J
0 F−V

)
.

It can be deduced that

DX N(0,O) =
(

E3 − P2eMT P2Φ12(T)
0 E2 − P1ΦF−V(T)

)
,

whereO = (0, 0, 0, 0, 0). A necessary condition for the bifurcation for the nontrivial periodic solu-
tion near X̃ = (S̃h(t), S̃m(t), 0, 0, 0)) is det[DX N(0,O)] = 0. Obviously, det[E3 − P2eMT] 6= 0, then
det[DX N(0,O)] = 0 is equal to det[E2 − P1ΦF−V(T)] = 0. Therefore, det[E2 − P1ΦF−V(T)] = 0
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when ρ(P1ΦF−V(T)) = 1. Assuming that ρ(P1ΦF−V(T)) = 1 holds, we now investigate the suffi-
cient conditions for the existence of bifurcation of nontrivial T-periodic solutions. From (5.2), it
is convenient for the computations to denote

DX N(0,O) =


e0 0 0 a1 b1

0 f0 0 c1 d1

0 0 a2 b2 c2

0 0 0 a0 b0

0 0 0 c0 d0

 , A1 =


e0 0 0 a1

0 f0 0 c1

0 0 a2 b2

0 0 0 a0

 .

See Appendix A for the expression of each element in the above matrices. Then det[E2 −
P1ΦF−V(T)] = 0 implies that there exists a constant k such that c0 = ka0 and d0 = kb0. Fur-
thermore, we have dim Ker(DX(0,O)) = 1, and a basis in Ker(DX(0,O)) is

Y1 =

(
a1b0

a0e0
− b1

e0
,

c1b0

a0 f0
− d1

f0
,

b0b2

a0
− c2,− b0

a0
, 1
)

,

and we denote it as Y1 = (Y11, Y12, Y13, Y14, Y15). The basis in Im(DX(0,O)) are Y2 = (1, 0, 0, 0, 0),
Y3 = (0, 1, 0, 0, 0), Y4 = (0, 0, 1, 0, 0), Y5 = (0, 0, 0, 1, 0). From R5= Ker(DX(0,O))⊕ Im(DX(0,O)),
we have X = α1Y1 + α2Y2 + α3Y3 + α4Y4 + α5Y5, where αi ∈ R (i = 1, 2, 3, 4, 5) are unique. Then
equation (5.1) is equivalent to

Ni(φ, α1, α2, α3, α4, α5) = Ni(φ, α1Y1 + α2Y2 + α3Y3 + α4Y4 + α5Y5) = 0, i = 1, 2, 3, 4, 5. (5.4)

From (5.1), we have
D(N1, N2, N3, N4)(0,O)

D(α2, α3, α4, α5, )
= |A1| 6= 0. (5.5)

Therefore, by the implicit function theorem, one may solve (5.4) as i = 1, 2, 3, 4 near (0,O) with
respect to αi (i = 1, 2, 3, 4) as functions of φ and α1. That is, there exists α̃i = α̃i(φ, α1) such that
α̃i(0, 0) = 0, i = 2, 3, 4, 5 and

Ni(φ, α1) = Ni(φ, α1Y1 + α̃2Y2 + α̃3Y3 + α̃4Y4 + α̃5Y5) = 0, (5.6)

i = 1, 2, 3, 4. Then N(φ, X) = 0 if and only if

N5(φ, α1) = N5(φ, X(φ, α1)) = 0 (5.7)

with X(φ, α1) = (Y11α1 + α̃2, Y12α1 + α̃3, Y13α1 + α̃4, Y14α1 + α̃5, α1).
We proceed to solving (5.7) next. It is obvious that N5(φ, α1) vanishes at (0, 0). We determine

the Taylor expansion of N5(φ, α1) around (0, 0). Now, we compute the first-order partial deriva-
tives ∂N5(0, 0)/∂α1 and ∂N5(0, 0)/∂φ and find that ∂N5(0, 0)/∂α1 = 0 and ∂N5(0, 0)/∂φ = 0. (See
Appendix B for details). Then it is necessary for us to compute the second-order derivatives of
N5(φ, α1). Denote

A =
∂2N5(0, 0)

∂φ
2 , B =

∂2N5(0, 0)
∂φ∂α1

, C =
∂2N5(0, 0)

∂α2
1

.

It can be observed from Appendix C that A = 0, from Appendix D that

B =
∂2N5(0, 0)

∂φ∂α1

=
Φ2(X0)

f0

[
∂2Φ5(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ5(t, X0)

∂Sm∂Im
Y15

]
− kΦ2(X0))

f0

(
∂2Φ4(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ4(t, X0)

∂Sm∂Im
Y15

)
.
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and from Appendix E that

C = −
5

∑
i=1

5

∑
j=1

∂2Φ5(0, 0)
∂Xi∂Xj

Y1iY1j + k
5

∑
i=1

5

∑
j=1

∂2Φ4(X0)

∂Xi∂Xj
Y1iY1j.

Hence we have

N5(φ, α1) = Bα1φ + C
α2

1
2

+ o(α1, φ)(α2
1 + φ

2
) = α1

(
Bφ + C

α1

2
+

1
α1

o(α1, φ)(α2
1 + φ

2
)

)
.

Denoting

Ñ5(φ, α1) = Bφ + C
α1

2
+

1
α1

o(α1, φ)(α2
1 + φ

2
),

then ∂Ñ5(0, 0)/∂α1 = C/2. So, for C 6= 0, we can use the implicit function theorem and solve
the above equation near (0, 0) with respective to α1 as a function of φ. Therefore, there exists
α1 = α1(φ) such that α1(0) = 0 and Ñ5(φ, α1(φ)) = 0. Meanwhile, by ∂Ñ5(0, 0)/∂φ = B, we
can also find φ = φ(α1) such that Ñ5(φ(α1), α1) = 0 for B 6= 0. Then, if BC 6= 0, we have
α1/φ ' −2B/C.

According to above-mentioned discussion, we have the following theorem.

Theorem 5.1. Considering the family of operators Ψ(φ, X) defined in Ψ(φ, X) := I(φ, Φ(X)), as pa-
rameter φ passes through the critical value φ0, a nontrivial fixed point appears near the fixed point X0.
The bifurcation is supercritical, if BC < 0, or else there will be a subcritical bifurcation as BC > 0.

We know that the threshold value R0 decreases as φ increase. Then a supercritical bifurcation
means a backward bifurcation in the model while the subcritical bifurcation equated to a forward
bifurcation in the φ− α1 plane. Thus we have the following theorem.

Theorem 5.2. As the parameter φ passes through the critical value φ0, a backward bifurcation occurs if
BC < 0, or else there will be a forward bifurcation as BC > 0 at R0 = 1.

6 Numerical simulation and discussion

In this paper, a mathematical model of dengue fever with impulsive culling of mosquitoes, sat-
uration and bilinear incidence are considered. The main purpose is to investigate the effect of
impulsive culling mosquitoes strategy, which govern whether the dengue fever dies out or not,
and further to examine how the impulsive culling control strategy affects the prevention and con-
trol of dengue fever. By using the comparison principle, integral and differential inequalities, the
way of spectral radius and analytical methods, some sufficient conditions for the existence and
stability of disease-free periodic solution, and the uniform persistence of disease are obtained.
Theoretical results show that dengue fever can be controlled via adjusting the control parameters
of the model that depend on these conditions.

In this section, we give some numerical simulations to illustrate the main theoretical results
and the feasibility of impulsive culling control strategy using the Runge–Kutta method in the
software MATLAB. The values of parameters for model (2.1) are listed in Table 2.1, we fixed the
values of model parameters as follows: Λm = 28, b = 0.5, ρhm = 3 × 10−4, ρmh = 7 × 10−4,
µh = 4× 10−5, dh = 10−3, γh = 0.153, µm = 0.05, K = 9000 and α = 0.4.

We choose, firstly, culling period T = 6 (days) and culling rate φ = 0.72. It is easy to calcu-
late that R0 ≈ 0.9385 < 1. So, from Theorem 3.2, we obtain that model (2.1) has a disease-free
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periodic solution which is globally asymptotically stable. The quantities of infectious human, in-
fectious mosquitoes and uninfected mosquitoes in model (2.1) with or without impulsive culling
are plotted against time in Figure 6.1 (a)–(c) with blue lines and red lines, respectively. Infected
mosquitoes and infectious human in model (2.1) with impulsive culling control strategy and the
stability of disease-free periodic solution of model (2.1) with or without impulsive culling are
plotted in Figure 6.1 (d) with blue lines and red lines, respectively. Theoretical results and nu-
merical simulations imply that we can eliminate dengue fever through vector-control strategy.
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Figure 6.1: The stability of disease-free periodic solution of model (2.1) with
control parameters φ = 0.72 and T = 6 (days): (a) (t, Im(t)); (b) (t, Ih(t));
(c) (t, Sm(t)); (d) (Im(t), Ih(t)).

Secondly, we choose T = 10 (days), φ = 0.2 and others parameters are fixed as above. By
calculating, we get R0 ≈ 4.7336 > 1. Therefore, model (2.1) has a positive periodic solution from
Theorem 4.1. Figures 6.2 (a)–(c) show that the numerical solutions of infectious human, infectious
mosquitoes and uninfected mosquitoes with different initial values. The plots in Figure 6.2 (d)
show the uniform persistence of infected mosquitoes and infected humans. Theoretical results
and numerical simulations show that dengue fever is uniformly persistent if the culling strength
φ is low and the culling cycle period T is not too long.

Thirdly, we consider the frequencies of culling and culling rate how to impact on the uniform
persistence and extinction of disease. We fixed φ = 0.1 and other parameters are invariant, and
chose different control period T for model (2.1). Figures 6.4 (a) and 6.4 (b) show the quantities of
infectious human and infected mosquitoes with T = 1, 7 and 16 (days), respectively. Numerical
simulations imply that disease is extinct when culling period T is short and disease is uniform
persistent for long culling period T. Further, we fixed T = 3 (days), and chose culling rate
φ = 0.1, 0.4 and 0.8 for model (2.1), respectively. The plots in Figures 6.4 (c) and 6.4 (d) show the
quantities of infectious human and infected mosquitoes, which imply that the disease is extinct
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Figure 6.2: The uniform persistence of dengue fever in model (2.1) with T =

10 and φ = 0.2, where R0 = 4.7336: (a) (t, Ih(t)); (b) (t, Im(t)); (c) (t, Sm(t));
(d) (Im(t), Sm(t)).

for high culling rate φ and is uniform persistent for low culling rate. All of these simulations
indicate that the high frequency of culling and large culling rate are necessary for the goal of
eliminating disease, The bifurcation diagram of infectious human and infected mosquitoes about
culling rate φ in Figure 6.3 also accord with this result.

Finally, it is important to emphasize that the factors of seasonal variation in mosquito popu-
lation size, the latent period of infected mosquitoes, the dispersion of both humans and mosqui-
toes, and vertical transmission of the virus in the mosquito population, affect the dynamical
behaviors of both mosquitoes and humans and hence disease spread between mosquitoes and
humans. We leave these topics for future work.
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Figure 6.3: The bifurcation diagram of infected human and mosquitoes about
culling rate φ in model (2.1), where T = 2 (days).
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Figure 6.4: The quantities of infected mosquitoes and human in model (2.1):
(a)–(b) infected mosquitoes Im(t) and human Ih(t) with φ = 0.1 and T = 1, 7, 16
(days), respectively; (c)–(d) infected mosquitoes Im(t) and infectious human
Ih(t) with T = 3 (days) and φ = 0.1, 0.4, 0.8, respectively.

Appendix A The expression for each element of DX N(0,O)

It is clear from equation (5.3) that

d
dt


∂Φ1
∂X1

· · · ∂Φ1
∂X5

...
. . .

...
∂Φ5
∂X1

· · · ∂Φ5
∂X5

 (t, X0) =


∂F1
∂X1

· · · ∂F1
∂X5

...
. . .

...
∂F5
∂X1

· · · ∂F5
∂X5




∂Φ1
∂X1

· · · ∂Φ1
∂X5

...
. . .

...
∂Φ5
∂X1

· · · ∂Φ5
∂X5

 (t, X0)

So, from (5.2), we further get

d
dt

∂Φ4

∂X1
= −(µh + dh + γh)

∂Φ4

∂X1
+ bρhmS̃h

∂Φ5

∂X1
,

∂Φ4

∂X1
(0, X0) = 0,

d
dt

∂Φ5

∂X1
= −µm

∂Φ5

∂X1
+ bρmhS̃m

∂Φ4

∂X1
,

∂Φ5

∂X1
(0, X0) = 0,

d
dt

∂Φ4

∂X2
= −(µh + dh + γh)

∂Φ4

∂X2
+ bρhmS̃h

∂Φ5

∂X2
,

∂Φ4

∂X2
(0, X0) = 0,

d
dt

∂Φ5

∂X2
= −µm

∂Φ5

∂X2
+ bρmhS̃m

∂Φ4

∂X2
,

∂Φ5

∂X2
(0, X0) = 0,

d
dt

∂Φ4

∂X3
= −(µh + dh + γh)

∂Φ4

∂X3
+ bρhmS̃h

∂Φ5

∂X3
,

∂Φ4

∂X3
(0, X0) = 0,

d
dt

∂Φ5

∂X3
= −µm

∂Φ5

∂X3
+ bρmhS̃m

∂Φ4

∂X3
,

∂Φ5

∂X3
(0, X0) = 0.
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Thus we obtain
∂Φi

∂Xj
(t, X0) ≡ 0, i = 4, 5, j = 1, 2, 3,

for 0 ≤ t < T. Further, one has

d
dt

∂Φ1

∂X1
= −µh

∂Φ1

∂X1
,

∂Φ1

∂X1
(0, X0) = 1,

d
dt

∂Φ2

∂X1
= −µm

∂Φ2

∂X1
,

∂Φ2

∂X1
(0, X0) = 0,

d
dt

∂Φ3

∂X1
= −µh

∂Φ3

∂X1
,

∂Φ3

∂X1
(0, X0) = 0,

d
dt

∂Φ1

∂X2
= −µh

∂Φ1

∂X2
,

∂Φ1

∂X2
(0, X0) = 0,

d
dt

∂Φ2

∂X2
= −µm

∂Φ2

∂X2
,

∂Φ2

∂X2
(0, X0) = 1,

d
dt

∂Φ3

∂X2
= −µh

∂Φ3

∂X2
,

∂Φ3

∂X2
(0, X0) = 0,

d
dt

∂Φ1

∂X3
= −µh

∂Φ1

∂X3
,

∂Φ1

∂X3
(0, X0) = 0,

d
dt

∂Φ2

∂X3
= −µm

∂Φ2

∂X3
,

∂Φ2

∂X3
(0, X0) = 0,

d
dt

∂Φ3

∂X3
= −µh

∂Φ3

∂X3
,

∂Φ3

∂X3
(0, X0) = 1.

It is obvious that

∂Φ1

∂X1
(t, X0) = e−µht,

∂Φ1

∂X2
(t, X0) = 0,

∂Φ1

∂X3
(t, X0) = 0,

∂Φ2

∂X1
(t, X0) = 0,

∂Φ2

∂X2
(t, X0) = e−µmt,

∂Φ2

∂X3
(t, X0) = 0,

∂Φ3

∂X1
(t, X0) = 0,

∂Φ3

∂X2
(t, X0) = 0,

∂Φ3

∂X3
(t, X0) = e−µht.

Consequently, we have

d
dt

(
∂Φ4

∂X4

)
= −(µh + dh + γh)

∂Φ4

∂X4
+ bρhmS̃h

∂Φ5

∂X4
,

∂Φ4

∂X4
(0, X0) = 1,

d
dt

(
∂Φ5

∂X4

)
= −µm

∂Φ5

∂X4
+ bρmhS̃m

∂Φ4

∂X4
,

∂Φ5

∂X4
(0, X0) = 0,

d
dt

(
∂Φ4

∂X5

)
= −(µh + dh + γh)

∂Φ4

∂X5
+ bρhmS̃h

∂Φ5

∂X5
,

∂Φ4

∂X5
(0, X0) = 0,

d
dt

(
∂Φ5

∂X5

)
= −µm

∂Φ5

∂X5
+ bρmhS̃m

∂Φ4

∂X5
,

∂Φ5

∂X5
(0, X0) = 1,

d
dt

(
∂Φ1

∂X4

)
= −µh

∂Φ1

∂X4
− bρhmS̃h

∂Φ5

∂X4
,

∂Φ1

∂X4
(0, X0) = 0,

d
dt

(
∂Φ1

∂X5

)
= −µm

∂Φ2

∂X4
− bρmhS̃m

∂Φ5

∂X4
,

∂Φ1

∂X5
(0, X0) = 0,

d
dt

(
∂Φ2

∂X4

)
= −µm

∂Φ2

∂X4
− bρmhS̃m

∂Φ4

∂X4
,

∂Φ2

∂X4
(0, X0) = 0,

d
dt

(
∂Φ2

∂X5

)
= −µm

∂Φ2

∂X5
− bρmhS̃m

∂Φ4

∂X5
,

∂Φ2

∂X5
(0, X0) = 0,

d
dt

(
∂Φ3

∂X4

)
= −µh

∂Φ3

∂X4
+ γh

∂Φ4

∂X4
,

∂Φ3

∂X4
(0, X0) = 0,

d
dt

(
∂Φ3

∂X5

)
= −µh

∂Φ3

∂X5
+ γh

∂Φ4

∂X5
,

∂Φ3

∂X5
(0, X0) = 0.
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We solve the above equations and denote

a0 = 1− ∂Φ4

∂X4
(T, X0), b0 = −∂Φ4

∂X5
(T, X0), c0 = −(1− φ)

∂Φ5

∂X4
(T, X0),

e0 = 1− ∂Φ1

∂X1
(T, X0) = 1− e−µhT, f0 = 1− (1− φ)

∂Φ2

∂X2
(T, X0) = 1− (1− φ)e−µmT,

a1 = −∂Φ1

∂X4
(T, X0), b1 = −∂Φ1

∂X5
(T, X0), c1 = −(1− φ)

∂Φ2

∂X4
(T, X0),

a2 = 1− ∂Φ3

∂X3
(T, X0) = 1− e−µhT, b2 = 1− ∂Φ3

∂X4
(T, X0), c2 = 1− ∂Φ3

∂X5
(T, X0),

d0 = 1− (1− φ)
∂Φ5

∂X5
(T, X0).

Appendix B The first-order partial derivatives of N5(φ, α1)

We can easily get

∂N5(0, 0)
∂α1

=
∂N5(0, 0)

∂Sh

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Sm

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Rh

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Im

Y15,

∂N5(0, 0)
∂φ

= (1− φ)

[
−∂Φ5(X0)

∂Sh

∂α̃2(0, 0)
∂φ

− ∂Φ5(X0)

∂Sm

∂α̃3(0, 0)
∂φ

−∂Φ5(X0)

∂Rh

∂α̃4(0, 0)
∂φ

− ∂Φ5(X0)

∂Ih

∂α̃5(0, 0)
∂φ

]
.

(B.1)

From the equation of (5.6) as i = 1, we have

0 =
∂N1(0, 0)

∂α1

=
∂N1(0, 0)

∂Sh
Y11 +

∂N1(0, 0)
∂Sm

Y12 +
∂N1(0, 0)

∂Rh
Y13 +

∂N1(0, 0)
∂Ih

Y14 +
∂N1(0, 0)

∂Im
Y15

+
∂N1(0, 0)

∂Sh

∂α̃2(0, 0)
∂α1

+
∂N1(0, 0)

∂Sm

∂α̃3(0, 0)
∂α1

+
∂N1(0, 0)

∂Rh

∂α̃4(0, 0)
∂α1

+
∂N1(0, 0)

∂Ih

∂α̃5(0, 0)
∂α1

.

(B.2)

Since Y1 is a basis in Ker(DX N(0, 0)), then we have

∂Ni(0, 0)
∂Sh

Y11 +
∂Ni(0, 0)

∂Sm
Y12 +

∂Ni(0, 0)
∂Rh

Y13 +
∂Ni(0, 0)

∂Ih
Y14 +

∂Ni(0, 0)
∂Im

Y15 = 0, i = 1, . . . , 5.

(B.3)
Thus we can deduce from (B.2) and (B.3) that

e0
∂α̃2(0, 0)

∂α1
+ 0× ∂α̃3(0, 0)

∂α1
+ 0× ∂α̃4(0, 0)

∂α1
+ a1

∂α̃5(0, 0)
∂α1

= 0. (B.4)
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Similarly, from the equation of (5.6) as i = 2, 3, 4, we can obtain that

0× ∂α̃2(0, 0)
∂α1

+ f0
∂α̃3(0, 0)

∂α1
+ 0× ∂α̃4(0, 0)

∂α1
+ c1

∂α̃5(0, 0)
∂α1

= 0,

0× ∂α̃2(0, 0)
∂α1

+ 0× ∂α̃3(0, 0)
∂α1

+ a2
∂α̃4(0, 0)

∂α1
+ b2

∂α̃5(0, 0)
∂α1

= 0,

0× ∂α̃2(0, 0)
∂α1

+ 0× ∂α̃3(0, 0)
∂α1

+ 0× ∂α̃4(0, 0)
∂α1

+ a0
∂α̃5(0, 0)

∂α1
= 0.

(B.5)

It is obvious from (B.4) and (B.5) that

∂α̃2(0, 0)
∂α1

=
∂α̃3(0, 0)

∂α1
=

∂α̃4(0, 0)
∂α1

=
∂α̃5(0, 0)

∂α1
= 0. (B.6)

Considering equation (5.1) as i = 1, we have

N1(φ, α1) = X01 + Y11α1 + α̃2 −Φ1(t, X0 + X(φ, α1)) (B.7)

with X0 = (X01, X02, X03, X04, X05), and X = (X1, X2, X3, X4, X5). Thus one obtains

0 =
∂N1(0, 0)

∂φ
=

∂α̃2(0, 0)
∂φ

−
4

∑
i=1

∂Φ1(φ0, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

= e0
∂α̃2(0, 0)

∂φ
+ 0× ∂α̃3(0, 0)

∂φ
+ 0× ∂α̃4(0, 0)

∂φ
+ a1

∂α̃5(0, 0)
∂φ

.

(B.8)

We can similarly obtain from (5.1) as i = 2, 3, 4 that

0 =
∂N2(0, 0)

∂φ
=

∂α̃3(0, 0)
∂φ

+ Φ2(φ0, X0)− (1− φ0)
4

∑
i=1

∂Φ2(φ0, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

= 0× ∂α̃2(0, 0)
∂φ

+ f0
∂α̃3(0, 0)

∂φ
+ 0× ∂α̃4(0, 0)

∂φ
+ c1

∂α̃5(0, 0)
∂φ

+ Φ2(φ0, X0),

0 =
∂N3(0, 0)

∂φ
=

∂α̃4(0, 0)
∂φ

−
4

∑
i=1

∂Φ3(φ0, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

= 0× ∂α̃2(0, 0)
∂φ

+
∂α̃3(0, 0)

∂φ
+ a2

∂α̃4(0, 0)
∂φ

+ b2
∂α̃5(0, 0)

∂φ
,

0 =
∂N4(0, 0)

∂φ
=

∂α̃5(0, 0)
∂φ

−
4

∑
i=1

∂Φ4(φ0, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

= 0× ∂α̃2(0, 0)
∂φ

+ 0× ∂α̃3(0, 0)
∂φ

+ 0× ∂α̃4(0, 0)
∂φ

+ a0 ×
∂α̃5(0, 0)

∂φ
.

(B.9)

From equations (B.8) and (B.9), we get

∂α̃2(0, 0)
∂φ

=
∂α̃4(0, 0)

∂φ
=

∂α̃5(0, 0)
∂φ

= 0,
∂α̃3(0, 0)

∂φ
= −Φ2(X0)

f0
. (B.10)

Since
∂N5(0, 0)

∂Sh
=

∂N5(0, 0)
∂Sm

=
∂N5(0, 0)

∂Rh
= 0,

we can thus observe from (B.1), (B.3), (B.6) and (B.10) that

∂N5(0, 0)
∂α1

=
∂N5(0, 0)

∂φ
= 0.
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Appendix C The second-order partial derivatives of N5(φ, α1) with
respect to φ

From equation (5.3), we have

d
dt

∂Φ4(t, X0)

∂X1
=

∂F4(X̃(t))
∂X1

∂Φ1(t, X0)

∂X1
+

∂F4(X̃(t))
∂X2

∂Φ2(t, X0)

∂X1
+

∂F4(X̃(t))
∂X3

∂Φ3(t, X0)

∂X1

+
∂F4(X̃(t))

∂X4

∂Φ4(t, X0)

∂X1
+

∂F4(X̃(t))
∂X5

∂Φ5(t, X0)

∂X1
.

Then

d
dt

(
∂2Φ4(t, X0)

∂X2
1

)
=

∂2F4(X̃(t))
∂X2

1

∂Φ1(t, X0)

∂X1
+

∂F4(X̃(t))
∂X1

∂2Φ1(t, X0)

∂X2
1

+
∂2F4(X̃(t))

∂X1∂X2

∂Φ2(t, X0)

∂X1

+
∂F4(X̃(t))

∂X2

∂2Φ2(t, X0)

∂X2
1

+
∂2F4(X̃(t))

∂X1∂X3

∂Φ3(t, X0)

∂X1
+

∂F4(X̃(t))
∂X3

∂2Φ3(t, X0)

∂X2
1

+
∂2F4(X̃(t))

∂X1∂X4

∂Φ4(t, X0)

∂X1
+

∂F4(X̃(t))
∂X4

∂2Φ4(t, X0)

∂X2
1

+
∂2F4(X̃(t))

∂X1∂X5

∂Φ5(t, X0)

∂X1

+
∂F4(X̃(t))

∂X5

∂2Φ5(t, X0)

∂X2
1

.

It is obvious that

∂2F4(X̃(t))
∂X2

1
=

∂F4(X̃(t))
∂X1

=
∂2F4(X̃(t))

∂X1∂X2
=

∂2F4(X̃(t))
∂X1∂X3

= 0,

∂F4(X̃(t))
∂X2

=
∂F4(X̃(t))

∂X3
=

∂Φ4(t, X0)

∂X1
=

∂Φ5(t, X0)

∂X1
= 0.

Thus
d
dt

(
∂2Φ4(t, X0)

∂X2
1

)
=

∂F4(X̃(t))
∂X4

∂2Φ4(t, X0)

∂X2
1

+
∂F4(X̃(t))

∂X5

∂2Φ5(t, X0)

∂X2
1

. (C.1)

We can similarly obtain that

d
dt

(
∂2Φ5(t, X0)

∂X2
1

)
=

∂F5(X̃(t))
∂X4

∂2Φ4(t, X0)

∂X2
1

+
∂F5(X̃(t))

∂X5

∂2Φ5(t, X0)

∂X2
1

. (C.2)

Consider the initial conditions

∂2Φ4(0, X0)

∂X2
1

=
∂2Φ5(0, X0)

∂X2
1

= 0,

it can be deduced from (C.1) and (C.2) that

∂2Φ4(t, X0)

∂X2
1

=
∂2Φ5(t, X0)

∂X2
1

= 0.

The same method can be adopted to get that

∂2Φ4(t, X0)

∂X2
2

=
∂2Φ5(t, X0)

∂X2
2

= 0 (C.3)
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and
∂2Φ4(t, X0)

∂X1∂X2
=

∂2Φ4(t, X0)

∂X2∂X1
=

∂2Φ5(t, X0)

∂X1∂X2
=

∂2Φ5(t, X0)

∂X2∂X1
= 0,

∂2Φ4(t, X0)

∂X2∂X3
=

∂2Φ4(t, X0)

∂X3∂X2
=

∂2Φ5(t, X0)

∂X2∂X3
=

∂2Φ5(t, X0)

∂X3∂X2
= 0.

(C.4)

Based on the third equation of (B.9), we have

0 =
∂2N4(0, 0)

∂φ
2 =

∂

∂φ

∂N4(0, 0)
∂φ

=
∂

∂φ

(
∂α̃5(0, 0)

∂φ
−

4

∑
i=1

∂Φ4(t, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

)

=
∂2α̃5(0, 0)

∂φ
2 −

(
∂Φ4(t, X0)

∂X1

∂2α̃2(0, 0)

∂φ
2 +

∂Φ4(t, X0)

∂X2

∂2α̃3(0, 0)

∂φ
2 +

∂Φ4(t, X0)

∂X3

∂2α̃4(0, 0)

∂φ
2

+
∂Φ4(t, X0)

∂X4

∂2α̃5(0, 0)

∂φ
2

)
− ∂α̃2(0, 0)

∂φ

[
∂2Φ4(t, X0)

∂X2
1

∂α̃2(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X1∂X2

∂α̃3(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X1∂X3

∂α̃4(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X1∂X4

∂α̃5(0, 0)
∂φ

]
− ∂α̃3(0, 0)

∂φ

[
∂2Φ4(t, X0)

∂X1∂X2

∂α̃2(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2
2

∂α̃3(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2∂X3

∂α̃4(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2∂X4

∂α̃5(0, 0)
∂φ

]
− ∂α̃4(0, 0)

∂φ

[
∂2Φ4(t, X0)

∂X1∂X3

∂α̃2(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2∂X3

∂α̃3(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2
3

∂α̃4(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X3∂X4

∂α̃5(0, 0)
∂φ

]
− ∂α̃5(0, 0)

∂φ

[
∂2Φ4(t, X0)

∂X1∂X4

∂α̃2(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2∂X4

∂α̃3(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X3∂X4

∂α̃4(0, 0)
∂φ

+
∂2Φ4(t, X0)

∂X2
4

∂α̃5(0, 0)
∂φ

]
.

Substituting (B.10) and (C.3) into the above equation, we have

∂2α̃5(0, 0)

∂φ
2 = 0. (C.5)

Therefore, we can easily get that

∂2N5(0, 0)

∂φ
2 = − (1− φ)

∂α̃3(0, 0)
∂φ

(
∂2Φ5(X0)

∂Sh∂Sm

∂α̃2(0, 0)
∂φ

+
∂2Φ5(X0)

∂S2
m

∂α̃3(0, 0)
∂φ

+
∂2Φ5(X0)

∂Sm∂Rh

∂α̃4(0, 0)
∂φ

+
∂2Φ5(X0)

∂Sm∂Ih

∂α̃5(0, 0)
∂φ

)
− ∂Φ5(X0)

∂Ih

∂2α̃5(0, 0)

∂φ
2 .

(C.6)

Substituting (B.10), (C.3) and (C.5) into (C.6), we have

A =
∂2N5(0, 0)

∂φ
2 = 0.

Appendix D The second-order partial derivatives of N5(φ, α1) with
respect to φ and α1

We will first calculate the value of ∂2α̃5(0, 0)/∂φ∂α1

0 =
∂2N4(0, 0)

∂φ∂α1
=

∂

∂α1

∂N4(0, 0)
∂φ

=
∂2α̃5(0, 0)

∂φ∂α1
− ∂

∂α1

(
4

∑
i=1

∂Φ4(t, X0)

∂Xi

∂α̃i+1(0, 0)
∂φ

)
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=
∂2α̃5(0, 0)

∂φ∂α1
− ∂α̃3(0, 0)

∂φ

[
∂2Φ4(t, X0)

∂X1∂X2

(
Y11 +

∂α̃2(0, 0)
∂α̃1

)
+

∂2Φ4(t, X0)

∂X2
2

(
Y12 +

∂α̃3(0, 0)
∂α̃1

)
+

∂2Φ4(t, X0)

∂X2∂X3

(
Y13 +

∂α̃4(0, 0)
∂α̃1

)
+

∂2Φ4(t, X0)

∂X2∂X4

(
Y14 +

∂α̃5(0, 0)
∂α̃1

)
+

∂2Φ4(t, X0)

∂X2∂X5
Y15

]
− ∂Φ4(t, X0)

∂X1

∂2α̃2(0, 0)
∂α1∂φ

− ∂Φ4(t, X0)

∂X2

∂2α̃3(0, 0)
∂α1∂φ

− ∂Φ4(t, X0)

∂X3

∂2α̃4(0, 0)
∂α1∂φ

− ∂Φ4(t, X0)

∂X4

∂2α̃5(0, 0)
∂α1∂φ

− ∂α̃2(0, 0)
∂α1

∂

∂α1

(
∂Φ4(t, X0)

∂X1

)
− ∂α̃4(0, 0)

∂α1

∂

∂α1

(
∂Φ4(t, X0)

∂X3

)
− ∂α̃5(0, 0)

∂α1

∂

∂α1

(
∂Φ4(t, X0)

∂X4

)
.

Once again, by substituting (B.10), (C.2) and (C.4) into the above equation, we can thus deduce
that

∂2α̃5(0, 0)
∂φ∂α1

= −Φ2(X0))

a0 f0

(
∂2Φ4(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ4(t, X0)

∂Sm∂Im
Y15

)
. (D.1)

It can be calculated that

0 =
∂2N5(0, 0)

∂φ∂α1
=

∂

∂α1

[
(1− φ)

(
−∂Φ5(X0)

∂Sh

∂α̃2(0, 0)
∂φ

− ∂Φ5(X0)

∂Sm

∂α̃3(0, 0)
∂φ

− ∂Φ5(X0)

∂Rh

∂α̃4(0, 0)
∂φ

− ∂Φ5(X0)

∂Ih

∂α̃5(0, 0)
∂φ

)]
= − (1− φ)

∂α̃3(0, 0)
∂φ

[
∂2Φ5(t, X0)

∂Sh∂Sm

(
Y11 +

∂α̃2(0, 0)
∂α̃1

)
+

∂2Φ5(t, X0)

∂S2
m

(
Y12 +

∂α̃3(0, 0)
∂α̃1

)
+

∂2Φ5(t, X0)

∂Sm∂Rh

(
Y13 +

∂α̃4(0, 0)
∂α̃1

)
+

∂2Φ5(t, X0)

∂Sm∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α̃1

)
+

∂2Φ5(t, X0)

∂Sm∂Im
Y15

]
− ∂Φ5(X0)

∂Ih

∂2α̃5(0, 0)
∂φ∂α1

= − (1− φ)
∂α̃3(0, 0)

∂φ

[
∂2Φ5(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ5(t, X0)

∂Sm∂Im
Y15

]
+ ka0

∂2α̃5(0, 0)
∂φ∂α1

. (D.2)

Substituting (D.1) and (B.9) into (D.2), we can easily get

∂2N5(0, 0)
∂φ∂α1

=
Φ2(X0)

f0

[
∂2Φ5(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ5(t, X0)

∂Sm∂Im
Y15

]
− kΦ2(X0))

f0

(
∂2Φ4(t, X0)

∂Sm∂Ih
Y14 +

∂2Φ4(t, X0)

∂Sm∂Im
Y15

)
.

Appendix E The second-order partial derivatives of N5(φ, α1) with
respect to α1

By calculating we have

0 =
∂2N5(0, 0)

∂α2
1

=
∂

∂α1

[
∂N5(0, 0)

∂Sh

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Sm

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Rh

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂N5(0, 0)
∂Im

Y15

]
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= Y11

[
∂2N5(0, 0)

∂S2
h

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sh∂Sm

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sh∂Rh

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sh∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sh∂Im

Y15

]
+ Y12

[
∂2N5(0, 0)

∂Sh∂Sm

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂S2

m

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Rh

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Im

Y15

]
+ Y13

[
∂2N5(0, 0)

∂Sh∂Rh

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Rh

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂R2

h

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Rh∂Ih

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Rh∂Im

Y15

]

+ Y14

[
∂2N5(0, 0)

∂Sh∂Ih

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Ih

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Rh∂Ih

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂I2

h

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Ih∂Im

Y15

]

+ Y15

[
∂2N5(0, 0)

∂Sh∂Im

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Sm∂Im

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Rh∂Im

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂Ih∂Im

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N5(0, 0)
∂I2

m
Y15

]
+

∂N5(0, 0)
∂Ih

∂2α̃5(0, 0)
∂α2

1
=

5

∑
i=1

5

∑
j=1

∂2N5(0, 0)
∂Xi∂Xj

Y1iY1j + c0
∂2α̃5(0, 0)

∂α2
1

.

Consider the equation (B.7) as i = 1, we have

0 =
∂2N1(0, 0)

∂α2
1

=
∂

∂α1

(
∂N1(0, 0)

∂α1

)
=

(
Y11 +

∂α̃2(0, 0)
∂α1

) [
∂2N1(0, 0)

∂X2
1

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X1∂X2

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X1∂X3

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X1∂X4

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X1∂X5

Y15

]
+

(
Y12 +

∂α̃3(0, 0)
∂α1

) [
∂2N1(0, 0)

∂X1∂X2

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2

2

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X3

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X4

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X5

Y15

]
+

(
Y13 +

∂α̃4(0, 0)
∂α1

) [
∂2N1(0, 0)

∂X1∂X3

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X3

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2

3

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X3∂X4

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X3∂X5

Y15

]
+

(
Y14 +

∂α̃5(0, 0)
∂α1

) [
∂2N1(0, 0)

∂X1∂X4

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X4

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X3∂X4

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2

4

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X4∂X5

Y15

]
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+ Y15

[
∂2N1(0, 0)

∂X1∂X5

(
Y11 +

∂α̃2(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2∂X5

(
Y12 +

∂α̃3(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X3∂X5

(
Y13 +

∂α̃4(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X4∂X5

(
Y14 +

∂α̃5(0, 0)
∂α1

)
+

∂2N1(0, 0)
∂X2

5
Y15

]
+

∂N1(0, 0)
∂X1

∂2α̃2(0, 0)
∂α2

1
+

∂N1(0, 0)
∂X2

∂2α̃3(0, 0)
∂α2

1
+

∂N1(0, 0)
∂X3

∂2α̃4(0, 0)
∂α2

1
+

∂N1(0, 0)
∂X4

∂2α̃5(0, 0)
∂α2

1
.

Substituting (B.10) into the above equation, we have

∂N1(0, 0)
∂X1

∂2α̃2(0, 0)
∂α2

1
+

∂N1(0, 0)
∂X4

∂2α̃5(0, 0)
∂α2

1
= −

5

∑
i=1

5

∑
j=1

∂2N1(0, 0)
∂Xi∂Xj

Y1iY1j

=
5

∑
i=1

5

∑
j=1

∂2Φ1(X0)

∂Xi∂Xj
Y1iY1j. (E.1)

We can similarly get from (B.7) as i = 2, 3, 4 that

∂N2(0, 0)
∂X2

∂2α̃3(0, 0)
∂α2

1
+

∂N2(0, 0)
∂X4

∂2α̃5(0, 0)
∂α2

1
= −

5

∑
i=1

5

∑
j=1

∂2N2(0, 0)
∂Xi∂Xj

Y1iY1j

= (1− φ0)
5

∑
i=1

5

∑
j=1

∂2Φ2(X0)

∂Xi∂Xj
Y1iY1j, (E.2)

∂N3(0, 0)
∂X3

∂2α̃4(0, 0)
∂α2

1
+

∂N3(0, 0)
∂X4

∂2α̃5(0, 0)
∂α2

1
= −

5

∑
i=1

5

∑
j=1

∂2N2(0, 0)
∂Xi∂Xj

Y1iY1j

=
5

∑
i=1

5

∑
j=1

∂2Φ3(X0)

∂Xi∂Xj
Y1iY1j, (E.3)

∂N4(0, 0)
∂X4

∂2α̃5(0, 0)
∂α2

1
= −

5

∑
i=1

5

∑
j=1

∂2N4(0, 0)
∂Xi∂Xj

Y1iY1j =
5

∑
i=1

5

∑
j=1

∂2Φ4(X0)

∂Xi∂Xj
Y1iY1j. (E.4)

From equations (E.1)–(E.4), we get

∂2α̃5(0, 0)
∂α2

1
=

1
a0

5

∑
i=1

5

∑
j=1

∂2Φ4(X0)

∂Xi∂Xj
Y1iY1j.

Therefore,
∂2N5(0, 0)

∂α2
1

=
5

∑
i=1

5

∑
j=1

∂2N5(0, 0)
∂Xi∂Xj

Y1iY1j + k
5

∑
i=1

5

∑
j=1

∂2Φ4(X0)

∂Xi∂Xj
Y1iY1j

= −
5

∑
i=1

5

∑
j=1

∂2Φ5(0, 0)
∂Xi∂Xj

Y1iY1j + k
5

∑
i=1

5

∑
j=1

∂2Φ4(X0)

∂Xi∂Xj
Y1iY1j.
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