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Abstract

In this paper, we consider a semilinear parabolic equation

ut = ∆u + uq

∫ t

0
up(x, s)ds, x ∈ Ω, t > 0

with nonlocal nonlinear boundary condition u|∂Ω×(0,+∞) =
∫

Ω ϕ(x, y)ul(y, t)dy and
nonnegative initial data, where p, q ≥ 0 and l > 0. The blow-up criteria and the
blow-up rate are obtained.
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1 Introduction

In this paper, we deal with the following semilinear reaction-diffusion equation with

nonlinear memory and nonlocal nonlinear boundary condition























ut = ∆u+ uq
∫ t

0
up(x, s)ds, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
ϕ (x, y) ul (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, p, q ≥ 0, l > 0, the

weight function ϕ (x, y) in the boundary condition is nonnegative, continuous on ∂Ω × Ω,

∗This work is supported in part by NSF of China (10771226) and in part by Innovative Talent Training
Project, the Third Stage of “211 Project”, Chongqing University, Project Number: S-09110.

†E-mail:liudengming08@163.com

EJQTDE, 2010 No. 51, p. 1



and
∫

Ω
ϕ (x, y) dy > 0 on ∂Ω, the initial data u0 (x) ∈ C2+ν (Ω) ∩ C

(

Ω
)

for some 0 <

ν < 1, u0 (x) ≥ 0, and satisfies the compatibility conditions ut|t=0 = ∆u0 (x), u0 (x) =
∫

Ω
ϕ (x, y)ul

0 (y)dy for x ∈ ∂Ω. It is known by the standard theory (see [12] and [21]) that
there exist local nonnegative solutions to problem (1.1). Moreover, the uniqueness of the

solution holds if p, q, l ≥ 1.
From a physical point of view, (1.1) represents the slow-diffusion equations with mem-

ory. Problem (1.1) with p = q = 1 and ϕ ≡ 0 appears in the theory of nuclear reactor
dynamics (see [13] and the references therein, where a more detailed physical background

can be found). Parabolic equations with nonlinear memory and homogeneous Dirichlet
boundary conditions have been studied by several authors (see [6], [20], [24], [25], [26] and

the references therein). For instance, in [1], Bellout considered the following equation

ut − ∆u =

∫ t

0

(u+ λ)p
ds+ g (x) , x ∈ Ω, t > 0 (1.2)

with null Dirichlet boundary condition, where g (x) ≥ 0 is a smooth function and λ > 0.
In [27], Yamada investigated the stability properties of the global solutions of the following

nonlocal Volterra diffusion equation

ut − ∆u = (a− bu) u−
∫ t

0

k (t− s) u (x, s) ds, x ∈ Ω, t > 0. (1.3)

Recently, in [14], Li and Xie considered the following equation






















ut = ∆u+ uq
∫ t

0
upds, x ∈ Ω, t > 0,

u (x, t) = 0, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.4)

where p, q ≥ 0. They established the conditions for global and non-global solutions. More-

over, under some appropriate hypotheses, they obtained the blow-up rate estimate for the
special case q = 0.

On the other hand, parabolic equations with nonlocal boundary conditions are also
encountered in other physical applications. For example, in the study of the heat conduc-

tion within linear thermoelastcity, in [3], [4], Day investigated a heat equation which is
subjected to the following boundary conditions

u (−R, t) =

∫ R

−R

ϕ1 (x)u (x, t) dx, u (R, t) =

∫ R

−R

ϕ2 (x)u (x, t) dx.

Friedman [7] generalized Day’s result to the following general parabolic equation in n

dimensions
ut = ∆u+ g (x, u) , x ∈ Ω, t > 0, (1.5)

which is subjected to the following nonlocal boundary condition

u (x, t) =

∫

Ω

ϕ (x, y)u (y, t) dy, (1.6)
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and studied the global existence of solution and its monotonic decay property under some
hypotheses on ϕ (x, y) and g (x, u).

In addition, parabolic equations with both space-integral source terms and nonlocal
boundary conditions have been studied as well (see [2], [5], [19], [23] and the references

therein). For example, Lin and Liu [16] considered the problem of the form

ut = ∆u+

∫

Ω

g (u) dx, (1.7)

which is subjected to boundary condition (1.6). They established local existence, global
existence and nonexistence of solutions, and discussed the blow-up properties of solutions.

Furthermore, they derived the uniform blow-up estimate for some special g (u).
However, to the authors’ best knowledge, there is little literature on the study of the

global existence and blow-up properties for the reaction-diffusion equations coupled with
nonlocal nonlinear boundary condition. Recently, Gladkov and Kim [9] considered the

following semilinear heat equation























ut = ∆u+ c (x, t)up, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
ϕ (x, y, t) ul (y, t) dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(1.8)

where p, l > 0. They obtained some criteria for the existence of global solution as well as

for the solution to blow-up in finite time.
For other works on parabolic equations and systems with nonlocal nonlinear boundary,

we refer readers to [10], [11], [15], [17], [18] and the references therein.
Motivated by those of works above, our main objectives of this paper are to investigate

conditions for the occurrence of the blow-up in finite time or global existence and to
estimate the blow-up rate of the blow-up solution. Due to the appearance of the nonlocal

nonlinear boundary condition, the approaches used in [14] can not be extended to handle
our problem (1.1). Meanwhile, our method is very different from those previously used

in [16] because the space-integral source term
∫

Ω
g (u) dx is replaced by time-integral term

∫ t

0
upds. By a modification of the methods used in [9], we show that the nonlinear memory

term
∫ t

0
up (x, s) ds, the weight function ϕ (x, y) and the nonlinear term ul (y, t) in the

boundary condition play substantial roles in determining blow-up or not of the solution.
In order to state our results, we introduce some useful symbols. Throughout this paper,

we let λ be the first eigenvalue of the eigenvalue problem

−∆φ (x) = λφ, x ∈ Ω; φ (x) = 0, x ∈ ∂Ω, (1.9)

and φ (x) the corresponding eigenfunction with
∫

Ω
φ (x)dx = 1, φ (x) > 0 in Ω.

The main results of this paper are stated as follows.

Theorem 1.1. Assume that p+ q ≤ 1 and l ≤ 1, then the solution of problem (1.1) exists

globally for any nonnegative ϕ and initial data u0.
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Theorem 1.2. Assume that p + q > 1, q ≥ 1 and l > 1. If
∫

Ω
ϕ (x, y)dy ≤ 1 for all

x ∈ ∂Ω, then the solution of problem (1.1) is global for small initial data u0.

Theorem 1.3. Assume that l > 1, then for any positive ϕ, the solution of problem (1.1)
blows up in finite time provided that the initial data u0 satisfies

∫

Ω
u0 (x)φ (x) dx ≥ ̺ > 1

for some ̺, where φ is given by (1.9).

Theorem 1.4. Assume that p+ q > 1. If q ≥ 1, then the solution of problem (1.1) blows

up in finite time for sufficiently large initial data u0. If q < 1, then the solution of problem
(1.1) blows up in finite time for any nonnegative initial data u0.

Remark 1.5. When p = 0 in problem (1.1), our results are consistent with those in [9].
When ϕ ≡ 0 in problem (1.1), our results are consistent with those in [14].

Consider problem (1.1) with q = 0 and l = 1. In order to obtain the blow-up rate, we
need to add the following assumption on initial data u0 (assume T ∗ is the blow-up time of

the blow-up solution u (x, t) to problem (1.1)):

(H1) There exists a constant t0 ∈ (0, T ∗) such that ut (x, t0) ≥ 0 for all x ∈ Ω.

Theorem 1.6. Assume that p > 1,
∫

Ω
ϕ(x, y)dy ≤ 1 and (H1) hold, then there exist

constants 0 < C2 < C1 such that

C2 (T ∗ − t)−
2

p−1 ≤ max
x∈Ω

u (x, t) ≤ C1 (T ∗ − t)−
2

p−1 , t→ T ∗.

Remark 1.7. From Theorem 1.4, we know that in the case q = 0,
∫

Ω
ϕ (x, y) dy ≤

1 (x ∈ ∂Ω), the blow-up rate of equation (1.1) with nonlocal boundary condition is the same
as that of problem (1.4) with q = 0.

Remark 1.8. In [14], the authors proved the blow-up rate under the additional assumptions
Ω = BR and u0 is radially symmetric decreasing. Motivated by the idea of Souplet in [22],

we have no restriction on Ω and u0 here.

The rest of this paper is organized as follows. In Section 2, we shall establish the

comparison principle for problem (1.1). In Section 3, we shall discuss the global existence
of the solution and prove Theorems 1.1 and 1.2. In Section 4, we shall discuss the blow-up

results of the solution and prove Theorems 1.3 and 1.4. Finally, we shall estimate the
blow-up rate and give the proof of Theorem 1.6 in Section 5.

2 Preliminaries

In this section, we will give a suitable comparison principle for problem (1.1). Let

ΩT = Ω × (0, T ), ST = ∂Ω × (0, T ) and ΩT = Ω × [0, T ). We begin with the precise
definitions of subsolutions and supersolutions of problem (1.1).
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Definition 2.1. A function u (x, t) is called a subsolution of the problem (1.1) if u (x, t) ∈
C2,1 (ΩT ) ∩ C

(

ΩT

)

satisfies























ut ≤ ∆u+ uq
∫ t

0
up(x, s)ds, (x, t) ∈ ΩT ,

u (x, t) ≤
∫

Ω
ϕ (x, y) ul (y, t) dy, (x, t) ∈ ST ,

u (x, 0) ≤ u0 (x) , x ∈ Ω.

(2.1)

A supersolution u (x, t) is defined analogously by the above inequalities with “≤” replaced by
“≥”. We say that u (x, t) is a solution of the problem (1.1) in ΩT if it is both a subsolution

and a supersolution of problem (1.1) in ΩT .

Now, let gi (x, t) ∈ C2,1 (ΩT )∩C
(

ΩT

)

(i = 1, 2), χ (x, y) ≥ 0 on ∂Ω×Ω. First of all, we

give some hypotheses on gi (x, t) and χ (x, y) as follows, which will be used in the sequel.
(H2) For x ∈ ∂Ω, y ∈ Ω, t > 0, χ (x, y) gl−1

i (y, t) ≥ 0, i = 1, 2. Furthermore,
∫

Ω

lχ (x, y) gl−1
i (y, t)dy < 1, i = 1, 2.

(H3) For x ∈ ∂Ω, y ∈ Ω, t > 0, there exists K > 0 such that

0 ≤ lχ (x, y) gl−1
i (y, t) ≤ K, i = 1, 2.

Lemma 2.2. Let (H2) hold, aij (i, j = 1, · · ·, n), bi (i = 1, · · ·, n), f1, f2 ∈ C
(

ΩT

)

, and f2,

f3 ≥ 0 in ΩT . If χ (x, y) ≥ 0 on ∂Ω × Ω, gi ∈ C2,1 (ΩT ) ∩ C
(

ΩT

)

(i = 1, 2) satisfy



















































g1t − L1g1 ≥ f1g1 + f2

∫ t

0
f3(s)g1(s)ds, (x, t) ∈ ΩT ,

g2t − L1g2 ≤ f1g2 + f2

∫ t

0
f3(s)g2(s)ds, (x, t) ∈ ΩT ,

g1 (x, t) ≥
∫

Ω
χ (x, y) gl

1 (y, t) dy, (x, t) ∈ ST ,

g2 (x, t) ≤
∫

Ω
χ (x, y) gl

2 (y, t) dy, (x, t) ∈ ST ,

g1 (x, 0) ≥ g2 (x, 0) , x ∈ Ω.

(2.2)

Then g1 (x, t) ≥ g2 (x, t) in ΩT , where

L1 =
n
∑

i,j=1

aij

∂2

∂xi∂xj

+
n
∑

i=1

bi
∂

∂xi

.

Proof. Let

M1 = max
ΩT

|f1 (x, t)| , M2 = max
ΩT

f2 (x, t) , M3 = max
ΩT

f3 (x, t) .

For any given ε > 0, define

g̃1 = g1 + εeγt and g̃2 = g2 − εeγt,
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where γ > M1 + TM2M3. Then, after a direct computation, we obtain










g̃1t − L1g̃1 > f1g̃1 + f2

∫ t

0
f3(s)g̃1(s)ds, (x, t) ∈ ΩT ,

g̃2t − L1g̃2 < f1g̃2 + f2

∫ t

0
f3(s)g̃2(s)ds, (x, t) ∈ ΩT .

(2.3)

On the other hand, for (x, t) ∈ ST , we have

g̃1 (x, t) ≥ εeγt +

∫

Ω

χ (x, y) gl
1 (y, t) dy

=

∫

Ω

χ (x, y) g̃l
1 (y, t)dy + εeγt −

∫

Ω

χ (x, y)
(

g̃l
1 (y, t) − gl

1 (y, t)
)

dy

=

∫

Ω

χ (x, y) g̃l
1 (y, t)dy + εeγt − εeγt

∫

Ω

lχ (x, y) θl−1
1 (y, t)dy,

here θ1 is an intermediate value between g1 and g̃1. It follows from (H2) that

g̃1 (x, t) >

∫

Ω

χ (x, y) g̃l
1 (y, t) dy for (x, t) ∈ ST . (2.4)

Likewise, for any (x, t) ∈ ST , we have

g̃2 (x, t) <

∫

Ω

χ (x, y) g̃l
2 (y, t)dy. (2.5)

In addition, it is obvious that g̃1 (x, 0) − ε ≥ g̃2 (x, 0) + ε, which implies that

g̃1 (x, 0) > g̃2 (x, 0) for x ∈ Ω. (2.6)

Put

h (x, t) = g̃1 (x, t) − g̃2 (x, t) .

Now, our goal is to show that
h (x, t) > 0 in ΩT . (2.7)

Actually, if (2.7) is true, then we can immediately get

g1 (x, t) + εeγt ≥ g2 (x, t) − εeγt for all (x, t) ∈ ΩT ,

which means that g1 (x, t) ≥ g2 (x, t) in ΩT as desired.
In order to prove (2.7), we set

h̃ (x, t) = e−σth (x, t)

with σ >
M1+

√
M2

1
+4M2M3

2
. Then from (2.3)-(2.6), we have























h̃t − L1h̃ > (f1 − σ) h̃1 + f2

∫ t

0
f3(s)h̃1(s)ds, (x, t) ∈ ΩT ,

h̃ (x, t) >
∫

Ω
lχ (x, y) θl−1

2 h̃ (y, t) dy, (x, t) ∈ ST ,

h̃ (x, 0) > 0, x ∈ Ω,

(2.8)
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where θ2 is an intermediate value between g̃1 and g̃2.
Since h̃ (x, 0) > 0, there exists δ > 0 such that h̃ (x, t) > 0 for (x, t) ∈ Ω × (0, δ).

Suppose a contradiction that

t̄ = sup
{

t ∈ (0, T ) : h̃ > 0 on Ω × [0, t]
}

< T.

Then h̃ ≥ 0 on Ωt̄, and there exists at least one point (x̄, t̄) such that h̃ (x̄, t̄) = 0. If
(x̄, t̄) ∈ Ωt̄, by virtue of the first inequality of (2.8) and the strong maximum principle,we

conclude that h̃ (x, t) ≡ 0 in Ωt̄, a contradiction. If (x̄, t̄) ∈ St̄, by (H2), this also results in
a contradiction, that

0 = h̃ (x̄, t̄) >

∫

Ω

lχ (x̄, y) θl−1
2 h̃ (y, t̄) dy ≥ 0.

This proves h̃ > 0, and in turn g1 (x, t) ≥ g2 (x, t) in ΩT . The proof of Lemma 2.2 is

complete.

Lemma 2.3. Let the hypotheses of Lemma 2.1, with (H2) replaced by (H3), be satisfied.

Then
g1 (x, t) ≥ g2 (x, t) in ΩT .

Proof. Choose a positive function ψ ∈ C2
(

Ω
)

satisfying ψ|x∈∂Ω = 1 and
∫

Ω
ψ (y)dy < 1

K
.

Set
gi (x, t) = ψ (x) ρi (x, t) , i = 1, 2.

Then from (2.2), we have































































ρ1t − L2ρ1 ≥
(

f1 +
n
∑

i,j=1

aijψxixj

)

ρ1 + f2

∫ t

0
f3(s)ρ1(s)ds, (x, t) ∈ ΩT ,

ρ2t − L2ρ2 ≤
(

f1 +
n
∑

i,j=1

aijψxixj

)

ρ2 + f2

∫ t

0
f3(s)ρ2(s)ds, (x, t) ∈ ΩT ,

ρ1 (x, t) ≥
∫

Ω
χ (x, y)ψl (y) ρl

1 (y, t) dy, (x, t) ∈ ST ,

ρ2 (x, t) ≤
∫

Ω
χ (x, y)ψl (y) ρl

2 (y, t) dy, (x, t) ∈ ST ,

g1 (x, 0) ≥ g2 (x, 0) , x ∈ Ω,

(2.9)

where

L2 =

n
∑

i,j=1

aij

∂2

∂xi∂xj

+

n
∑

i=1

(

n
∑

j=1

2aij

∂ψ

∂xj

+ biψ

)

1

ψ

∂

∂xi

is a uniformly elliptic operator. By (H3), it is easy to see that

∫

Ω

lχ (x, y) ρl−1
1 (y, t)ψl (y) dy ≤ K

∫

Ω

ψ (y) dy ≤ 1, (2.10)
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and
∫

Ω

lχ (x, y) ρl−1
2 (y, t)ψl (y) dy ≤ K

∫

Ω

ψ (y) dy ≤ 1. (2.11)

Combining now (2.9)-(2.11) and applying Lemma 2.2, we have

ρ1 (x, t) ≥ ρ2 (x, t) ,

which implies that
g1 (x, t) ≥ g2 (x, t) .

The proof of Lemma 2.3 is complete.

On the basis of the above lemmas, we obtain the following comparison principle for
problem (1.1).

Proposition 2.4 (Comparison principle). Let u (x, t) and u (x, t) be a nonnegative sub-

solution and a nonnegative supersolution of problem (1.1) in ΩT , respectively. Suppose
that u (x, t), u (x, t) > 0 in ΩT if min {p, q, l} < 1. If u (x, 0) ≤ u (x, 0) for x ∈ Ω, then

u (x, t) ≤ u (x, t) in ΩT .

Proof. It is easy to check that u, u and ϕ satisfy hypotheses (H3).

3 Global existence of the solution

In this section, we investigate the global existence of the solution to problem (1.1).

Proof of Theorem 1.1. Let T be any positive number. In order to prove our conclusion,

according to Proposition 2.4, we only need to construct a suitable gloabl supersolution of
problem (1.1) in ΩT . Remember that λ and φ are the first eigenvalue and the corresponding

normalized eigenfunction of −∆ with homogeneous Dirichlet boundary condition. We

choose ζ to satisfy that for some 0 < ǫ < 1,

max
∂Ω×Ω

ϕ (x, y)

∫

Ω

1

ζφ (y) + ǫ
dy ≤ 1. (3.1)

Now, let v(x, t) be defined as

v (x, t) =
ηeκt

ζφ (x) + ǫ

with

η = sup
Ω

(u0 + 1) (ζφ+ ǫ) , κ = max

{

√

2

p
, 2λ+ sup

Ω

4ζ2 |∇φ|2

(ζφ+ ǫ)2

}

. (3.2)
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A simple computation shows

Pv ≡ vt − ∆v − vq

∫ t

0

vpds

= κv − v

(

λζφ

ζφ+ ǫ
+

2ζ2 |∇φ|2

(ζφ+ ǫ)2

)

− ηqeqκt

(ζφ+ ǫ)q

∫ t

0

ηpepκs

(ζφ+ ǫ)pds

= κv − v

(

λζφ

ζφ+ ǫ
+

2ζ2 |∇φ|2

(ζφ+ ǫ)2

)

− ηp+qe(p+q)κt

κp (ζφ+ ǫ)p+q +
ηp+q

κp (ζφ+ ǫ)p+q

≥ κv − v

(

λζφ

ζφ+ ǫ
+

2ζ2 |∇φ|2

(ζφ+ ǫ)2

)

− ηp+qe(p+q)κt

κp (ζφ+ ǫ)p+q .

(3.3)

Noticing that v (x, t) ≥ 1 and p + q ≤ 1, then from (3.2) and (3.3), it follows that

Pv ≥ v

(

κ

2
− 1

κp

)

+ v

[

κ

2
−
(

λζφ

ζφ+ ǫ
+

2ζ2 |∇φ|2

(ζφ+ ǫ)2

)]

≥ 0, (3.4)

and

v (x, 0) =
η

ζφ(x) + ǫ
≥

sup
Ω

(u0 (x) + 1) (ζφ (x) + ǫ)

ζφ(x) + ǫ
> u0 (x) . (3.5)

On the other hand, for any (x, t) ∈ ∂Ω × (0, T ), by virtue of (3.1), we have

v (x, t) =
ηeκt

ǫ
> ηeκt ≥

∫

Ω

ϕ (x, y)
ηeκt

ζφ (y) + ǫ
dy =

∫

Ω

ϕ (x, y) v (y, t) dy

≥
∫

Ω

ϕ (x, y) vl (y, t) dy,

(3.6)

where the conditions v(x, t) > 1 and l ≤ 1 are used.

Combining now from (3.3) to (3.6), we know that v (x, t) is a supersolution of (1.1) in
ΩT and the solution u (x, t) ≤ v (x, t) by comparison principle, therefore the problem (1.1)

has global solutions. The proof of Theorem 1.1 is complete.

Proof of Theorem 1.2. Let Ω1 be a bounded domain in R
N such that Ω ⊂⊂ Ω1, let λ1 be

the first eigenvalue of the following eigenvalue problem










−∆φ1 (x) = λ1φ1, x ∈ Ω1,

φ1 (x) = 0, x ∈ ∂Ω1,

(3.7)

and φ1 the corresponding eigenfunction. Denote sup
Ω1

φ1 = M . It is obvious that there is a

constant µ > 1 such that
sup
Ω1

φ1

inf
Ω
φ1

< µ. (3.8)
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Let

φ2 (x) =
µξ

M
φ1 (x) , x ∈ Ω1,

where 0 < ξ ≤ µ−
l

l−1 is a constant. Then we can know that sup
Ω1

φ2 = µξ and

sup
Ω1

φ2

inf
Ω
φ2

=

µξ

M
sup
Ω1

φ1

µξ

M
inf
Ω
φ1

< µ. (3.9)

Furthermore, it is easy to verify that φ2 satisfies (3.7). Then, from (3.9), it follows imme-
diately that

inf
∂Ω
φ2 > ξ. (3.10)

For q > 1, let

v (x, t) =
φ2 (x)

(A+ t)α ,

where α > 0 and A > 1 are constants to be determined later. Then after a simple

computation, we have

Pv = − αφ2

(A+ t)α+1 +
λ1φ2

(A+ t)α − φ
p+q
2

(A+ t)αq

∫ t

0

1

(A+ s)αpds

=
φ2

(A + t)α

(

λ1 −
α

A+ t
− φ

p+q−1
2

(1 − αp) (A+ t)α(p+q−1)−1
+

A1−αpφ
p+q−1
2

(1 − αp) (A+ t)α(q−1)

)

.

Since that q > 1, we can choose α to satisfy

1

p + q − 1
< α <

1

p
.

Then we have that Pv ≥ 0 with A large enough.

On the other hand, since
∫

Ω
ϕ (x, y)dy < 1 and l > 1, we have on the boundary that

v (x, t) >
ξ

(A+ t)α ≥
(

µξ

(A+ t)α

)l

≥
∫

Ω

ϕ (x, y) vl (x, t) dy. (3.11)

Thus, by comparison principle, we know that the solution of problem (1.1) exists globally

provided that

u0 (x) ≤ φ2 (x)

Aα
.

For q = 1, let

v (x, t) =
βφ2 (x)

eτt
,

where β < 1 and τ > 0 are two constants to be determined later. Computing directly, we
obtain

Pv =
βφ2

eτt

(

λ1 − τ +
βpφ

p
2

τpeτpt
− βpφ

p
2

τp

)

.
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If τ < λ1 and β is sufficiently small, then we can conclude that Pv ≥ 0. On the other

hand, since 0 < ξ ≤ µ−
l

l−1 , we have on the boundary that

v (x, t) >
βξ

eτt
≥
(

µβξ

eτt

)l

≥
∫

Ω

ϕ (x, y) vl (x, t) dy, (3.12)

where the conditions
∫

Ω
ϕ (x, y) dy < 1 are used. Therefore, v (x, t) is a supersolution of

problem (1.1) if u0 (x) ≤ βφ2 (x). The proof of Theorem 1.2 is complete.

4 Blow-up of the solution

In this section, we will discuss the blow-up property of the solution to problem (1.1),
and give the proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We employ a variant of Kaplan’s method to prove our blow-up

result of the case l > 1. Let u (x, t) be the unique solution to (1.1) and

J (t) =

∫

Ω

φ (x)u (x, t) dx, 0 ≤ t < T.

Taking the derivative of J (t) with respect to t, and using Green’s formula we could obtain

J ′ (t) =

∫

Ω

φ

(

∆u+ uq

∫ t

0

up(x, s)ds

)

dx

=

∫

∂Ω

∂u

∂ν
φdS −

∫

Ω

∇φ · ∇udx+

∫

Ω

uq

∫ t

0

φ(x)up(x, s)dsdx

=

∫

Ω

u∆φdx−
∫

∂Ω

∂φ

∂ν
udS +

∫

Ω

uq

∫ t

0

φ(x)up(x, s)dsdx

= −λJ(t) −
∫

∂Ω

∂φ

∂ν

(
∫

Ω

ϕ (x, y)ul (y, t) dy

)

dS

+

∫

Ω

uq

∫ t

0

φ(x)up(x, s)dsdx.

(4.1)

Applying
∫

∂Ω
∂φ

∂ν
dS = −λ

∫

Ω
φdx = −λ to (4.1), we then have

J ′ (t) ≥ −λJ(t) +

λ min
∂Ω×Ω

ϕ

max
Ω

φ

∫

Ω

φuldx. (4.2)

From (4.2) and Jensen’s inequality, it follows that

J ′ (t) ≥ −λJ(t) +

λ min
∂Ω×Ω

ϕ

max
Ω

φ
J l(t). (4.3)
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Next, we look for the solution J (t) to (4.3) with J (0) > 1 on its interval of existence.
Since the function f (J) = J l is convex, then there exists ̺ > 1 such that

λ min
∂Ω×Ω

ϕ

max
Ω

φ
J l ≥ 2λJ for all J ≥ ̺.

It follows easily that if J (0) > ̺, then J (t) is increasing on its interval of existence and

J ′ (t) ≥ 1

2
J l. (4.4)

From the above inequality it follows that

lim
t→T−

0

J (t) = +∞, (4.5)

where

T0 =
2

(l − 1)J l−1 (0)
.

Then by assumptions in Theorem 1.3, the solution u (x, t) becomes infinite in a finite time.
The proof of Theorem 1.3 is complete.

Proof of Theorem 1.4. Consider the following equation






















vt = ∆v + vq
∫ t

0
vp(x, s)ds, x ∈ Ω, t > 0,

v (x, t) = 0, x ∈ ∂Ω, t > 0,

v (x, 0) = u0 (x) , x ∈ Ω,

(4.6)

and let v (x, t) be the solution to problem (4.6). It is obvious that v (x, t) is a subsolution

of problem (1.1). For the case q ≥ 1, from Theorem 3.1 in [14], we know that v(x, t) blows
up in finite time for sufficiently large u0(x). For the case q < 1, it is well-known that

v (x, t) blows up in a finite time for any nonnegative u0(x) (see [14], Theorem 3.3). By
Proposition (2.4), we obtain our blow-up result immediately. The proof of Theorem 1.4 is

complete.

5 Blow-up rate estimate

In this section, we consider problem (1.1) with q = 0 and l = 1, i.e.,






















ut = ∆u+
∫ t

0
up(x, s)ds, x ∈ Ω, t > 0,

u (x, t) =
∫

Ω
ϕ (x, y) u (y, t)dy, x ∈ ∂Ω, t > 0,

u (x, 0) = u0 (x) , x ∈ Ω,

(5.1)

where p > 1. By Theorem 1.4, for any nonnegative nontrivial initial data u0, u blows up
in a finite time T ∗ < ∞. We first give the upper bounder of the blow-up rate near the

blow-up time.
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Lemma 5.1. Suppose that
∫

Ω
ϕ(x, y)dy ≤ 1 and assumptions (H1) hold, then for any

t1 ∈ (t0, T
∗), the blow-up solution u (x, t) to problem (5.1) satisfies

u (x, t) ≤ C1 (T ∗ − t)−
2

p−1 , t1 < t < T ∗, (5.2)

where C1 is a positive constant.

Proof. Let

J(x, t) = ut − δ

∫ t

0

upds for (x, t) ∈ Ω × (t1, T
∗) ,

where δ is a sufficiently small positive constant. After straightforward computation, we
then obtain

Jt − ∆J = utt − δup − ∆ut + δp

∫ t

0

up−1∆uds+ δp(p− 1)

∫ t

0

up−2|∇u|2ds

= (ut − ∆u)t − δup + δp

∫ t

0

up−1∆uds+ δp(p− 1)

∫ t

0

up−2|∇u|2ds

≥ (1 − δ)up + δp

∫ t

0

up−1

(

ut −
∫ s

0

updτ

)

ds

= (1 − δ)up
0 + p

∫ t

0

up−1

(

ut − δ

∫ s

0

updτ

)

ds

≥ p

∫ t

0

up−1Jds.

(5.3)

Fix (x, t) ∈ ∂Ω × (t1, T ), we have

J(x, t) = ut − δ

∫ t

0

upds

=

∫

Ω

ϕ(x, y)u(y, t)ut(y, t)dy − δ

∫ t

0

(
∫

Ω

ϕ(x, y)u(y, t)dy

)p

ds.

Differentiating the equation in (5.1) with respect to t, we obtain

utt = ∆ut + up ≥ ∆ut. (5.4)

Combining (H1) and (5.4), we know that ut > 0 in Ω× (t1, T
∗) for any t1 ∈ (t0, T

∗). Thus,

according to ut(y, t) = J(y, t) + δ
∫ t

0
upds, we have

∫

Ω

ϕ(x, y)ut(y, t)dy − δ

∫ t

0

(
∫

Ω

ϕ(x, y)u(y, t)dy

)p

ds

=

∫

Ω

ϕ(x, y)

(

J(y, t) + δ

∫ t

0

upds

)

dy − δ

∫ t

0

(
∫

Ω

ϕ(x, y)u(y, t)dy

)p

ds

=

∫

Ω

ϕ(x, y)J(y, t)dy + δ

∫ t

0

[
∫

Ω

ϕ(x, y)up(y, s)dy −
(
∫

Ω

ϕ(x, y)u(y, t)dy

)p]

ds.
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Noticing that 0 < Φ(x) =
∫

Ω
ϕ(x, y)dy ≤ 1, x ∈ ∂Ω, we can apply Jensen’s inequality to

the last integral in the above inequality,

∫

Ω

ϕ(x, y)up(y, s)dy −
(
∫

Ω

ϕ(x, y)u(y, t)dy

)p

≥ Φ(x)

(
∫

Ω

ϕ(x, y)u(y, t)
dy

Φ(x)

)p

−
(
∫

Ω

ϕ(x, y)u(y, t)dy

)p

≥ 0.

Here, we used p > 1 and 0 < Φ(x) ≤ 1 in the last inequality. Hence

J(x, t) ≥
∫

Ω

ϕ(x, y)J(y, t)dy for (x, t) ∈ ∂Ω × (t1, T ). (5.5)

On the other hand, (H1) implies that

J(x, t1) = ut (x, t1) − δ

∫ t1

0

up (x, s) ds ≥ 0 in Ω. (5.6)

Since ϕ and u are nonnegative bounded continuous for (x, t) ∈ Ω× (t1, T
∗), it follows from

(5.3), (5.5) and (5.6) that J (x, t) ≥ 0 for (x, t) ∈ Ω × (t1, T
∗), which implies

ut ≥ δ

∫ t

0

up(x, s)ds. (5.7)

Multiplying both sides of the inequality (5.7) by up and integrating over (t1, t), we have

up (x, t) ≥ (δ (1 + p))
p

1+p

(
∫ t

t1

up (x, s) ds

)

2p

1+p

, t1 < t < T ∗. (5.8)

Integrating above inequality from t to T ∗, we deduce that

∫ t

t1

up (x, s) ds ≤ (δ(1 + p))−
p

p−1 (T ∗ − t)−
p+1

p−1 , t1 < t < T ∗. (5.9)

Taking a special t′ = T ∗+t
2

and applying ut ≥ 0, we discover that

T ∗ − t

2
up (x, t) ≤

∫ t′

t

up(x, s)ds ≤
∫ t′

t1

up(x, s)ds

≤ (δ(1 + p))−
p

p−1 (T ∗ − t′)
−

p+1

p−1

≤ (δ(1 + p))−
p

p−1

(

T ∗ − t

2

)

−
p+1

p−1

,

which yields

u (x, t) ≤ C1 (T ∗ − t)−
2

p−1 , t1 < t < T ∗. (5.10)

where C1 =
(

4
δ(1+p)

)
1

p−1

.
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Proof of Theorem 1.6. Let x0 ∈ Ω such that I (t) = u (x0, t) = max
Ω

u (x, t). From the

equation in (5.1), we have the following estimate (see [8], Theorem 4.5)

I ′ (t) ≤
∫ t

0

upds ≤
∫ t

0

Ipds, for 0 < t < T ∗.

Similar to (5.9), we can easily get

∫ t

0

Ip (x, s) ds ≥ C ′

2 (T ∗ − t)−
p+1

p−1 , 0 < t < T ∗. (5.11)

For t1 ≤ ς < t < T ∗, by exploiting (5.10), (5.11) and I being nondecreasing on [t1, T
∗), we

obtain

C ′

2 (T ∗ − t)−
p+1

p−1 ≤
∫ ς

0

Ipds+

∫ t

ς

Ipds ≤ C1 (T ∗ − ς)−
p+1

p−1 + (t− ς) Ip (t) .

For t close enough to T ∗, taking ς = at+(1−a)T ∗ with a =
(

2C1

C′

2

)
p−1

p+1

> 1, we deduce that

I (t) ≥ C2 (T ∗ − t)−
2

p−1 , (5.12)

which proves the lower estimate. Combining (5.12) with Lemma 5.1, we obtain the blow-up

estimate. The proof of the Theorem 1.6 is complete.
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