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Abstract. In this paper we investigate the properties of nonoscillation for

the equation
(=1)"(p()]y"™ P2y — () |y ?y = 0,

where 1 < p < oo and v is a non-negative continuous function and p is a positive
n-times continuously differentiable function on the half - line [0, 00). When the
principle of reciprocity is used for the linear equation (p = 2) we suppose that
the functions v and p are positive and n-times continuously differentiable on the
half - line [0, 00).
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1. Introduction

Let I = [0,00) and 1 < p < co. We consider the following higher order
differential equation

(=1)"(p()[y™ Oy ()™ = )y ?y(t) = 0 (1)
on I, where v is a non-negative continuous function and p is a positive n-times
continuously differentiable function on /. When the principle of reciprocity is
used for the linear equation (p = 2) we suppose that the functions v and p are
positive and n-times continuously differentiable on I.

A function y : I — R is said to be a solution of the equation (1), if y(t) and
p()|y™ () [P~2y ™ (t) are n-times continuously differentiable and y(t) satisfies the
equation (1) on [I.

The equation (1) is called oscillatory at infinity if for any 7" > 0 there exist
points t; > to > T and a nonzero solution y(-) of the equation (1) such that
yD(ty) = 0,7 =0,1,...,n—1, k = 1,2; otherwise the equation (1) is called
nonoscillatory.

If p = 2, then the equation (1) becomes a higher order linear equation

(=)™ (p(t)y"™ ()™ —v(t)y(t) = 0. (2)

In the case n = 1 the oscillatory properties of the equations (1) and (2) have
been enough well studied and there are known various investigation methods (see
[1] and the bibliography therein).
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The variational method to investigate the oscillatory properties of higher
order linear equations and their relations to spectral characteristics of the corre-
sponding differential operators are well presented in the monograph [2]. Another
method is the transition from a higher order linear equation to a Hamilton system
of equations [3]. However, to obtain the conditions of oscillation or nonoscillation
of a higher order linear equation by this method we need to find the principal
solutions of a Hamilton system (see [4,5]) that is not an easy task.

However, the general method of the investigation of the oscillatory properties
for the equation (1) has been not developed yet. In the monograph [1] by O.
Dogly, one of the leading experts in the oscillation theory of half-linear differen-
tial equations, and his colleagues, the oscillation theory of half-linear equations
of higher order is compared with "terra incognita'.

In this book the authors mention that it is possible to use Hardy’s inequality
in the oscillation theory of differential equations. That was done by M. Otelbaev
[6] who found the conditions of oscillation and nonoscillation of Sturm-Liouville’s
equation.

The main aim of this paper is to establish the conditions of oscillation and
nonoscillation of the equations (1) and (2) in terms of their coefficients by ap-
plying the latest results in the theory of weighted Hardy type inequalities.

The paper is organized in the following way: In Section 2 we formulate the
facts and statements, which are required for proofs of the main results. In Section
3 the main results with proofs are presented.

2. Preliminaries

Let Ir = [T,00), T > 0 and 1 < p < oo. Suppose that L, = L,(p, Ir) is
the space of measurable and finite almost everywhere functions f, for which the
following norm

71l = (7p<t>|f<t> |pdt)p

is finite.
We shall consider the weighted Hardy inequality

(7v<t>

T

dt)pgc(fpu)f(t)pdt) N NG )

t

/f(s)ds

T

where C' > 0 does not dependent on f.

For about the last 50 years the inequality (3) has been intensively investigated
and at the present there are numerous criteria for the validity of this inequality.
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The history of this problem and the results of investigations of weighted Hardy
type inequalities are exposed in the book [7].

Let
p
dt

Tot) \f f(s)ds
J(T)=J(p,v;T) = sup T
o#iety T p(t)|f (1) et

The criteria for J(T') to be finite which is equivalent to the validity of the
inequality (3) are given in Theorem A (see [7]).

Theorem A. Let 1 < p < o0.

Then J(T) = J(p,v;T) < oo if and only if A1(T) < oo or As(T) < oo,
where

Ai(T) = Ai(p,v; T) = sup 7v(t)dt (i plp’(S)dS) :

x>T 5

As(T) = As(p,v; T) = sup (7 plp/(s)ds) 7v(t) (/ plp/(s)ds) dt.

x>T T T

Moreover, J(T) can be estimated from above and from below, i.e.,

AL (T) < J(T) < p (]ﬁ)p Ay(T), (4)
Ao(T) < J(T) < (ﬁ)%m, (5)
where % —1—1% =1.

In [8] it is shown that the constant p (}%)p in (4) is the best possible.

Remark. Here and further in theorems the conditions of the type A1(T) <
K < oo mean that there the integrals converge with respect to infinite interval,
and the conditions of the type A1(T) > K allow the divergence of the integrals.

Next, we consider the following expression

00 2
Tl = syt p(s)as| ar
JR(T) = Jn(p7U7T) = sup L 00 .
0#f€L I p()|f(t)[>dt
T

We quote the following result proved in [9)].
Theorem B. J,(T) = J,(p,v;T) < oo if and only if By(T) < oo and
By(T) < oo, where

T

By(T) = Bilp,v; T) = sup [v(t)dt [(x — 52" Vp~!(s)ds,
z>T 5 T
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Bs(T) = Bsy(p,v; T) = sup 7@(75)(75 — x)Q(”_l)dt]p_l(s)ds.

x>T

Moreover, there exists a constant 3 > 1 independent of p,v and T such that
B(T) < Jo(T) < BB(T), (6)

where B(T) = max{B(T), Bo(T)}.

Assume that AC)~'(p, Ir) is a set of all functions f that have absolutely
continuous n — 1 order derivatives on [T, N] for any N > T and f™ € L,. Let
ACI N p, Ir) ={f € AC Yp,Ir) : fNT)=0,i=0,1,...,n—1}.

Suppose that A°CI'~!(p, I7) is a set of all functions from Angl(p, I7) that
are equal to zero in a neighborhood of infinity. The function f from AC]’;il(p, Ir)
is called nontrivial if || f®||, # 0; we write down that f # 0.

From the variational method for higher order linear equations [2] we have:

Theorem C. The equation (2)

(1) is nonoscillatory if and only if there exists T > 0 such that

oo

[e®1F M@ = o) fE))dt > 0 (7)
T
for every nontrivial f € A°CY(p, Ir);
(i1) is_oscillatory if and only if for every T" > 0 there exists a nontrivial

function f € A°CyY(p, I7) such that

oo

[T @F = v(@)] f)P)dt < o. (8)

T

The following statement is due to Theorem 9.4.4 from [1]:
Theorem D. Let 1 < p < oo. If there exists T' > 0 such that

oo

[ 0F = o) £()]7)dt > 0 (9)

T

for all nontrivial f € A°C)~Y(p, It), then the equation (1) is nonoscillatory.
Suppose that W' = W](p, Ir) is a set of functions f that have n order
generalized derivatives on Iy and for which the norm

n—1 )
1w = 1F ) + ZO ST (10)

is finite.
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It is obvious that A°CJ'~'(p, Ir) C ACn_l(p, Ir) C WX (p, Ir). The closures
of the sets AOC””(,O, I7) and AC)7!(p, It) with respect to the norm (10) we

denote by W" W“(p, Ir) and vaL = W'1(p, Ir), respectively. Since p(t) > 0
for t > 0 we have that

fO9Ty=0, i=0,1,..,n—1 (11)
for any f € Wi, (p, I).
3. Main results

In this section we consider nonoscillation of the equations (1) and (2) and
oscillation of the equation (2).

Theorem 1. Let 1 < p < oco. Suppose that v is a non-negative continuous
function and p is a positive and n-times continuously differentiable function on
I. If one of the following conditions

T—00 5T i

1 [m—lﬂ@—lqp (12)

r—1
hm sup (/ P ) /v(t)(t — Tyt <

or

Tlgréo §1>11T) (i plpl(s)ds> 7@(75)(75 — 7)Y (/ plpl(s)ds) dt <

holds, then the equation (1) is nonoscillatory.
Nonoscillation of the equation (2) follows from Theorem 1 with p = 2:

Theorem 2. Suppose that v is a non-negative continuous function and p is
a positive and n-times continuously differentiable function on I. If one of the
following conditions

2
: _ \2(n—1) (n—1)!
Tlglgo 221}/p /U Ot —1T) dt < 5
or
T - t 2 (n 1>| 2
—1 o 2(n—1) —1 — 4
jlgrgoilig (!,0 (s)ds) 7/1v(1€)(t T) (T/p (S)ds) dt < 5 ]
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holds, then the equation (2) is nonoscillatory.
Proof of Theorem 1. If we show that from one of conditions (12) or (13)

it follows that there exists 7' > 0 such that
To(@) (e
FI%O(T) = Fp,()(p,U;T) = sup 00
) T o)l

0£feAOCT Y (p, It

(0.9]

Jo(t)|f(8)["dt
<1, (14)

8l

= sup
osei T )] F0 (1)
then by Theorem D the equation (1) is nonoscillatory.

We define
Jo(O)lf(0)dt

Fpr(T) = Fprlp,v;T) = sup = : (15)
' ' AT T p(e)| £ (1)
T

Since I/I;];‘C W', then
Foo(T) < F,.(T). (16)

From (11) the mapping

1 t

[ =g, f(t)= (&= s)"g(s)ds (17)

—1)!
(n—1)!7
gives one-to-one correspondence of W, and L,. Therefore, replacing f € W],

by g € L, we have
p
dt

(t—s)""'g(s)ds

N—

;fov(t)

=D ozger, T plt)lg(e) e

<

T JenT)

-

¢
%’g(s)ds

1 / v(t)(t — T)P=1
sup

= (0= DI orger, ;’fp(t>|g(t)\pdt

where © = v(t)(t — T)P"~1),

Thus, from the estimates (4) and (5) of Theorem A, we have
—p

X

JoT) (- Dip—1)
RN ”[ .
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xsup [o(t)(t —T)"" D ( / plp’(s)ds> (19)

and

X Sup (7 plpl(s)ds) /zv(t)(t — T)pn=b) (/ plpl(s)ds) dt. (20)

x>T s

If (12) or (13) is satisfied, then there exists 7' > 0 such that the left-hand
side of (19) or (20) respectively becomes less than one. Under the assumptions
of Theorem 1 there exists T' > 0 such that

J(p,0;T)

[(n = 1)1

Then (14) follows from (18) and (16). The proof of Theorem 1 is completed.
Example. We consider the equation

< 1.

n n — n n fy —
(=1)"(ly™ p~2ytmh e — Sl Py =0, (21)

where v € R.
By the proof of Theorem 1 it follows that if

1
tn

(t —s)"Lg(s)ds ’ dt

o9

O —

vF,(0) = 7 sup <1,

[(n = )17 ozger, ;}o\ g(t)|pat

then the equation (21) is nonoscillatory.
By Theorem 329 from [10] we have

p

ra-y) |y (22)

p

1
Here I'(+) is the gamma—function. Using the reduction formula I'(¢+1) = ¢I'(q),

q > 0, we have
1 n 1 1
e - f (e ().
p k=1 p p
Taking into account (22) we obtain that the equation (21) is nonoscillatory if
n 1\P . n
v I (k=) = T =1 23)
k=1 -

k=1

vE,(0) =~
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Let us notice that the condition (23) is obtained in Theorem 9.4.5 in [1] by
another way.

Now, we consider the problem of oscillation of the equation (2).
By Theorem 2 it is easy to prove that if both integrals

7Op_1(3)d8

701)(15)(15 — 72Dy

and

are finite, then the equation (2) is nonoscillatory.
Therefore, we are interested in the case when at least one of these integrals

is infinite.
We start with the case N
/pfl(s)ds = 00. (24)
T
Theorem 3. Let (24) hold. If one of the inequalities
hm sup/p / t)(t — )2Vt > [(n — 1)!)?
T—o0 e>Tp
or .
: (nfl) _1\112
Tlgrolo :sclig/p ds/v(t)dt > [(n —1)!]

holds, then the equation (2) is oscillatory.
Proof of Theorem 3. If we show that

F270(T) > 1 (25)

for any T' > 0, then the equation (2) is oscillatory.

Indeed, from (25) it follows that for every T > 0 there exists a nontrivial
function f € AOCg_l(p, I7) such that the inequality (8) holds. Consequently, by
Theorem C the equation (2) is oscillatory.

According to the results of [11] the condition (24) implies that W2”: W3y
Then
Fyo(T) = Fo1(T) (26)

and from (17) we have

T o) f(t)dt
Foo(T) = sup = =
| 0 [ p(t)| (1)
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N .
- WOEEGPLQ C]Op(t)|g(t)\2dt RCESE (27)

N—

From the estimate (6) of Theorem B it follows that
BI) _, B(T)
[(n =D — [(n— D>
From the left—hand side of the inequality (28) and the assumptions of Theorem
it follows that the inequality (25) holds. Thus, the equation (2) is oscillatory.
The proof of Theorem 3 is completed.

20(T) < fr———% (28)

Let us turn to the equation (2) with parameter A > 0 in the form:
(=1)"(p(t)y™) ™ = Xv(t)y = 0. (29)

If the equation (29) for any A > 0 is oscillatory or nonoscillatory, then the
equation (29) is called strongly oscillatory or strongly nonoscillatory, respectively.

Theorem 4. If the condition (24) is satisfied, then the equation (29)
(1) is strongly nonoscillatory if and only if

lim / p~ / )t — )2 Dt =0 (30)
and N .
Jing [ p7 (s)(@ — 5)2" Vs [o(t)dt = 0; (31)

(i1) is strongly oscillatory if and only if at least one of the following conditions

Jim. sup/p / t)(t — x)? " Vdt = 0o (32)
or N o
Jim sup/pfl(s)(az — 5)2(”*1)ds/v(t)dt = 00. (33)
0 x
holds.

Proof of Theorem 4. Let the equation (29) be nonoscillatory for any A > 0.
Then by the criterion of nonoscillation (7) of Theorem C for every A > 0 there
exists T) > 0 such that A\Fy (7)) < 1. Then Alim F50(Ty) = 0. However, if the

equation (29) is nonoscillatory for A = Ay > 0, then by (7) it is nonoscillatory
for any 0 < A < \g. Therefore, T} does not decrease. Hence
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Thus, from the left—hand side of the inequality (28) and from (34) it follows
that 7lim B(T) =0, where B(T) = max{B;(T), Bo(T)} and

By(T) = Sup/v(t)dt/(x — 5)2=D =Y (s)ds,
z>T 5 T
By (T) = sup/v(t)(t — x)Q(”*l)dt/pfl(s)ds.
xz>T 5 s
Then for any € > 0 there exists T > 0 such that for every x > T we have
[ oM (s)ds [w(t)(t — x)2 Dat < %
T1 T

€

and there exists T, > TE1 such that for every x > T, we have

[ p(s)ds 7@(15)(15 )2 gy <

DO M

since lim Cj’ov(t)(t — 2)2(=Ddt = 0.

Therefore, for every x > T. we have
[ (s)ds [v(t)(t — 2)*" Vit <,
0 T

which means that the equality (30) is satisfied. The equality (31) can be proved
similarly.

Now, we shall prove that if the equalities (30) and (31) hold, then the equation
(29) is strongly nonoscillatory.

Since the equalities (30) and (31) hold, then Tlglgo B(T) = 0. Therefore, from
the right-hand side of the inequality (28) we have the equality (34). Hence for
every A > 0 there exists Ty > 0 such that AF5 (7)) < 1. Then the equation
(29) is strongly nonoscillatory. Thus, (i) is proved.

Let us prove (ii). Let the equation (29) be strongly oscillatory. By Theorem
C we have that A\Fyo(T") > 1 for every A > 0 and for every 7" > 0. Therefore,
Foo(T) > s)\u;g% = oo for every T' > 0.

>

Thus, from the right—hand side of the inequality (28) it follows that B(T") =
oo for every T' > 0, so at least By(T') = oo or By(T') = co. This means that the
equality (32) or (33) holds.

Suppose that for every 7' > 0 one of the conditions (32) or (33) holds. Then
either B1(T) = oo or By(T) = oo. Therefore, B(T') = oo for any T' > 0. Then
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from the left—hand side of the inequality (28) it follows F5o(7) = oo for any
T > 0. Consequently, A[F5o(T") > 1 for any A > 0 and 7" > 0, which by (8)
means the oscillation of the equation (29) for A > 0.

The proof of Theorem 4 is completed.
Corollary 1. Let T > 0. If the conditions (24) and

7Ov(t)(t — T2 Dt = o0

are satisfied, then the equation (2) is strongly oscillatory.
As an example let us consider the equation

(—1)" (o™ \u(t)y(t) =0, (35)

where o > 0 and v is a non—negative continuous function on /. Since o > 0,
then the conditions (24) for the equation (35) is valid.

Since ,
/Sa(ﬂj . S)Q(n—1)d8 _ x2n—1+a/8a(1 . S)Q(n—l)d87
0 0

then the conditions (31) and (33) for the equation (35) are respectively equivalent
to the conditions

Jim. .TQn_H_a/U(t)dt =0, (36)
lim sup xQ”_HO‘/U(t)dt = oo0. (37)

xT

Using the L’Hospital rule 2(n — 1) times it is easy to see that from (36) it
follows the condition (30)

o

Jim gt /v(t)(t — )X Ugt =0

for the equation (35).

Thus, by Theorem 4 the equation (35) is strongly nonoscillatory if and only
if (36) is correct. Moreover, it is strongly oscillatory if and only if (37) is correct.
This yields for a« = 0 the validity of Theorems 15 and 16 from the monograph
2].

Now, we use Theorem 3 to the equation (35) for A = 1. Let k =

lim supfso‘(x — 5)2(n=1) (s Cj’ov(t)dt and v > 1.
T—00 p>TT z
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00 yr 00
sup/so‘(:c — 5)2(”*1)ds/v(t)dt > /so‘('yT — 5)2n s / v(t)dt =
z T T

x>TT
_ 1 ]Sa( . S)Q(n—l)ds( T)Qn—l—i—a 7U(t)dt
o 72n—1+a v v )
1 ~T
If
/ n—1) -t [ 2

su s*(y ds lim z*" 1 [v(t)dt > [(n — 1)!]%, 38
up ] 5 Jig 271 [o()dt > [(n= DI, (38)

then k& > [(n — 1)!]? and by Theorem 3 the equation (35) is oscillatory.

In [12] the exact values of the oscillation constants of the equation (35) are
obtained for the different values o € R. Moreover, there in Proposition 2.2
the main oscillation conditions found before are collected. If we compare the
conditions (38) and the conditions from Proposition 2.2 for o > 0, we can see
that the conditions (38) are better than the conditions from Proposition 2.2. For
example, when n = 2 and a = 0 we have that

1/ ) 1 ( 1)3 1
su —8)ds=—=-sup|(1l——| =-.
V>I1)'V /(’V ) 37>Il) Y 3

Therefore, from (38) it follows that the equation y!V(¢) = v(t)y(t) is oscillatory
if lim 2° Cj’ov(t)dt > 3. The analogous condition from Proposition 2.2 has the
form lim 2? C]’Ov(t)dt > 12.
L5500 T
Next, we assume that the functions v and p are positive and n-times contin-

uously differentiable on I. Then by the principle of reciprocity [4] the equation
(2) and the reciprocal equation

(—1)" (0 (Oy™) ™ = p )y =0 (39)

are simultaneously oscillatory or nonoscillatory. Applying the principle of reci-
procity we obtain the following theorems.

Theorem 5. Let functions v and p be positive and n-times continuously
differentiable on I. Then, if one of the following conditions

(n21)!r,

xT

lim sup v(t)dt/pfl(s)(s — T2 Nds <

THOOx>TT
or
T oz 2 1) 2
lim sup /v t)dt /,0 (s — 7)Y /v tydt| ds < (n— )]
T=o0e>T \7 T T 2
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holds, then the equation (2) is nonoscillatory.

Indeed, if the condition of Theorem 5 is satisfied, then by Theorem 2 the
equation (39) is nonoscillatory. Therefore, the equation (2) is also nonoscillatory.
In the case of

7v(t)dt — (40)

the following theorem is valid.

Theorem 6. Suppose that v and p are positive n-times continuously dif-
ferentiable functions on I. Let the condition (40) hold. Then, if one of the
following inequalities

lim sup/v(t)dt/pfl(s)(s — 2)2Yds > [(n — 1)1]?
T—o0 v>T 4

or

lim sup/v(t)(a: —1)2=Ugy 70p1(8)d8 > [(n— 1)1]?

T—o0 e>T
holds, then the equation (2) is oscillatory.
The proofs of this theorem and the following theorem are based on the prin-
ciple of reciprocity.

Theorem 7. Suppose that v and p is positive and n-times continuously
differentiable functions on I. Let the condition (40) hold. Then the equation

(29)

(1) is strongly nonoscillatory if and only if

X

Jim v(t)dt/pfl(s)(s —2)2Yds =0

0

and N .
dim [ o) (z — t)Q(”*l)dt/pfl(s)ds = 0;
0 x

(1) is strongly oscillatory if and only if one of the following conditions

Jim sup/v(t)dt/p_l(s)(s —2)2Nds = 0
0 z

or

Jim. sup/v(t)(a: — t)Q(”*l)dt/pfl(s)ds = 00
0 x

holds.
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Corollary 2. Let T > 0. If the conditions (40) and
[p @) = 1) Vit = oo
T
are satisfied, then the equation (2) is strongly oscillatory.
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