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Abstract

In this paper, we study one-dimensional Newtonian filtration equation including
unbounded sources with multiple delays. The existence of nonnegative non-trivial
time periodic solutions will be established by the Leray-Schauder fixed point theo-
rem based on some suitable Lyapunov functionals and some a priori estimates for
all possible periodic solutions.
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1 Introduction

Consider the following one-dimensional Newtonian filtration equation with multiple delays

t
+au+ f(u(x,t —m), - ,u(z,t —7,)) + g(x, t)—l—’y/ e*a(t*s)u(:c, s)ds,

t—T10

e (0,1), teR, (L1)

% B o*u™m
ot Ox2

subject to the homogeneous Dirichlet boundary value condition

w(0,8) =u(l,t) =0,  teR, (1.2)
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where m > 1, a and « are constants, 7 is a positive constant, f and g are the known
functions satisfying some structure conditions.

This kind of equation arises from a variety of areas in applied mathematics, physics
and mathematical ecology. For the case m = 1, n = 1 and v = 0 with f(r) = ar/(1+717),
which appears in the blood cell production model[1]

2
Ot fulet 7)) + gl ).

On the other hand, for the same case, that is m =1, n = 1, v = 0, with different f, the
equation (1.1) also is known as the Hematopoiesis model (f(r) = e *"(k > 0)) as well
as Nicholson’s blowflies model (f(r) = re *"(k > 0)), see for example [2, 3]. While, it
is worth noting that all the above models are linearly diffusive, but if nonlinear diffusion
is introduced, the model will be more consistent with biologic phenomena in the real
world. However, as far as we know, only a few works are concerned with time periodic
solutions for degenerate parabolic equation with delay(s). For example, in [4], the authors
investigated the existence of time periodic solutions for p-Laplacian with multiple delays.
In [5], the authors studied the existence of periodic solutions for Nicholson’s blowflies
model with Newtonian diffusion

Ju - DPu™ 5 —au(z,t—7) ' —a(t—s) d

5= oz u+ pu(z,t —7)e +g(x,t)+ﬁ/tTe u(zx, s)ds.
Nevertheless, in this paper, a more general source will be discussed, which is allowed to
be the blood cell production model or other types.

In the present paper, we pay our attention to the existence of nonnegative time periodic
solutions for (1.1). It is worth noticing that in the model of [5], the source with delay is a
typical but quite special bounded source. However, in this paper, a more general source
will be discussed, particularly, the source with delays is allowed to be unbounded, which
caused us difficulties in making the maximum norm estimates and some other a priori
estimates. On the other hand, the method used in[4] will also not work for the equation
we consider, that is the coefficient matrix associated with Lyapunov function depends on
solutions of the problem, and therefore the required estimates as did in [4] could not be
obtained. So, we must try some other methods. By constructing some suitable Lyapunov
functionals, the a priori estimates for all possible periodic solutions, and combining with
Leray-Schauder fixed point theorem, we finally establish the existence of time periodic
solutions.

The rest of this paper is organized as follows. In Section 2 we introduce some basic
assumptions, preliminary lemmas and state the main results of this paper. Section 3 is
devoted to investigating the existence of periodic solutions based on the a priori estimates
obtained in Section 2 and Leray-Schauder fixed point theorem.
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2 Preliminaries and the Main Result

Throughout this paper, we make the following assumptions:

(H,) 0<geC(Q), (wt)?éO g(z, t+T) = g(,1);
(Hs) f(O,---,0)=0, f(ry,-++,7m) >0,7>0(i=1,---,n) and

|f(a1,-~-,a) (bla |<Zﬁl‘al_ i7

where T" and [3; are positive constants, Q = (0,1) x (0,7).
Since the equation (1.1) is degenerate parabolic and problem (1.1)—(1.2) usually admits
solutions only in some generalized sense. Hence we introduce the following definition.

Definition 2.1 A function u is said to be a weak solution of the problem (1.1)-(1.2),
ifu € {wyw € L, w™ e L=(0,T; W,*(0,1)), 2 ¢ L*(Q)}, and for any ¢ € C*™(Q)
with ¢(z,0) = ¢(x, T) and ©(0,t) = p(1,t) = 0, the following integral equality holds

//{9015 o gSo—i—augo—l—f( (2t —11), - u(m, b — 7))o + gz, £)p

+ (’y/ e~ =y (x, s)ds) go} dxdt = 0.
t—T1

Now we state the main result of this paper.

Theorem 2.1 Suppose that (Hy) and (Hs) hold. Then the problem (1.1)-(1.2) admits
at least one nonnegative T-periodic solution.

To prove the existence of periodic solutions (1.1)—(1.2), let us first consider the regu-
larized problem

ou. 02
ot _a 2<€Us + u, ) + au. + f(ue(a:,t— 7'1)7 .. ,U€<SL’,t _ Tn))
' (2.1)
vow ey [ e s re(01), teR
t—T1o0
ue(0, 1) = ue(1,1), teR,  (22)
’LLe(fE’at) = ug(x7t+ T)’ T e [0’ 1]’ t 6 R (23)

The desired solution of the problem (1.1)—(1.2) will be obtained by the limit of some
subsequence of solutions u,. of the regularized problem. However, we need first to establish
the existence of solutions u., for which, we will make use of the Leray-Schauder fixed point
theorem and our efforts center on obtaining the uniformly boundness of u.. To this end,
we prove the following lemmas.
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Lemma 2.1 Assume that (Hy), (Hs) hold and u is a nonnegative T-periodic solution
of the equation

62

da?

Up = (eu+u™) + A(au + fu(x,t — 1), - u(z,t —7,)) + g, t)

t (2.4
+’y/ e~y (x, s)ds),
t—7

satisfying the boundary value condition (2.2), where A € [0,1], 0 < e < 1 is a constant
which is arbitrary. Then for any r > 0, we have

T
/ / " drdt < Cy(m,r),
0 Jo

where Cy(m,r) > 0 is a constant which depend on m and r.

Proof. Note that, multiplying Eq.(2.4) by " and integrating over @,

T 1
/ /utu”d:cdt / / (eu+u™) - u'dxdt + X a/ /ur“da:dt
92 o Jo
T
+/ / f(u(x,t—ﬁ),---,u(x,t—Tn))urdzpdtJr/ /gurdxdt
o Jo o Jo
T 1 t
+/ / uW/ e_a(t_s)u(:p,s)dsdxdt>.
0 0 t—r

Since u is T-periodic,

T 1 o r+l
/ / —urdxdt ! / / N Jwdt =0,
r+1Jy Jo Ot
it follows that

[ [ e

o Jo Oz T o
T 1 T

:)\a/ /ur+1dxdt+)\/ /f(u(x,t—ﬁ),---,u(x,t—Tn))urd:ﬁdt

+)\/ /gurd:ﬁdtJr)\/ /uv/ u(zx, s)dsdxdt

<\a|// ”“dazdt+2@// ”d:cdt+K// u"dadt

/ / u 7/ At=9)y(z, s)dsdxdt
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T n T
<l|aley / / w T dadt + Jae; TV IT 4 Z Biga / / " dxdt
o Jo I o Jo
n T s n
+ Z Biey Mes / / \u(z,t — 7)™ dxdt + Z Biey " meg /U
i=1 0 Jo i=1
T 1 T 1 t
+ K€4/ / U™ dxdt + Kz—:f/mT + / / UW/ e~ U=y (z, s)dsdxdt
0 Jo o Jo t—T
< <\a|51 + Z Biea + Zﬁﬁ;r/még + Ks4> / / U™ dxdt

+ ( —(r+1)/(m-1) "‘Zﬁg /m ;1/(m71) +K£4r/m> T

/ / u fy/ A=)y (x, s)dsdadt.

On the other hand

T 1 ¢

/ / u”*y/ e~y (x, s)dsdxdt
<elTy / / / u(z, s)dsdzdt < el / / / u(x, s)dsdxdt
<l 55/ / u" T drdt + &5 ™ / / (/ s) ’ dxdt]

m—4r

. T o
=l 55/ / um+7"dxdt+55mT/ (/ u(z, s)ds) dx]
r T m+r
Se‘ah’,}/ 85/ / m+rdxdt+85mT T+7- H/ / u m de.T:|
0
<elolTy 55/ / um”da:dt—l—&?;ET(T—i-T }+ / / u(z,s) m dsd:v}
L Jo Jo
} + 1 56/ / u(x, )" dsdx

Sb

'ﬂl\‘

SI1

- T 1 i
<elalm~ 55/ / u" T dxdt +e5 " T(T + 1)
L Jo Jo

'ﬂl‘\

r . 1
b (7] +)a

Then we know that

[ Lot
0o Jo Oz T o
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T 1 ¢
+ / / u’y e~y (2, s)dsdxdt
o Jo

t—7

< (‘a|51 + Z Bieq + Z ﬁié?;r/métg + Key + e\aIT’}&%
=1 =1
. T 1
el (T + ) (] + e / / ™ ddt
0 0

+ (El—(r-l—l)/(m—l) + Zﬁifgr/mfgl/(m_l) + ngr/m

i=1

_r r 1
+elTye, (T + 7)m <[%] + 1) Eq '”‘1) T
< (\a|51 + Z Biea + Zﬁiégr/még + Key + el®mryeg
i1 i1

T 1
el e (T 4y ([ 2] 1) ) / / ™ dadt + C.
0 0

Here and below, we use C' > 0 to denote different positive constants depending only on
the known quantities. In addition, it is easy to see that

T T
9 ou’ -1y 1,2
. m — m 'f‘ d dt
/0 /0 8x(5u+u )890 / /(8+mu x
/ / mru™" 2 udadt

— / / u(mFn/2 dazdt
(m+7) 6:16 ’
which implies
T 1 2
_dmr / / 9 02| g
(m+1)2J)y Jo |0z
S (|a|€1 + Z /BZ'EQ + Z ﬁi€2_r/m€3 + K€4 + Gla‘T’7€5
i=1 i=1
+elolyes r/mT(TjLT)r/m ( — 56 / / u" T drdt + C
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< <‘CL|81 + Z 5252 + Z ﬁﬁ?;r/mé‘g + Keyq + €|Q‘T”y€5
=1 i=1

T 1
el e TIM (T 7y ([%} + 1) 56> u/ /
o Jo

Thence if €1, €9, €3, €4, €5 and 4 are appropriately small, we can get
T 1

Iy

Using Poincaré inequality, we see that

T 1
/ / " drdt < Cy(m,r),
0 Jo

which completes the proof of Lemma 2.1. O

8 2
— M2 drdt + C.
ox

2
agu(m”)/2 dxdt < C(m,r) (2.5)
x

Lemma 2.2 Assume that (Hy), (Hs) hold and u is a nonnegative T-periodic solution
of the equation (2.4) satisfying the boundary value condition (2.2). Then we have

T 1
Ik

Proof. In fact, choosing r = m in (2.5), we obtain
T 1

Ik

Lemma 2.3 Assume that (Hy), (H2) hold and u is a nonnegative T-periodic solution
of the equation (2.4) satisfying the boundary value condition (2.2). Then we have

T 1
Iy
Proof. The proof is a direct verification. A simple calculation shows

I

ou™ |
— | dxdt < C,
ox

where C > 0 is a constant.

2

gu” dedt < C.
ox

O

P 2
%(a?u +u™)| dxdt < C,

where C > 0 is a constant.

P 2
%(a?u +u™)| dxdt
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0
//8:5 eu+u" 8(au—iru Ydadt
T 1
:/ (eu + u™)(euy + mu™ 1um)|édt—/ / %(w—%um)(au—%um)duﬂcdt
0 o Jo

T 1 62
— / / @(w +u™)(eu+ u™)dxdt
o
:/ / (eu+u™) (—up + adu+ Af(u(x, t — 1), - u(z,t —7,)) + Ag(z, 1)
o Jo
t
+)\7/ e =)y (x, s)ds) dxdt
v
:/ / [—(eu + u™)us + au(eu +u™) + Af(u(z, t — 1), u(z,t — 7)) (eu +u™)
o Jo

t
+Ag(ew +u™) + Ay(eu +u™ )/ e =)y (x, s)ds] dxdt
<\a|// (eu+u™ d:cdt—l—ZﬁZ/ / lu(z |(eu 4 u™)dxdt

// (eu+u™ dxdtJrv/ / eu—+u™ / e~y (x, s)dsdxdt
<\a|€// 2dxdt—i—|a\// m“d:cdt—i—Ka/ /udxdt—i—K// udxdt

+Zﬁie/ /u2dazdt+Zﬁie/ / |u(x,t—7i)|2da:dt+Zﬁi/0 /Ou%dxdt

+ZBZ/ / lu(z,t — 7) 2dazdt—|—fy<€/ / / u(x, s)dsdxdt
+7/ / um/ e~y (z, s)dsdxdt
0 0 t—r
<C

For the convenience of further discussion, we denote
u(t) :=u(x,t), u(t+0):=u(x,t+0),
and have the following result

Lemma 2.4 Assume that (Hy), (Hs) hold and u is a nonnegative T-periodic solution
of the equation (2.4) satisfying the boundary value condition (2.2). Then we have

[ullz@) < C,
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where C > 0 is a constant.

Proof. Define

V(t):/o1 (%u +1 )dx+262/n/ (t +0)dzdd,  (2.6)

then by the Cauchy inequality and assumption (H;), it follows that

ceu+um

6:10(

V’(t):/o1 [uut+%(su+u )gt (£(€u+u )}dywz:ﬁz/ w? —u?(t —7,)|dx

1 2
:/ [uu, — 862(% +u™) (e + mu™ Hug)dr + Zﬁf/ (W2 — u2(t — 7;)]dx
" i=1 0
1 62
:/ [axQ(Equu )+ Xaw + Nf(u(z, t — 1), u(x, t — 7)) + Ag(t, z)
t
+)\7/ e_“(t_s)u(:p,s)ds] dx
t—7

+/1(5+mum_1)ut [(—u + Aau + Af(u(z, t — 1), -+ yu(x, t — 1)) + Ag(t, x)
0

+)\7/t e~ =9y, sds} dx+252/ u? —u?(t —7;)]dx
! 0
S/O [_%@‘u —+ um)a—z + |a\u2 + ;ﬁﬂﬁ(I,t— Ti>u + |u||g(x,t)\] dx
1
<
n 1
+Zﬁf/ W2 — W2t — 72))da

+7/ / emolt=9) dsderW/ f|ut|/ A= (s)dsdr
g/o ( mu Ial+Zﬁ )

/ Zﬁl T)u+ ug — fu? + |a| fulu,| + Zﬁzfu (t — 1) |we| + fluslg| dadt

+7/ / e~ (t=s) dsdx+7/ f|ut|/ At=9)y(s)dsdx
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%
ox

1
:/ (_muml
0
1 1 2 1 2 2
(since/ uldr < 51/ u"dr 4+, ™Y < 81#/ dr + ¢, “”‘”)
0 0 0

! | guim+n/2 |2 - —2/(m—1) !
<—¢ / u2dx+/ dx +(|a|+2ﬁ3+01)51 /(m +/ Fdzx,
0 0 i=1 0

ox
where

2 n 1
+ (Ja| + Zﬁf)vﬁ) dx +/ Fdx
i=1 0
8u(m+1)/2

Ox

1 dm

n + 1 27
ol +3 g Y

=1

1 4m ",
C1 = - a + i 19 > 0

7 -1
f=e+mu™ ",

0<er <

F = —fuj+lal fulu| + ) fifu(t —7)|uel + flusdg + ) Bru(t —mi)u

i=1 i=1
t t
+ug + ’yu/ e~ y(s)ds 4 v ful / e~ =)y (s)ds.
t—1 t—T1

Letting

e =(la| + ) B+ cr)ey /Y,
i=1

it is obvious that

1 1
V'(t) < —¢ / u?dx +/
0 0

On the other hand

T 1
/ / Fdxdt
o Jo

T pl B 5 n B ~ n
S/ / [—fui + |a] fulul +Zﬁz’fu(t—7'z’)|ut\ +f\ut|g+2ﬁiu(t—n)u+u\g|
0 0 i=1 i=1

Oum+1)/2 |

or

1
d:zc) + o +/ Fdx. (2.7)
0

¢ t
+ vu/ e~ =9y (s)ds + v fuy / e~ =9y (s)ds|dzdt
t—7 t—

T
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la|

i P2 £3 ¢ ) 1 ¢ ) €4 7 9

€2|a‘
2

T 1
72
[ [ Pt +
+—f\9|2+25z (t—1) +Zﬁzu +u?+ g° +7f\m|/ —olt=s) ()ds] dadt

=1
+C// u™ M dadt + C.

Since

[ o s

<elolmy / / Flu / 5)dsdzdt

sela\w / /futdxdtJr— / / ( / (s) s)zd:pdt]
s fravs g f ] vomen

§e|a‘7fy _ / / fufdxdt—i——/ / / dsda:dt—l——/ / / dsdazdt}

<eloly |2 / /futdde— — / / 2dxdt+— / / u?" dwdt
2
/ / (/ (s) s) dxdt
255 —T
e T 1
<e|O‘T[ //qud:cdtJr—([ﬂH)// 2d:cdt+§// u?™ dadt
0o Jo 5
T
LT (T+T / / 4dazdt}
285

choosing €9, €3, €4, €5 small appropriately, we have

/T/TFdxdt
// (1412 832@ ) Fu? Z@fut—n

1 _ D2 4 \aITE T 2
+ 3 f\g\+2@ (t—7) (;@Jrl)u tgte 7255([T]+1>“
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T T 1
oy T g 2m y glolry T (g 7 (F] + 1) u4} dzdt + C/ / u"tdrdt + C.
2¢e5 2e5 T o Jo

Applying Lemma 2.1, ||u||,- < C, for any r > 0, yields

T 1
/ / Fdzdt < C. (2.8)
0 0

Since V(t) and u are T-periodic and from (2.7), (2.8), we have

T
0:/ V'(t)dt
0
2 T ,l
dxdt) +02T+/ / Fdxdt,
o Jo

T 1 T
<-—q / / uldxdt +/ /
o Jo 0o Jo

which implies

1| gy (m+1/2

Ox

1 2
a (m+1)/2
4 dadt < C.

T 1 T
/ / w?drdt < C, / /
0o Jo o Jo

Applying Lemma 2.1 and Lemma 2.3 yields

/ Vi

J 1 el

—(eu +u™)
Ox

)dxdtJrZ@/ /_/ (t + 0)dzdodt

Since V' is continuous, there exists a ty € [0, T satisfies
C
V(o) < T <C.
Hence, if to <t <ty + T, we obtain
t
V(t) =V (i) —i—/ V'(s) ds
to
t 1 O (m+1)/2 2 1
<C’+/ —cl/ TR e — dx+cz+/Fdx ds
Ox 0
au<m+1>/2 2
<C+/ / R — + F'| dadt + ¢ T
x
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<C.

A simple calculation yields

I

eu+u™)

2 1
I dr = m—1 ;132d
8:c< x /0 |(e + mu™ " u,|“dz

1 1
Z/ Imu™ g, Pdr = /
0 0
By the definition of V', we see that

[ ( ) i< [ (i (

2
) dx <2V (t) < C,
which implies
1 8 m
sup / u- +
0<t<T Jo ( 356’

) dr < C.
It follows from the definition of w that

" T ou™(s,t)
u (0,t)+/0 Tds
/1 ou™
< -
o | Oz
1
o f
0<t<T Jo

[ul| (@) < CYC™ = G,

The proof is complete. O

In addition, we can also easily get the L? boundedness of Bgt as follows.

oum |2

dzx.
Ox v

ou™

0
eu+u™)
x

6:10(

u(e, )™ = [u™(z, )] =

T ou™(s,t)
/0765 ds

) 1/2
dx) < V2,

dx

our
ox

that is

Lemma 2.5 Assume that (Hy), (Hz2) hold and u is a nonnegative T-periodic solution
of the equation (2.1) satisfying the boundary value condition (2.2). Then there exists a
constant C > 0 such that

2
—| dxdt < C.

Proof. Multiplying the equation (2.1) by %(z—:u + u™) and integrating over @), we

obtain
ou 8
// T (eu + u™)dxdt
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(5u +u™)dxdt

Q.')|Q3

—// a—2(6u+um)g(gu—|—um)d:cdt—|—a/
02 ot Q

// W@t =), u(mt— 1)) + g(a, t)]%(eu +um)dadt

+//7/ e*a(tfs)u(s)dsé(eu+um)dxdt.
Q t—T1 ot

A simple calculation yields

// + )a( +u™)ddt = l/ng 8( + )Qddt—o
8332 su u 8t EU u X = 9 ; ; 8t 833 EU u X = U.

Therefore, by Lemma 2.4, we obtain

T 1 T 1
5/ /ufd:cdt—l—/ /mum_lufd:cdt
<Zﬁ1/ / d:cdt—i—/ / (x,t) a(5u+u ™ dxdt
8t

// </ s)“<5)d5) %(éu + u™)dxdt

dxdt

su—l—u ™)

<C

5u+u )

2C c C C
< 81/ / \ut|2dazdt+—+ﬂ/ / lmu™ P dadt + —
282
ga/ / \ut|2dazdt+C—|——2/ /mum_1|ut\2d:cdt,
o Jo 2 Jo Jo

where e, = 2/(Ce¢). Letting e5 be appropriately small,

T [l
/ /mumlufdxdth,
o Jo
2 T 1
dxdt:/ /mZUZ(m_l)ufdxdt
o Jo

T 1
<mC™! / / mum_lufdxdt <C,
o Jo

then we can see

T gum
/[

ot

which completes the proof of Lemma 2.5. O]
We will show the Holder norm estimate of solutions in the following lemma.
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Lemma 2.6 Assume that (Hy), (Hz2) hold and u is a nonnegative T-periodic solution
of the equation (2.1) satisfying the boundary value condition (2.2). Then there exists a
constant C > 0 such that u € C**/2(Q) with 0 < a < 1/2.

Proof. 1In fact, through a similar discussion of [6] (see Chapter 2), we know that
u € L*>(0,T; H}(0,1)) and ¢ € L*(Q). By direct computations, for any z; < x5 € (0, 1),
we conclude that

ou(z,t)

“2 Qu(x,t) 2
— - T | <
|u(zo, t) — u(zy,t)] /ml e dzr| < /:E1 e ‘dx
. ) 1/2
2.9
S (/ % dl‘) |l‘2—ZL‘1|1/2 ( )
0 |Ox
§C|.’L‘2 — $1‘1/2.
On the other hand, to prove
lu(z, ts) — u(x,t1)| < Clty — |4, (2.10)

we need only consider the case that 0 < z < %, At =ty —t; >0, (A)* < i, where « is
determined. Integrating (2.2) over (y,y + (At)%) x (t1,t2) gives

y+ (AL~
/ [u(z,te) — u(z,ty)]dz

- [8 (culy+ (AP, ) +u”(y + (A, 8)) — - (eu(y. )+ u”(y,5))| ds
y+(At)O‘
+ lau(z, ) + f(u(z, s — 1), -+ ,u(z, 8 — 7)) + g(z, s)]dzds
7/8 e~y (x, s)dodzds,
(At)o‘/ (u(y + O(AL)* o) — u(y + O(AL), t1))do

:/t2 [a_(au(er(At)a,8)+um(y+(At)°‘,s))—%(eu(% ) +u™(y, s))| ds

y+H(AH>
+ / / lau(z, ) + f(u(z, s — 1), -+ ,u(z, 8 — 7)) + g(z, s)]dzds

t1 Y

y+(AL)~ s
+ / / 7/ e~y (x, s)dodzds,
t1 Y S—T0
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Integrating the above equality with respect to y over (z,x + (At)%), we conclude that
+(ADe
(A1) / / w(y + (A 1) — uly + O(AL)®, 11))dody
+(AL)™ )
= [ [t @) (@0 9) — ety ) 4, s
t1
x+(AL)* y+ (AL~
+ / / / lau(z, s) + f(u(z,s = 711), -+ ,u(z,s — 1)) + g(2, 8)|dzdsdy

x4+ (A« y+(AL)* s
/ / / / ey (x, s)dodzdsdy,

<C| At a+1 1/2 + C At 2a+1
Hence, by a simple calculations, we have
lu(z*, ty) — u(z*, t))] < C(AL) + C(AL) T2 < Oy — |14,

where z* = y* + 0*(At)“, y* € (z,z + (At)*), 6* € (0,1), and choose a = 1/6 specially,
from which we see that (2 10) holds. Therefore, by (2.9) and (2.10), we obtain that

(g, ta) — u(xy, )|

<|u(xa,to) — u(z™, to)| + |u(x™, to) — u(x™, t1)| + |u(x™, t1) — u(xy, t1)|
<C(|jws — 2 [V2 4 |ty — 0 |V4 + |27 — 2112

<O(lzg = x| + [t — t4]'/2)"2,

which completes the proof of Lemma 2.6. U

3 Proof of the Main Result

By means of the above proved lemmas and the Leray-Schauder fixed point theorem, we
can obtain the existence of solutions u. of the regularized problem as follows.

Proposition 3.1 Assume that (Hy) and (Hy) hold. Then the reqularized problem
(2.2)-(2.4) has a nonnegative T-periodic solution.

Proof. Denote by C7r(Q) the set of all continuous functions v with the T-periodicity
in t. We study the following regularized equation

ouw 02 i
FTi @(equ ul™ 'u) + g(, t) (3.1)
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where 0 < g € Cr(Q). We claim that, if the problem (3.1),(2.2),(2.3) has a unique 7T-
periodic solution w, then u must be nonnegative. In fact, multiplying (3.1) by u_ and
integrating over (), we obtain

82
/ —u dxdt = // — (eu + \u\mlu)udxdt+// gu_duxdt,
Q 0z Q

where u_ = min{0, u(xz,t), (z,t) € Q}. Making use of integration by parts, we have

// ag(z—:u_ ™ au—fdzzcdt // gu_dxdt < 0.
Q Xz

Since
0 Ou_ ou_ |’
// Z(cu + |u_ ") S dadt = // (e + mlu_ ™) [ 2=| dadt,
then we get
u_ |
/ lu_ ™t |—=—| dadt < 0.
Q 837
Therefore,
u_ =0, a.e. in )
By the definition of u_, we see that
u > 0, a.e. in Q.
Consequently, we can rewrite the equation (3.1) as
ou 0
5 = a2 —(eu +u™) + g(z, 1), z e (0,1), teR. (3.2)

Hence, we know that, if the problem (3.2),(2.2),(2.3) has a T-periodic solution, it must
be nonnegative.
Similarly, we have the same consequence for the equation

ou 0
ot 8 2

with the conditions (2.2) and (2.3), where ¢ > 0. B
On the other hand, with an argument similar to [7], we claim that for any g € Cr(Q),
the problem

—(eu+u™) = Cu+ g(z,t), (3.3)

ou  0?

5 ax2(5u+u )+ g(x,t), z€(0,1), t € R,
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u(0,t) = u(1,1), teR,
w(z,t) =u(z, t+1T), x e (0,1), t eR.

has a unique solution u € C**/2(Q)). By constructing a homotopy, it is easy to obtain
that the problem (3.3),(2.2),(2.3) also admits a solution u € C*%/2(Q) .

Next, we will obtain the existence of periodic solutions for the regularized problem
(2.1),(2.2),(2.3).

In case that a > 0, we consider the periodic problem of the homotopy equation for
regularized problem

ou 0?
ot = axg( u—+u )-'-)\G(:L’ t) = (071)’ t € R, (34)
u(0,t) = u(l,t) = teR (3.5)

where for any v(z,t) € Cr(Q),
¢
G(ZL‘,t) = (M)(ZL‘, t) + f(’U(ZL‘,t - 7—1)7 e ,U(l‘,t - Tn)) + g(x, t) + 7/ e_a(t_S)'U(:L‘a S)dS.
t—70

Then problem (3.4)—(3.5) admits a unique solution u € C a/z(Q) Define the mapping

L: Cr(Q)x[0,1] — Cr(Q),
(v, \) — w.

Since C’%’a/ 2(@) can be compactly embedded into Cr(Q), L is compact. By Lemma 2.4,
we know that for any fixed point u) of the mapping L, there is a constant C, independent
of € and A, such that

[urllzee < Co.

Then in applying Leray-Schauder’s fixed point theorem, we know that the problem (2.1)-
(2.3) admits a solution w..

In case that a < 0, we consider the periodic problem of the homotopy equation for
regularized problem

ou  0?
Fn 8x2(€u+u )+ au+ AG(x,t), re (0,1), t €R, (3.6)
w(0,8) = u(1,t) = 0, teR, (3.7)

where for any v(z,t) € Cr(Q),

G(z,t) = f(v(x,t — 1), - vz, t — 7)) + g, t) + /t_t e~y (z, 5)ds.
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Then problem (3.6)—(3.7) admits a unique solution u € C3 o/ ?(Q). The following progress
is the same as above case, then we get that the problem (2 1)-(2.3) admits a solution w..
U

Now, we turn to the proof of the our main result based on the above lemmas and
Proposition 3.1

The Proof of Theorem 2.1. Let ¢ = 1/h (h = 1,2,---) and we note uy, for the
solution of the problem (2.2)—(2.4). Clearly, according to Lemma 2.2, Lemma 2.4 and
Lemma 2.5,

|unl| L) < Co,

Hence there exists a subsequence {up}7 ,, supposed to be {up}52, itself, and a function
we {u;u e L2 u™ e L0, T;W,2(0,1)); 4% e L2(Q)}, such that

m
ouy,

< C\T
ox < G,

L2(Q)
2

m
ouy,

<.
ot s¢

L2(Q)

’ 32&
up(z,t) — u(zw,t), in L*Q),

oup(z,t)  Ou™(x,t) , 9
h@x T o in LA(Q),
flup(e,t —70), - up(e,t — 7)) — flu(z,t — 1), ulz, t — 1)), in L*Q).

Letting h — oo in

0? ou™ 0
/ / {uhgot + — a_@ — %a—w + aupp + f(up(z,t — 1), up(z, t — 7))@

( e~ =)y, (x, s)ds) @} dxdt =0,

0
/ / { Uy — 8—8—S0 +aup + f(u(z,t —m), - ,u(z, t —1))p
t
+g(x,t)p + (’y/ e~ =9y (x, s)ds) go} dxdt = 0.
t—T1

we have

That shows u satisfies the integral identity in the definition of weak solutions. Therefore,
the problem (1.1)—(1. 2) admits a nonnegative T-periodic solution u € {u;u € L®;u™ €
L(0,T; Wi2(0,1)); 22 € 12(Q)}.

Since g(z,t) # 0, we see that the T-periodic solution is nontrivial. The proof of
Theorem 2.1 is complete. O]

EJQTDE, 2010 No. 52, p. 19



Remark. In equation (1.1), if the delays depend on time, we may construct a similar
Lyapunov-type functional

V(t) = /01 <%u2 + % '%(5u+um)

Under suitable assumptions, by the similar arguments, the corresponding existence of
time periodic solution should be established for evolution equations with variable delays.

—T;

2 n 0 1
)d:c+Zﬁ§/ / u?(t + 0)dzde.
i=1 ®) /0
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