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WEAK SOLUTIONS FOR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS ON REFLEXIVE BANACH SPACES
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Abstract. The aim of this paper is to investigate a class of boundary value problem
for fractional differential equations involving nonlinear integral conditions. The main
tool used in our considerations is the technique associated with measures of weak
noncompactness.

1. Introduction

The theory of fractional differential equations has been emerging as an important
area of investigation in recent years. In this paper, we investigate the existence of
solutions for the boundary value problem with fractional order differential equations
and nonlinear integral conditions of the form

cDαx(t) = f(t, x(t)), for each t ∈ I = [0, T ], (1)

x(0) − x′(0) =

∫ T

0

g(s, x(s))ds, (2)

x(T ) + x′(T ) =

∫ T

0

h(s, x(s))ds, (3)

where cDα, 1 < α ≤ 2, is the Caputo fractional derivative, f , g and h : I × E → E

are given functions satisfying some assumptions that will be specified later, and E is a
reflexive Banach space with norm ‖ · ‖.

Boundary value problems with integral boundary conditions constitute a very in-
teresting and important class of problems. They include two, three, multi-point, and
nonlocal boundary value problems as special cases. Integral boundary conditions are
often encountered in various applications, it is worthwhile mentioning the applications
of those conditions in the study of population dynamics [10], and cellular systems [1].

Moreover, boundary value problems with integral boundary conditions have been
studied by a number of authors, for instance, Arara and Benchohra [2], Benchohra et
al. [8], Infante [14], Peciulyte et al. [21], and the references therein.

In our investigation we apply the method associated with the technique of measures
of weak noncompactness and a fixed point theorem of Mönch type. This technique was
mainly initiated in the monograph of Banas̀ and Goebel [4] and subsequently developed
and used in many papers; see, for example, Banas̀ et al. [5], Guo et al. [13], Krzyska
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and Kubiaczyk [16], Lakshmikantham and Leela [17], Mönch [18], O’Regan [19, 20],
Szufla [25], Szufla and Szukala [26], and the references therein. In [6, 9], Benchohra et
al. considered some classes of boundary value problems for fractional order differential
equations in a Banach space by means of the strong measure of noncompactness.

Our goal is to prove the existence of solutions to the problem (1)–(3) under a weakly
sequentially continuity assumption imposed on f , g and h. Recall that a weakly contin-
uous operator is weakly sequentially continuous but the converse is not true in general
[3]. We note that no compactness condition will be assumed on the nonlinearity of f .
This is due to the fact that a subset of a reflexive Banach space is weakly compact if
and only if it is weakly closed and norm bounded. As far as we know, there are very
few papers (see [23]) related to the application of the measure of weak noncompactness
to fractional differential equations on Banach spaces. This paper complements the
corresponding literature.

2. Preliminaries

This section is devoted to recalling some notations and results that will be used
throughout this paper.

We set I = [0, T ] and let L1(I) denote the Banach space of real-valued Lebesgue
integrable functions on the interval I and L∞(I, E) denote the Banach space of real-
valued essentially bounded and measurable functions defined over I with the norm
‖ · ‖L∞.

Let E be a real reflexive Banach space with norm ‖ · ‖ and dual E∗, and let (E, w) =
(E, σ(E, E∗)) denote the space E with its weak topology. Here, C(I, E) is the Banach
space of continuous functions x : I → E with the usual supremum norm

‖x‖∞ = sup{‖x(t)‖ : t ∈ I}.

Definition 2.1. A function h : E → E is said to be weakly sequentially continuous if h

takes each weakly convergent sequence in E to a weakly convergent sequence in E (i.e.,
for any (xn)n in E with xn(t) → x(t) in (E, w) for each t ∈ I then h(xn(t)) → h(x(t))
in (E, w) for each t ∈ I).

Definition 2.2. ([22]) The function x : I → E is said to be Pettis integrable on I

if and only if there is an element xJ ∈ E corresponding to each J ⊂ I such that
ϕ(x) =

∫

J
ϕ(x(s))ds for all ϕ ∈ E∗ where the integral on the right is assumed to exist

in the sense of Lebesgue. By definition, xJ =
∫

J
x(s)ds.

Let P (I, E) be the space of all E-valued Pettis integrable functions in the interval
I.

Proposition 2.3. [12, 22]) If x(·) is Pettis integrable and h(·) is a measurable and
essentially bounded real-valued function, then x(·)h(·) is Pettis integrable.
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Definition 2.4. ([11]) Let E be a Banach space, ΩE be the set of all bounded subsets
of E, and B1 be the unit ball in E. The De Blasi measure of weak noncompactness is
the map β : ΩE → [0,∞] defined by

β(X) = inf{ǫ > 0 : there exists a weakly compact

subset Ω of E such that X ⊂ ǫB1 + Ω}.

Properties: The the Blasi measure of noncompactness satisfies the following properties:

(a) A ⊂ B ⇒ β(A) ≤ β(B);
(b) β(A) = 0 ⇐⇒ A is relatively compact;
(c) β(A ∪ B) = max{β(A), β(B)};
(d) β(A

ω
) = β(A), where A

ω
denotes the weak closure of A;

(e) β(A + B) ≤ β(A) + β(B);
(f) β(λA) = |λ|β(A);
(g) β(conv(A)) = β(A);
(h) β(∪|λ|≤hλA = hβ(A).

The following result follows directly from the Hahn-Banach theorem.

Proposition 2.5. Let E be a normed space with x0 6= 0. Then there exists ϕ ∈ E∗

with ‖ϕ‖ = 1 and ϕ(x0) = ‖x0‖.

For completeness, we recall the definitions of the Pettis-integral and the Caputo
derivative of fractional order.

Definition 2.6. ([24]) Let h : I → E a function. The fractional Pettis integral of the
function h of order α ∈ IR+ is defined by

Iαh(t) =

∫ t

0

(t − s)α−1

Γ(α)
h(s)ds

where the sign “
∫

” denotes the Pettis integral and Γ is the Gamma function.

Definition 2.7. ([15]) For a function h : I → E, the Caputo fractional-order derivative
of h is defined by

cDαh(t) =
1

Γ(n − α)

∫ t

0

h(n)(s)ds

(t − s)1−n+α

here n = [α] + 1 and [α] denotes the integer part of α.

Theorem 2.8. ([19]) Let Q be a closed convex and equicontinuous subset of a metriz-
able locally convex vector space C(I, E) such that 0 ∈ Q. Assume that T : Q → Q is
weakly sequentially continuous. If the implication

V = conv({0} ∪ T (V )) ⇒ V is relatively weakly compact, (4)

holds for every subset V ⊂ Q, then T has a fixed point.
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3. Existence of solutions

Let us start by defining what we mean by a solution of the problem (1)–(3).

Definition 3.1. A function x ∈ AC1(I, Ew) is said to be solution of (1)–(3) if x

satisfies (1)–(3).

Let σ, σ1, σ2 : I → E be continuous functions and consider the linear boundary
value problem

cDαx(t) = σ(t), t ∈ I, (5)

x(0) − x′(0) =

∫ T

0

σ1(s)ds, (6)

x(T ) + x′(T ) =

∫ T

0

σ2(s)ds. (7)

Lemma 3.2. ([7]) Let 1 < α ≤ 2 and let σ, σ1, σ2 : I → E be continuous. A function
x is a solution of the fractional integral equation

x(t) = P (t) +

∫ T

0

G(t, s)σ(s)ds (8)

with

P (t) =
(T + 1 − t)

T + 2

∫ T

0

σ1(s)ds +
(t + 1)

T + 2

∫ T

0

σ2(s)ds (9)

and

G(t, s) =







(t−s)α−1

Γ(α)
− (1+t)(T−s)α−1

(T+2)Γ(α)
− (1+t)(T−s)α−2

(T+2)Γ(α−1)
, 0 ≤ s ≤ t,

− (1+t)(T−s)α−1

(T+2)Γ(α)
− (1+t)(T−s)α−2

(T+2)Γ(α−1)
, t ≤ s < T,

(10)

if and only if x is a solution of the fractional boundary value problem (5)-(7).

Let

G̃ = sup

{
∫ T

0

|G(t, s)|ds, t ∈ I

}

.

To establish our main result concerning existence of solutions of (1)–(3), we impose
suitable conditions on the functions involved in that problem, namely, we assume that
the following conditions hold.

(H1) For each t ∈ I, f(t, ·), g(t, ·) and h(t, ·) are weakly sequentially continuous.
(H2) For each x ∈ C(I, E), f(·, x(·)), g(·, x(·)), and h(·, x(·)) are Pettis integrable on

I.
(H3) There exist pg, ph ∈ L1(I, IR+) and pf ∈ L∞(I, IR+) such that:

‖f(t, x)‖ ≤ pf(t)‖x‖, for a.e. t ∈ I and each x ∈ E,

‖g(t, x)‖ ≤ pg(t)‖x‖, for a.e. t ∈ I and each x ∈ E,

‖h(t, x)‖ ≤ ph(t)‖x‖, for a.e. t ∈ I and each x ∈ E.
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Theorem 3.3. Let E be a reflexive Banach space and assume that (H1)–(H3) hold. If

T + 1

T + 2

∫ T

0

[pg(s) + ph(s)]ds + G̃‖pf‖L∞ < 1, (11)

then the boundary value problem (1)–(3) has at least one solution.

Proof. We shall reduce the existence of solutions of the boundary value problem
(1)–(3) to a fixed point problem. To this end, we consider the operator T : C(I, E) →
C(I, E) defined by

(Tx)(t) = Px(t) +

∫ T

0

G(t, s)f(s, x(s))ds (12)

with

Px(t) =
(T + 1 − t)

T + 2

∫ T

0

g(s, x(s))ds +
(t + 1)

T + 2

∫ T

0

h(s, x(s))ds

and where G(·, ·) is the Green’s function defined by (10). Clearly, the fixed points of
the operator T are solutions of the problem (1)–(3).

First notice that, for x ∈ C(I, E), we have f(·, x(·)) ∈ P (I, E) by (H2). Since,
s 7→ G(t, s) ∈ L∞(I), G(t, ·)f(·, x(·)), is Pettis integrable for all t ∈ I by Proposition
2.3, and so the operator T is well defined.

Let R ∈ IR∗
+, and consider the set

Q = {x ∈ C(I, E) : ‖x‖∞ ≤ R

and ‖x(t1) − x(t2)‖ ≤
|t1 − t2|R

T + 2

∫ T

0

(ph(s) + pg(s))ds

+R‖pf‖L∞

∫ T

0

‖G(t2, s) − G(t1, s)‖ds for t1, t2 ∈ I}.

Clearly, the subset Q is closed, convex and equicontinuous. We shall show that T

satisfies the assumptions of Theorem 2.8.

Step 1: T maps Q into itself.
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Take x ∈ Q and assume that Tx(t) 6= 0. Then there exists ϕ ∈ E∗ such that
‖Tx(t)‖ = ϕ(Tx(t)). Thus,

‖Tx(t)‖ = ϕ(Tx(t))

= ϕ(Px(t) +

∫ T

0

G(t, s)f(s, x(s))ds)

≤ ϕ(Px(t)) + ϕ(

∫ T

0

G(t, s)f(s, x(s))ds)

≤ ‖Px(t)‖ +

∫ T

0

‖G(t, s)‖ϕ(f(s, x(s)))ds

≤
T + 1

T + 2
R

∫ T

0

[pg(s) + ph(s)]ds + G̃R‖pf‖L∞

≤ R.

Let t1, t2 ∈ I, t1 < t2, and x ∈ Q so that Tx(t2) − Tx(t1) 6= 0. Then there exists
ϕ ∈ E∗ such that ‖Tx(t2) − Tx(t1)‖ = ϕ(Tx(t2) − Tx(t1)). Hence,

‖Tx(t2) − Tx(t1)‖

= ϕ(Px(t2) − Px(t1) +

∫ T

0

(G(t2, s) − G(t1, s))f(s, x(s))ds)

= ϕ(Px(t2) − Px(t1)) + ϕ(

∫ T

0

(G(t2, s) − G(t1, s))f(s, x(s))ds)

≤ ‖Px(t2) − Px(t1)‖ +

∫ T

0

‖G(t2, s) − G(t1, s)‖‖f(s, x(s)‖ds

≤
(t2 − t1)R

T + 2

∫ T

0

(ph(s) + pg(s))ds

+ R‖pf‖L∞

∫ T

0

‖G(t2, s) − G(t1, s)‖ds.

Thus, T (Q) ⊂ Q.

Step 2: T is weakly sequentially continuous.

Let (xn) be a sequence in Q and let (xn(t)) → x(t) in (E, w) for each t ∈ I. Fix
t ∈ I. Since f , g, and h satisfy assumption (H1), we have f(t, xn(t)), g(t, xn(t)),
and h(t, xn(t)) converge weakly uniformly to f(t, x(t)), g(t, x(t)), and h(t, x(t)), re-
spectively. Hence, the Lebesgue Dominated Convergence Theorem for Pettis integrals
implies Txn(t) converges weakly uniformly to Tx(t) in Ew. Repeating this for each
t ∈ I shows Txn → Tx. Thus, T : Q → Q is weakly sequentially continuous.

Now let V be a subset of Q such that V = conv(T (V ) ∪ {0}). Clearly, V (t) ⊂
conv(T (V ) ∪ {0}) for all t ∈ I. Hence, TV (t) ⊂ TQ(t), t ∈ I, is bounded in E. Thus,
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TV (t) is weakly relatively compact since a subset of a reflexive Banach space is weakly
relatively compact if and only if it is bounded in the norm topology. Therefore,

β(V (t)) ≤ β(conv(T (V )) ∪ {0})

≤ β(TV (t))

= 0.

Thus, V is relatively weakly compact.
Applying now Theorem 2.8, we conclude that T has a fixed point which is an solution

of the problem (1)–(3). �

4. An Example

In this section we give an example to illustrate the usefulness of our main results.
Let us consider the following fractional boundary value problem,

cDry(t) =
2

19 + et
|y(t)|, t ∈ J := [0, 1], 1 < r ≤ 2, (13)

y(0) − y′(0) =

∫ 1

0

1

5 + e5s
|y(s)|ds, , (14)

y(1) + y′(1) =

∫ 1

0

1

3 + e3s
|y(s)|ds. (15)

Set

f(t, x) =
2

19 + et
x, (t, x) ∈ J × [0,∞),

g(t, x) =
1

5 + e5t
x, (t, x) ∈ [0, 1] × [0,∞),

h(t, x) =
1

3 + e3t
x, (t, x) ∈ [0, 1] × [0,∞).

Clearly, conditions (H1)–(H2) hold with

pf(t) =
2

19 + et
, pg(t) =

1

5 + e5t
, and ph(t) =

1

3 + e3t
.

¿From (10) the function G is given by

G(t, s) =

{

(t−s)r−1

Γ(r)
− (1+t)(1−s)r−1

3Γ(r)
− (1+t)(1−s)r−2

3Γ(r−1)
, 0 ≤ s ≤ t

− (1+t)(1−s)r−1

3Γ(r)
− (1+t)(1−s)r−2

3Γ(r−1)
, t ≤ s < 1.

(16)
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From (16), we have
∫ 1

0

G(t, s)ds =

∫ t

0

G(t, s)ds +

∫ 1

t

G(t, s)ds

=
tr

Γ(r + 1)
+

(1 + t)(1 − t)r

3Γ(r + 1)
−

(1 + t)

3Γ(r + 1)

+
(1 + t)(1 − t)r−1

3Γ(r)
−

(1 + t)

3Γ(r)

−
(1 + t)(1 − t)r

3Γ(r + 1)
−

(1 + t)(1 − t)r−1

3Γ(r)
.

A simple computation gives

G̃ <
3

Γ(r + 1)
+

2

Γ(r)
.

Now
T+1
T+2

[‖pg‖L∞ + ‖ph‖L∞] + G̃‖pf‖L∞ < 2
3
[1
6

+ 1
4
] + 3

10Γ(r+1)
+ 2

10Γ(r)

= 5
18

+ 3
10Γ(r+1)

+ 1
5Γ(r)

< 1

for each r ∈ (1, 2], so condition (11) is satisfied with T = 1. By Theorem 3.3, the
problem (13)–(15) has a solution on [0, 1].

5. Concluding remarks

In this paper, we presented an existence result for weak solutions of the boundary
value problem (1)–(3) in the case where the Banach space E is reflexive. However,
in the nonreflexive case, conditions (H1)–(H3) are not sufficient for the application
of Theorem 2.8; the difficulty is with condition (4). Let us introduce the following
conditions.

(C1) For each bounded set Q ⊂ E and each t ∈ I, the sets f(t, Q), g(t, Q), and
h(t, Q) are weakly relatively compact in E.

(C2) For each bounded set Q ⊂ E and each t ∈ I,

β(f(t, Q)) ≤ pf(t)β(Q),

β(g(t, Q)) ≤ pg(t)β(Q),

β(h(t, Q)) ≤ ph(t)β(Q).

We then have the following results.

Theorem 5.1. Let E be a Banach space, and assume that (H1)–(H3) and (C1) hold.
If (11) holds, then the boundary value problem (1)–(3) has at least one solution.

Theorem 5.2. Let E be a Banach space, and assume that (H1)–(H3) and (C2) hold.
If (11) holds, then the boundary value problem (1)–(3) has at least one solution.
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