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illation and nonos
illation of two terms linearand half-linear equations of higher orderR. Oinarov and S. Y. RakhimovaL.N. Gumilev Eurasian National Universityo_ryskul�mail.ru, rakhimova.salta�mail.ruAbstra
t. In this paper we investigate the properties of nonos
illation forthe equation
(−1)n(ρ(t)|y(n)|p−2y(n))(n) − v(t)|y|p−2y = 0,where 1 < p < ∞ and v is a non-negative 
ontinuous fun
tion and ρ is a positive

n-times 
ontinuously di�erentiable fun
tion on the half - line [0,∞). When theprin
iple of re
ipro
ity is used for the linear equation (p = 2) we suppose thatthe fun
tions v and ρ are positive and n-times 
ontinuously di�erentiable on thehalf - line [0,∞).Mathemati
s Subje
t Classi�
ation. 34C10.Key words and phrases. Os
illation, nonos
illation, higher order half�linear di�erential equation, variational method, weighted Hardy type inequalities.1. Introdu
tionLet I = [0,∞) and 1 < p < ∞. We 
onsider the following higher orderdi�erential equation
(−1)n(ρ(t)|y(n)(t)|p−2y(n)(t))(n) − v(t)|y(t)|p−2y(t) = 0 (1)on I, where v is a non-negative 
ontinuous fun
tion and ρ is a positive n-times
ontinuously di�erentiable fun
tion on I. When the prin
iple of re
ipro
ity isused for the linear equation (p = 2) we suppose that the fun
tions v and ρ arepositive and n-times 
ontinuously di�erentiable on I.A fun
tion y : I → R is said to be a solution of the equation (1), if y(t) and

ρ(t)|y(n)(t)|p−2y(n)(t) are n-times 
ontinuously di�erentiable and y(t) satis�es theequation (1) on I.The equation (1) is 
alled os
illatory at in�nity if for any T ≥ 0 there existpoints t1 > t2 > T and a nonzero solution y(·) of the equation (1) su
h that
y(i)(tk) = 0, i = 0, 1, ..., n − 1, k = 1, 2; otherwise the equation (1) is 
allednonos
illatory.If p = 2, then the equation (1) be
omes a higher order linear equation

(−1)(n)(ρ(t)y(n)(t))(n) − v(t)y(t) = 0. (2)In the 
ase n = 1 the os
illatory properties of the equations (1) and (2) havebeen enough well studied and there are known various investigation methods (see[1℄ and the bibliography therein). EJQTDE, 2010 No. 49, p. 1



The variational method to investigate the os
illatory properties of higherorder linear equations and their relations to spe
tral 
hara
teristi
s of the 
orre-sponding di�erential operators are well presented in the monograph [2℄. Anothermethod is the transition from a higher order linear equation to a Hamilton systemof equations [3℄. However, to obtain the 
onditions of os
illation or nonos
illationof a higher order linear equation by this method we need to �nd the prin
ipalsolutions of a Hamilton system (see [4,5℄) that is not an easy task.However, the general method of the investigation of the os
illatory propertiesfor the equation (1) has been not developed yet. In the monograph [1℄ by O.Do�sl�y, one of the leading experts in the os
illation theory of half�linear di�eren-tial equations, and his 
olleagues, the os
illation theory of half�linear equationsof higher order is 
ompared with "terra in
ognita".In this book the authors mention that it is possible to use Hardy's inequalityin the os
illation theory of di�erential equations. That was done by M. Otelbaev[6℄ who found the 
onditions of os
illation and nonos
illation of Sturm-Liouville'sequation.The main aim of this paper is to establish the 
onditions of os
illation andnonos
illation of the equations (1) and (2) in terms of their 
oe�
ients by ap-plying the latest results in the theory of weighted Hardy type inequalities.The paper is organized in the following way: In Se
tion 2 we formulate thefa
ts and statements, whi
h are required for proofs of the main results. In Se
tion3 the main results with proofs are presented.2. PreliminariesLet IT = [T,∞), T ≥ 0 and 1 < p < ∞. Suppose that Lp ≡ Lp(ρ, IT ) isthe spa
e of measurable and �nite almost everywhere fun
tions f , for whi
h thefollowing norm
‖f‖p,ρ =







∞
∫

T

ρ(t)|f(t)|pdt







1
pis �nite.We shall 
onsider the weighted Hardy inequality







∞
∫

T

v(t)

∣

∣

∣

∣

∣

∣

∣

t
∫

T

f(s)ds

∣

∣

∣

∣

∣

∣

∣

p

dt







1
p

≤ C







∞
∫

T

ρ(t)|f(t)|pdt







1
p

, f ∈ Lp, (3)where C > 0 does not dependent on f .For about the last 50 years the inequality (3) has been intensively investigatedand at the present there are numerous 
riteria for the validity of this inequality.EJQTDE, 2010 No. 49, p. 2



The history of this problem and the results of investigations of weighted Hardytype inequalities are exposed in the book [7℄.Let
J(T ) ≡ J(ρ, v; T ) = sup

0 6=f∈Lp

∞
∫

T
v(t)

∣

∣

∣

∣

∣

t
∫

T
f(s)ds

∣

∣

∣

∣

∣

p

dt

∞
∫

T
ρ(t)|f(t)|pdt

.The 
riteria for J(T ) to be �nite whi
h is equivalent to the validity of theinequality (3) are given in Theorem A (see [7℄).Theorem A. Let 1 < p < ∞.Then J(T ) ≡ J(ρ, v; T ) < ∞ if and only if A1(T ) < ∞ or A2(T ) < ∞,where
A1(T ) ≡ A1(ρ, v; T ) = sup

x>T

∞
∫

x

v(t)dt







x
∫

T

ρ1−p′(s)ds







p−1

,

A2(T ) ≡ A2(ρ, v; T ) = sup
x>T







x
∫

T

ρ1−p′(s)ds







−1 x
∫

T

v(t)







t
∫

T

ρ1−p′(s)ds







p

dt.Moreover, J(T ) 
an be estimated from above and from below, i.e.,
A1(T ) ≤ J(T ) ≤ p

(

p

p − 1

)p−1

A1(T ), (4)

A2(T ) ≤ J(T ) ≤

(

p

p − 1

)p

A2(T ), (5)where 1
p

+ 1
p′

= 1.In [8℄ it is shown that the 
onstant p
(

p
p−1

)p−1 in (4) is the best possible.Remark. Here and further in theorems the 
onditions of the type A1(T ) ≤
K < ∞ mean that there the integrals 
onverge with respe
t to in�nite interval,and the 
onditions of the type A1(T ) ≥ K allow the divergen
e of the integrals.Next, we 
onsider the following expression

Jn(T ) ≡ Jn(ρ, v; T ) = sup
0 6=f∈L2

∞
∫

T

∣

∣

∣

∣

∣

t
∫

T
(t − s)n−1f(s)ds

∣

∣

∣

∣

∣

2

dt

∞
∫

T
ρ(t)|f(t)|2dt

.We quote the following result proved in [9℄.Theorem B. Jn(T ) ≡ Jn(ρ, v; T ) < ∞ if and only if B1(T ) < ∞ and
B2(T ) < ∞, where

B1(T ) ≡ B1(ρ, v; T ) = sup
x>T

∞
∫

x

v(t)dt

x
∫

T

(x − s)2(n−1)ρ−1(s)ds,EJQTDE, 2010 No. 49, p. 3



B2(T ) ≡ B2(ρ, v; T ) = sup
x>T

∞
∫

x

v(t)(t − x)2(n−1)dt

x
∫

T

ρ−1(s)ds.Moreover, there exists a 
onstant β ≥ 1 independent of ρ, v and T su
h that
B(T ) ≤ Jn(T ) ≤ βB(T ), (6)where B(T ) = max{B1(T ), B2(T )}.Assume that ACn−1

p (ρ, IT ) is a set of all fun
tions f that have absolutely
ontinuous n − 1 order derivatives on [T, N ] for any N > T and f (n) ∈ Lp. Let
ACn−1

p,L (ρ, IT ) = {f ∈ ACn−1
p (ρ, IT ) : f (i)(T ) = 0, i = 0, 1, ..., n− 1}.Suppose that A0Cn−1

p (ρ, IT ) is a set of all fun
tions from ACn−1
p,L (ρ, IT ) thatare equal to zero in a neighborhood of in�nity. The fun
tion f from ACn−1

p,L (ρ, IT )is 
alled nontrivial if ‖f (n)‖p 6= 0; we write down that f 6= 0.From the variational method for higher order linear equations [2℄ we have:Theorem C. The equation (2)(i) is nonos
illatory if and only if there exists T ≥ 0 su
h that
∞
∫

T

(ρ(t)|f (n)(t)|2 − v(t)|f(t)|2)dt > 0 (7)for every nontrivial f ∈ A0Cn−1
2 (ρ, IT );(ii) is os
illatory if and only if for every T ≥ 0 there exists a nontrivialfun
tion f̃ ∈ A0Cn−1

2 (ρ, IT ) su
h that
∞
∫

T

(ρ(t)|f̃ (n)(t)|2 − v(t)|f̃(t)|2)dt ≤ 0. (8)The following statement is due to Theorem 9.4.4 from [1℄:Theorem D. Let 1 < p < ∞. If there exists T ≥ 0 su
h that
∞
∫

T

(ρ(t)|f (n)(t)|p − v(t)|f(t)|p)dt > 0 (9)for all nontrivial f ∈ A0Cn−1
p (ρ, IT ), then the equation (1) is nonos
illatory.Suppose that W n

p ≡ W n
p (ρ, IT ) is a set of fun
tions f that have n ordergeneralized derivatives on IT and for whi
h the norm

‖f‖Wn
p

= ‖f (n)‖p +
n−1
∑

i=0

|f (i)(T )| (10)is �nite. EJQTDE, 2010 No. 49, p. 4



It is obvious that A0Cn−1
p (ρ, IT ) ⊂ ACn−1

p,L (ρ, IT ) ⊂ W n
p (ρ, IT ). The 
losuresof the sets A0Cn−1

p (ρ, IT ) and ACn−1
p,L (ρ, IT ) with respe
t to the norm (10) wedenote by W n

◦

p ≡ W n
◦

p(ρ, IT ) and W n
p,L ≡ W n

p,L(ρ, IT ), respe
tively. Sin
e ρ(t) > 0for t ≥ 0 we have that
f (i)(T ) = 0, i = 0, 1, ..., n− 1 (11)for any f ∈ W n

p,L(ρ, IT ). 3. Main resultsIn this se
tion we 
onsider nonos
illation of the equations (1) and (2) andos
illation of the equation (2).Theorem 1. Let 1 < p < ∞. Suppose that v is a non-negative 
ontinuousfun
tion and ρ is a positive and n-times 
ontinuously di�erentiable fun
tion on
I. If one of the following 
onditions

lim
T→∞

sup
x>T







x
∫

T

ρ1−p′(s)ds







p−1 ∞
∫

x

v(t)(t− T )p(n−1)dt <

<
1

p − 1





(n − 1)!(p − 1)

p





p

(12)or
lim

T→∞
sup
x>T







x
∫

T

ρ1−p′(s)ds







−1 x
∫

T

v(t)(t− T )p(n−1)







t
∫

T

ρ1−p′(s)ds







p

dt <

<





(n − 1)!(p− 1)

p





p

(13)holds, then the equation (1) is nonos
illatory.Nonos
illation of the equation (2) follows from Theorem 1 with p = 2:Theorem 2. Suppose that v is a non-negative 
ontinuous fun
tion and ρ isa positive and n-times 
ontinuously di�erentiable fun
tion on I. If one of thefollowing 
onditions
lim

T→∞
sup
x>T

x
∫

T

ρ−1(s)ds

∞
∫

x

v(t)(t− T )2(n−1)dt <





(n − 1)!

2





2or
lim

T→∞
sup
x>T







x
∫

T

ρ−1(s)ds







−1 x
∫

T

v(t)(t − T )2(n−1)







t
∫

T

ρ−1(s)ds







2

dt <





(n − 1)!

2




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holds, then the equation (2) is nonos
illatory.Proof of Theorem 1. If we show that from one of 
onditions (12) or (13)it follows that there exists T ≥ 0 su
h that
Fp,0(T ) ≡ Fp,0(ρ, v; T ) = sup

0 6=f∈A0Cn−1
p (ρ,IT )

∞
∫

T
v(t)|f(t)|pdt

∞
∫

T
ρ(t)|f (n)(t)|pdt

= sup
0 6=f∈Wn

◦

p

∞
∫

T
v(t)|f(t)|pdt

∞
∫

T
ρ(t)|f (n)(t)|pdt

< 1, (14)then by Theorem D the equation (1) is nonos
illatory.We de�ne
Fp,L(T ) ≡ Fp,L(ρ, v; T ) = sup

0 6=f∈Wn
p,L

∞
∫

T
v(t)|f(t)|pdt

∞
∫

T
ρ(t)|f (n)(t)|pdt

. (15)Sin
e W n
◦

p ⊂ W n
p,L, then

Fp,0(T ) ≤ Fp,L(T ). (16)From (11) the mapping
f (n) = g, f(t) =

1

(n − 1)!

t
∫

T

(t − s)n−1g(s)ds (17)gives one-to-one 
orresponden
e of W n
p,L and Lp. Therefore, repla
ing f ∈ W n

p,Lby g ∈ Lp we have
Fp,L(T ) =

1

[(n − 1)!]p
sup

0 6=g∈Lp

∞
∫

T
v(t)

∣

∣

∣

∣

∣

t
∫

T
(t − s)n−1g(s)ds

∣

∣

∣

∣

∣

p

dt

∞
∫

T
ρ(t)|g(t)|pdt

≤

≤
1

[(n − 1)!]p
sup

0 6=g∈Lp

∞
∫

T
v(t)(t − T )p(n−1)

∣

∣

∣

∣

∣

t
∫

T
g(s)ds

∣

∣

∣

∣

∣

p

dt

∞
∫

T
ρ(t)|g(t)|pdt

=
J(ρ, ṽ; T )

[(n − 1)!]p
, (18)where ṽ = v(t)(t − T )p(n−1).Thus, from the estimates (4) and (5) of Theorem A, we have

J(ρ, ṽ; T )

[(n − 1)!]p
≤ (p − 1)





(n − 1)!(p − 1)

p





−p

×EJQTDE, 2010 No. 49, p. 6



× sup
x>T

∞
∫

x

v(t)(t − T )p(n−1)dt







x
∫

T

ρ1−p′(s)ds







p−1

(19)and
J(ρ, ṽ; T )

[(n − 1)!]p
≤





(n − 1)!(p− 1)

p





−p

×

× sup
x>T







x
∫

T

ρ1−p′(s)ds







−1 x
∫

T

v(t)(t − T )p(n−1)







t
∫

T

ρ1−p′(s)ds







p

dt. (20)If (12) or (13) is satis�ed, then there exists T ≥ 0 su
h that the left�handside of (19) or (20) respe
tively be
omes less than one. Under the assumptionsof Theorem 1 there exists T ≥ 0 su
h that
J(ρ, ṽ; T )

[(n − 1)!]p
< 1.Then (14) follows from (18) and (16). The proof of Theorem 1 is 
ompleted.Example. We 
onsider the equation

(−1)n(|y(n)|p−2y(n))(n) −
γ

tnp
|y|p−2y = 0, (21)where γ ∈ R.By the proof of Theorem 1 it follows that if

γFp,L(0) =
γ

[(n − 1)!]p
sup

0 6=g∈Lp

∞
∫

0

∣

∣

∣

∣

∣

1
tn

t
∫

0
(t − s)n−1g(s)ds

∣

∣

∣

∣

∣

p

dt

∞
∫

0
|g(t)|pdt

< 1,then the equation (21) is nonos
illatory.By Theorem 329 from [10℄ we have
γFp,L(0) = γ









Γ(1 − 1
p
)

Γ
(

n + 1 − 1
p

)









p

< 1. (22)Here Γ(·) is the gamma�fun
tion. Using the redu
tion formula Γ(q+1) = qΓ(q),
q > 0, we have

Γ

(

n + 1 −
1

p

)

=
n
∏

k=1

(

k −
1

p

)

Γ

(

1 −
1

p

)

.Taking into a

ount (22) we obtain that the equation (21) is nonos
illatory if
γ <

n
∏

k=1

(

k −
1

p

)p

= p−np
n
∏

k=1

(kp − 1)p. (23)EJQTDE, 2010 No. 49, p. 7



Let us noti
e that the 
ondition (23) is obtained in Theorem 9.4.5 in [1℄ byanother way.Now, we 
onsider the problem of os
illation of the equation (2).By Theorem 2 it is easy to prove that if both integrals
∞
∫

T

ρ−1(s)dsand
∞
∫

T

v(t)(t− T )2(n−1)dtare �nite, then the equation (2) is nonos
illatory.Therefore, we are interested in the 
ase when at least one of these integralsis in�nite.We start with the 
ase
∞
∫

T

ρ−1(s)ds = ∞. (24)Theorem 3. Let (24) hold. If one of the inequalities
lim

T→∞
sup
x>T

x
∫

T

ρ−1(s)ds
∞
∫

x

v(t)(t− x)2(n−1)dt > [(n − 1)!]2or
lim

T→∞
sup
x>T

x
∫

T

ρ−1(s)(x − s)2(n−1)ds

∞
∫

x

v(t)dt > [(n − 1)!]2holds, then the equation (2) is os
illatory.Proof of Theorem 3. If we show that
F2,0(T ) > 1 (25)for any T ≥ 0, then the equation (2) is os
illatory.Indeed, from (25) it follows that for every T ≥ 0 there exists a nontrivialfun
tion f̃ ∈ A0Cn−1

p (ρ, IT ) su
h that the inequality (8) holds. Consequently, byTheorem C the equation (2) is os
illatory.A

ording to the results of [11℄ the 
ondition (24) implies that W n
◦

2 = W n
2,L.Then

F2,0(T ) = F2,L(T ) (26)and from (17) we have
F2,0(T ) = sup

0 6=f∈Wn
2,L

∞
∫

T
v(t)|f(t)|2dt

∞
∫

T
ρ(t)|f (n)(t)|2dt

=EJQTDE, 2010 No. 49, p. 8



=
1

[(n − 1)!]2
sup

0 6=g∈L2

∞
∫

T
v(t)

∣

∣

∣

∣

∣

t
∫

T
(t − s)n−1g(s)ds

∣

∣

∣

∣

∣

2

dt

∞
∫

T
ρ(t)|g(t)|2dt

=
Jn(T )

[(n − 1)!]2
. (27)From the estimate (6) of Theorem B it follows that

B(T )

[(n − 1)!]2
≤ F2,0(T ) ≤ β

B(T )

[(n − 1)!]2
. (28)From the left�hand side of the inequality (28) and the assumptions of Theoremit follows that the inequality (25) holds. Thus, the equation (2) is os
illatory.The proof of Theorem 3 is 
ompleted.Let us turn to the equation (2) with parameter λ > 0 in the form:

(−1)n(ρ(t)y(n))(n) − λv(t)y = 0. (29)If the equation (29) for any λ > 0 is os
illatory or nonos
illatory, then theequation (29) is 
alled strongly os
illatory or strongly nonos
illatory, respe
tively.Theorem 4. If the 
ondition (24) is satis�ed, then the equation (29)(i) is strongly nonos
illatory if and only if
lim
x→∞

x
∫

0

ρ−1(s)ds

∞
∫

x

v(t)(t− x)2(n−1)dt = 0 (30)and
lim
x→∞

x
∫

0

ρ−1(s)(x − s)2(n−1)ds
∞
∫

x

v(t)dt = 0; (31)(ii) is strongly os
illatory if and only if at least one of the following 
onditions
lim
x→∞

sup
x
∫

0

ρ−1(s)ds

∞
∫

x

v(t)(t − x)2(n−1)dt = ∞ (32)or
lim
x→∞

sup
x
∫

0

ρ−1(s)(x − s)2(n−1)ds

∞
∫

x

v(t)dt = ∞. (33)holds.Proof of Theorem 4. Let the equation (29) be nonos
illatory for any λ > 0.Then by the 
riterion of nonos
illation (7) of Theorem C for every λ > 0 thereexists Tλ ≥ 0 su
h that λF2,0(Tλ) ≤ 1. Then lim
λ→∞

F2,0(Tλ) = 0. However, if theequation (29) is nonos
illatory for λ = λ0 > 0, then by (7) it is nonos
illatoryfor any 0 < λ ≤ λ0. Therefore, Tλ does not de
rease. Hen
e
lim

T→∞
F2,0(T ) = 0. (34)EJQTDE, 2010 No. 49, p. 9



Thus, from the left�hand side of the inequality (28) and from (34) it followsthat lim
T→∞

B(T ) = 0, where B(T ) = max{B1(T ), B2(T )} and
B1(T ) = sup

x>T

∞
∫

x

v(t)dt

x
∫

T

(x − s)2(n−1)ρ−1(s)ds,

B2(T ) = sup
x>T

∞
∫

x

v(t)(t − x)2(n−1)dt
x
∫

T

ρ−1(s)ds.Then for any ε > 0 there exists T 1
ε > 0 su
h that for every x ≥ T 1

ε we have
x
∫

T 1
ε

ρ−1(s)ds

∞
∫

x

v(t)(t − x)2(n−1)dt ≤
ε

2and there exists Tε ≥ T 1
ε su
h that for every x ≥ Tε we have

T 1
ε
∫

0

ρ−1(s)ds

∞
∫

x

v(t)(t − x)2(n−1)dt ≤
ε

2sin
e lim
x→∞

∞
∫

x
v(t)(t − x)2(n−1)dt = 0.Therefore, for every x ≥ Tε we have

x
∫

0

ρ−1(s)ds

∞
∫

x

v(t)(t − x)2(n−1)dt ≤ ε,whi
h means that the equality (30) is satis�ed. The equality (31) 
an be provedsimilarly.Now, we shall prove that if the equalities (30) and (31) hold, then the equation(29) is strongly nonos
illatory.Sin
e the equalities (30) and (31) hold, then lim
T→∞

B(T ) = 0. Therefore, fromthe right�hand side of the inequality (28) we have the equality (34). Hen
e forevery λ > 0 there exists Tλ ≥ 0 su
h that λF2,0(Tλ) < 1. Then the equation(29) is strongly nonos
illatory. Thus, (i) is proved.Let us prove (ii). Let the equation (29) be strongly os
illatory. By TheoremC we have that λF2,0(T ) ≥ 1 for every λ > 0 and for every T ≥ 0. Therefore,
F2,0(T ) ≥ sup

λ>0

1
λ

= ∞ for every T ≥ 0.Thus, from the right�hand side of the inequality (28) it follows that B(T ) =
∞ for every T ≥ 0, so at least B1(T ) = ∞ or B2(T ) = ∞. This means that theequality (32) or (33) holds.Suppose that for every T ≥ 0 one of the 
onditions (32) or (33) holds. Theneither B1(T ) = ∞ or B2(T ) = ∞. Therefore, B(T ) = ∞ for any T ≥ 0. ThenEJQTDE, 2010 No. 49, p. 10



from the left�hand side of the inequality (28) it follows F2,0(T ) = ∞ for any
T ≥ 0. Consequently, λF2,0(T ) > 1 for any λ > 0 and T ≥ 0, whi
h by (8)means the os
illation of the equation (29) for λ > 0.The proof of Theorem 4 is 
ompleted.Corollary 1. Let T ≥ 0. If the 
onditions (24) and

∞
∫

T

v(t)(t − T )2(n−1)dt = ∞are satis�ed, then the equation (2) is strongly os
illatory.As an example let us 
onsider the equation
(−1)n

(

t−αy(n)(t)
)(n)

− λv(t)y(t) = 0, (35)where α ≥ 0 and v is a non�negative 
ontinuous fun
tion on I. Sin
e α ≥ 0,then the 
onditions (24) for the equation (35) is valid.Sin
e
x
∫

0

sα(x − s)2(n−1)ds = x2n−1+α
1
∫

0

sα(1 − s)2(n−1)ds,then the 
onditions (31) and (33) for the equation (35) are respe
tively equivalentto the 
onditions
lim
x→∞

x2n−1+α
∞
∫

x

v(t)dt = 0, (36)

lim
x→∞

sup x2n−1+α
∞
∫

x

v(t)dt = ∞. (37)Using the L'Hospital rule 2(n − 1) times it is easy to see that from (36) itfollows the 
ondition (30)
lim
x→∞

xα+1
∞
∫

x

v(t)(t− x)2(n−1)dt = 0for the equation (35).Thus, by Theorem 4 the equation (35) is strongly nonos
illatory if and onlyif (36) is 
orre
t. Moreover, it is strongly os
illatory if and only if (37) is 
orre
t.This yields for α = 0 the validity of Theorems 15 and 16 from the monograph[2℄.Now, we use Theorem 3 to the equation (35) for λ = 1. Let k =

lim
T→∞

sup
x>T

x
∫

T
sα(x − s)2(n−1)ds

∞
∫

x
v(t)dt and γ > 1.

EJQTDE, 2010 No. 49, p. 11



Then
sup
x>T

x
∫

T

sα(x − s)2(n−1)ds

∞
∫

x

v(t)dt ≥
γT
∫

T

sα(γT − s)2(n−1)ds

∞
∫

γT

v(t)dt =

=
1

γ2n−1+α

γ
∫

1

sα(γ − s)2(n−1)ds(γT )2n−1+α
∞
∫

γT

v(t)dt.If
sup
γ>1

1

γ2n−1+α

γ
∫

1

sα(γ − s)2(n−1)ds lim
x→∞

x2n−1+α
∞
∫

x

v(t)dt > [(n − 1)!]2, (38)then k > [(n − 1)!]2 and by Theorem 3 the equation (35) is os
illatory.In [12℄ the exa
t values of the os
illation 
onstants of the equation (35) areobtained for the di�erent values α ∈ R. Moreover, there in Proposition 2.2the main os
illation 
onditions found before are 
olle
ted. If we 
ompare the
onditions (38) and the 
onditions from Proposition 2.2 for α ≥ 0, we 
an seethat the 
onditions (38) are better than the 
onditions from Proposition 2.2. Forexample, when n = 2 and α = 0 we have that
sup
γ>1

1

γ3

γ
∫

1

(γ − s)2ds =
1

3
sup
γ>1

(

1 −
1

γ

)3

=
1

3
.Therefore, from (38) it follows that the equation yIV (t) = v(t)y(t) is os
illatoryif lim

x→∞
x3

∞
∫

x
v(t)dt > 3. The analogous 
ondition from Proposition 2.2 has theform lim

x→∞
x3

∞
∫

x
v(t)dt > 12.Next, we assume that the fun
tions v and ρ are positive and n-times 
ontin-uously di�erentiable on I. Then by the prin
iple of re
ipro
ity [4℄ the equation(2) and the re
ipro
al equation

(−1)n(v−1(t)y(n))(n) − ρ−1(t)y = 0 (39)are simultaneously os
illatory or nonos
illatory. Applying the prin
iple of re
i-pro
ity we obtain the following theorems.Theorem 5. Let fun
tions v and ρ be positive and n-times 
ontinuouslydi�erentiable on I. Then, if one of the following 
onditions
lim

T→∞
sup
x>T

x
∫

T

v(t)dt

∞
∫

x

ρ−1(s)(s − T )2(n−1)ds <





(n − 1)!

2





2

,or
lim

T→∞
sup
x>T







x
∫

T

v(t)dt







−1 x
∫

T

ρ−1(s)(s− T )2(n−1)







s
∫

T

v(t)dt







2

ds <





(n − 1)!

2





2EJQTDE, 2010 No. 49, p. 12



holds, then the equation (2) is nonos
illatory.Indeed, if the 
ondition of Theorem 5 is satis�ed, then by Theorem 2 theequation (39) is nonos
illatory. Therefore, the equation (2) is also nonos
illatory.In the 
ase of
∞
∫

T

v(t)dt = ∞ (40)the following theorem is valid.Theorem 6. Suppose that v and ρ are positive n-times 
ontinuously dif-ferentiable fun
tions on I. Let the 
ondition (40) hold. Then, if one of thefollowing inequalities
lim

T→∞
sup
x>T

x
∫

T

v(t)dt
∞
∫

x

ρ−1(s)(s− x)2(n−1)ds > [(n − 1)!]2or
lim

T→∞
sup
x>T

x
∫

T

v(t)(x − t)2(n−1)dt

∞
∫

x

ρ−1(s)ds > [(n − 1)!]2holds, then the equation (2) is os
illatory.The proofs of this theorem and the following theorem are based on the prin-
iple of re
ipro
ity.Theorem 7. Suppose that v and ρ is positive and n-times 
ontinuouslydi�erentiable fun
tions on I. Let the 
ondition (40) hold. Then the equation(29)(i) is strongly nonos
illatory if and only if
lim
x→∞

x
∫

0

v(t)dt
∞
∫

x

ρ−1(s)(s − x)2(n−1)ds = 0and
lim
x→∞

x
∫

0

v(t)(x− t)2(n−1)dt
∞
∫

x

ρ−1(s)ds = 0;(ii) is strongly os
illatory if and only if one of the following 
onditions
lim
x→∞

sup
x
∫

0

v(t)dt

∞
∫

x

ρ−1(s)(s− x)2(n−1)ds = ∞or
lim
x→∞

sup
x
∫

0

v(t)(x − t)2(n−1)dt

∞
∫

x

ρ−1(s)ds = ∞holds. EJQTDE, 2010 No. 49, p. 13



Corollary 2. Let T ≥ 0. If the 
onditions (40) and
∞
∫

T

ρ−1(t)(t − T )2(n−1)dt = ∞are satis�ed, then the equation (2) is strongly os
illatory.A
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