
Electronic Journal of Qualitative Theory of Differential Equations

2010, No. 57, 1-12; http://www.math.u-szeged.hu/ejqtde/

Note on multiplicative perturbation of local

C-regularized cosine functions with nondensely

defined generators

Fang Li1∗ and James H. Liu2

1School of Mathematics, Yunnan Normal University

Kunming 650092, People’s Republic of China

fangli860@gmail.com

2Department of Mathematics and Statistics, James Madison University

Harrisonburg, VA 22807, USA

liujh@jmu.edu

Abstract

In this note, we obtain a new multiplicative perturbation theorem for local C-

regularized cosine function with a nondensely defined generator A. An application to

an integrodifferential equation is given.
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1 Introduction and preliminaries

Let X be a Banach space, A an operator in X. It is well known that the cosine opera-

tor function is the main propagator of the following Cauchy problem for a second order

differential equation in X:




u′′(t) = Au(t), t ∈ (−∞,∞)

u(0) = u0, u′(0) = u1,
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which controls the behaviors of the solutions of the differential equations in many cases (cf.,

e.g., [2, 4–10, 13, 15, 16, 19–21]); if A is the generator of a C-regularized cosine function

{C(t)}t∈R, then u(t) = C−1C(t)u0 + C−1
∫ t

0 C(s)u1ds is the unique solution of the above

Cauchy problem for every pair (u0, u1) of initial values in C(D(A))(see [5, 16, 20]). So it

is valuable to study deeply the properties of the cosine operator functions.

As a meaningful generalization of the classical cosine operator functions, the C-regularized

cosine functions have been investigated extensively (cf., e.g., [2, 4, 5, 9, 10, 13, 15, 16, 20,

21]), where C serves as a regularizing operator which is injective.

Stimulated by these works as well as the works on integrated semigroups and C-

regularized semigroups ([3, 11, 14, 17, 18]), we study further the multiplicative pertur-

bation of local C-regularized cosine functions with nondensely defined generators, in the

case where (1) the range of the regularizing operator C is not dense in a Banach space X;

(2) the operator C may not commute with the perturbation operator.

Throughout this paper, all operators are linear; L(X,Y ) denotes the space of all con-

tinuous linear operators from X to a space Y , and L(X,X) will be abbreviated to L(X);

Ls(X) is the space of all continuous linear operators from X to X with the strong op-

erator topology; C([0, t],Ls(X)) denotes all continuous L(X)-valued functions, equipped

with the norm ‖F‖∞ = sup
r∈[ 0, t]

‖F (r)‖. Moreover, we write D(A), R(A), ρ(A), respectively,

for the domain, the range and the resolvent set of an operator A. We denote by Ã the

part of A in D(A), that is,

Ã ⊂ A, D(Ã) = {x ∈ D(A)|Ax ∈ D(A)}.

We abbreviate C-regularized cosine function to C-cosine function.

Definition 1.1. Assume τ > 0. A one-parameter family {C(t); |t| ≤ τ} ⊂ L(X) is called

a local C-cosine function on X if

(i) C(0) = C and C(t + s)C + C(t − s)C = 2C(t)C(s) (∀|s|, |t|, |s + t| ≤ τ),

(ii) C(·)x : [−τ, τ ] −→ X is continuous for every x ∈ X.

The associated sine operator function S(·) is defined by S(t) :=

∫ t

0
C(s)ds (|t| ≤ τ).

The operator A defined by

D(A) = {x ∈ X; lim
t→0+

2

t2
(C(t)x − Cx) exists and is in R(C)},

Ax = C−1 lim
t→0+

2

t2
(C(t)x − Cx), ∀x ∈ D(A),
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is called the generator of {C(t); |t| ≤ τ}. It is also called that A generates {C(t); |t| ≤ τ}.

Lemma 1.2. ([2]) Let A generate a local C-cosine function {C(t); |t| ≤ τ} on X.Then

(i)For x ∈ D(A), t ∈ [−τ, τ ],C(t)x, S(t)x ∈ D(A), AC(t)x = C(t)Ax, AS(t)x = S(t)Ax;

(ii)For x ∈ X, t ∈ [ 0, τ ],

∫ t

0
S(s)xds ∈ D(A) and A

∫ t

0
S(s)xds = C(t)x − Cx;

(iii)For x ∈ D(A), t ∈ [ 0, τ ],

∫ t

0
S(s)Axds = A

∫ t

0
S(s)xds = C(t)x − Cx.

2 Results and proofs

Definition 2.1. Let {C(t); |t| ≤ τ} be a local C-cosine function on X. If a closed linear

operator A in X satisfies

(1) C(t)A ⊂ AC(t), |t| ≤ τ ,

(2) C(t)x = Cx + A

∫ t

0

∫ s

0
C(σ)xdσds, |t| ≤ τ, x ∈ X,

then we say that A subgenerates a local C-cosine function on X, or A is a subgenerator

of a local C-cosine function on X.

Remark 2.2. The generator G of a local C-cosine function {C(t); |t| ≤ τ} is a subgen-

erator of {C(t); |t| ≤ τ}. But for each subgenerator A, one has A ⊂ G and G = C−1AC.

Moreover, if ρ(A) 6= ∅, then C−1AC = A.

In fact, for x ∈ D(A), we have

lim
t→0+

2(C(t)x − Cx)

t2
= 2 lim

t→0+

A

∫ t

0

∫ s

0
C(σ)xdσds

t2
= 2 lim

t→0+

∫ t

0

∫ s

0
C(σ)Axdσds

t2

= CAx ∈ R(C),

that is x ∈ D(G) and Ax = Gx, i.e., A ⊂ G.

For x ∈ D(C−1AC), then Cx ∈ D(A) and ACx ∈ R(C), since A ⊂ G we have

GCx = ACx ∈ R(C), then C−1ACx = C−1GCx = Gx, i.e., C−1AC ⊂ G. On the other

hand, for x ∈ D(G), noting

lim
n→∞

2n2

∫ 1

n

0

∫ s

0
C(σ)xdσds = lim

n→∞

2

∫ 1

n

0

∫ s

0
C(σ)xdσds

1
n2

= Cx,

EJQTDE, 2010 No. 57, p. 3



and

lim
n→∞

A(2n2

∫ 1

n

0

∫ s

0
C(σ)xdσds) = lim

n→∞
2n2(C(

1

n
)x − Cx) = CGx,

the closedness of A ensures Cx ∈ D(A) and ACx = CGx, therefore, we have G ⊂ C−1AC.

¿From Proposition 1.4 in [12], we can obtain C−1AC = A if ρ(A) 6= ∅.

Theorem 2.3. Let nondensely defined operator A generate a local C-cosine function

{C(t); |t| ≤ τ} on X, S(t) =

∫ t

0
C(s)ds, and B ∈ L(D(A)). Then

(1) there exists an operator family {E(t); |t| ≤ τ} ⊂ L(X) such that

E(t)x = Cx + A(I + B)

∫ t

0

∫ s

0
E(σ)xdσds, |t| ≤ τ, x ∈ D(A),

provided that

(H1) ∥∥∥∥A

∫ t

0
S(t − s)C−1BΦ(s)ds

∥∥∥∥ ≤ M

∫ t

0
sup

0≤s≤σ

‖Φ(s)‖dσ, t ∈ [ 0, τ ],

where Φ ∈ C([ 0, τ ], X), and M > 0 is a constant.

(2) (I + B)Ã generates a local C1-cosine function on D(A) provided that

(H1’)
∥∥∥∥
∫ t

0
Φ(s)C−1BAS(t − s)xds

∥∥∥∥ ≤ M‖x‖

∫ t

0
sup

0≤s≤σ

‖Φ(s)‖dσ, t ∈ [ 0, τ ],

where x ∈ D(A), Φ ∈ C([ 0, τ ], Ls(X)), and M > 0 is a constant,

(H2) there exists an injective operator C1 ∈ L(D(A)) such that R(B) ⊂ R(C1) ⊂

C(D(A)), C1(I + B)Ã ⊂ (I + B)ÃC1, and C−1C1(D(Ã)) is a dense subspace

in D(A),

(H3) ρ((I + B)Ã) 6= ∅.

(3) Ã(I +B) subgenerates a C1-cosine function on D(A) provided that C1B = BC1, and

(H1’), (H2), and (H3) hold.

Proof. First, we prove the conclusion (2).

Define the operator functions {Cn(t)}t∈[ 0, τ ] as follows:




C0(t)x = C(t)x,

Cn(t)x =

∫ t

0
Cn−1(s)C

−1BAS(t − s)xds, x ∈ D(A), t ∈ [0, τ ], n = 1, 2, · · · .

By induction, we obtain:
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(i) Cn(t) ∈ C([ 0, τ ], Ls(D(A)));

(ii)
∥∥Cn(t)

∥∥ ≤
Mntn

n!
sup

s∈[0, τ ]
‖C(s)‖, t ∈ [0, τ ], ∀n ≥ 0.

It follows that the series

∞∑

n=0

Mntn

n!
converges uniformly on [ 0, τ ] and consequently,

C(t)x :=

∞∑

n=0

Cn(t)x ∈ C([ 0, τ ], D(A)), ∀x ∈ D(A),

and satisfies

C(t)x = C(t)x +

∫ t

0
C(s)C−1BAS(t − s)xds, x ∈ D(A), t ∈ [ 0, τ ]. (2.1)

Using (H1’) and Gronwall’s inequality, we can see the uniqueness of solution of (2.1).

Put

Ĉ(t) := C(t)C−1C1, t ∈ [0, τ ].

It follows from (2.1) and C−1C1 ∈ L(D(A)) that for x ∈ D(A),

Ĉ(t)x ∈ C([ 0, τ ], D(A)),

and satisfies

Ĉ(t)x = C(t)C−1C1x +

∫ t

0
Ĉ(s)C−1

1 BAS(t − s)C−1C1xds, x ∈ D(A), t ∈ [ 0, τ ]. (2.2)

Note that D(Ã) ⊂ D(C−1
1 BÃC1) and C−1C1 maps D(Ã) into D(Ã). So, for x ∈ D(Ã),

by (2.2), we have

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 BÃC1xdσds

=

∫ t

0

∫ s

0
C(σ)C−1BÃC1xdσds

+

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 B
[
C(s − σ)C−1BÃC1x − BÃC1x

]
dσds. (2.3)
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Therefore, for x ∈ D(Ã), we have
∫ t

0

∫ s

0
Ĉ(σ)(I + B)Ãxdσds

=

∫ t

0

∫ s

0
C(σ)C−1(I + B)ÃC1xdσds

+

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 B
[
C(s − σ)C−1(I + B)ÃC1x − (I + B)ÃC1x

]
dσds

= C(t)C−1C1x − C1x +

∫ t

0

∫ s

0
C(σ)C−1BÃC1xdσds

+

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 BC(s − σ)C−1ÃC1xdσds −

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 BÃC1xdσds

+

∫ t

0

∫ s

0
Ĉ(σ)C−1

1 B[C(s − σ)C−1BÃC1x − BÃC1x]dσds

(2.3)
= Ĉ(t)x − C1x. (2.4)

Now we consider the integral equation

v(t)x = C1x +

∫ t

0

∫ s

0
v(σ)(I + B)Ãxdσds, x ∈ D(Ã), t ∈ [0, τ ], (2.5)

where v(t) ∈ C([0, τ ],Ls(D(A))). Let ṽ(t) satisfy the equation (2.5). Then from (2.5), we

obtain, for x ∈ D(Ã),
∫ t

0
ṽ(s)S(t − s)C−1C1xds − C1

∫ t

0
S(s)C−1C1xds

=

∫ t

0

∫ s

0
ṽ(σ)(I + B)Ã

∫ s−σ

0
S(r)C−1C1xdrdσds

=

∫ t

0
ṽ(s)S(t − s)C−1C1xds −

∫ t

0

∫ s

0
ṽ(σ)C1xdσds

+

∫ t

0

∫ s

0
ṽ(σ)BÃ

∫ s−σ

0
S(r)C−1C1xdrdσds.

Hence,
∫ t

0

∫ s

0
ṽ(σ)C1xdσds = C1

∫ t

0
S(s)C−1C1xds +

∫ t

0

∫ s

0
ṽ(σ)BÃ

∫ s−σ

0
S(r)C−1C1xdrdσds,

that is,

(ṽ(t)C)C−1C1x = C1C(t)C−1C1x +

∫ t

0
(ṽ(s)C)C−1BÃS(t − s)C−1C1xds.

Note that C−1C1(D(Ã)) ⊂ D(Ã) is dense in D(A), and the solution w̄(t) of the equation

w(t)y = C1C(t)y +

∫ t

0
w(s)C−1BÃS(t − s)yds, y ∈ C−1C1(D(Ã)), t ∈ [0, τ ]
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in C([0, τ ],Ls(D(A))) is unique, we can see the solution of (2.5) is also unique.

By the uniqueness of solution of (2.5), we can obtain that

Ĉ(−t)x = Ĉ(t)x, Ĉ(t)C1x = C1Ĉ(t)x, for each x ∈ D(A), t ∈ [0, τ ].

Moreover, for t, h, t ± h ∈ [0, τ ], we have

Ĉ(t + h)C1x + Ĉ(t − h)C1x

=

∫ t+h

0

∫ s

0
Ĉ(σ)(I + B)AC1xdσds +

∫ t−h

0

∫ s

0
Ĉ(σ)(I + B)AC1xdσds + 2C2

1x

=

∫ h

0

∫ s

0
Ĉ(t + σ)(I + B)AC1xdσds +

∫ t

0

∫ t−s

0
Ĉ(σ)(I + B)AC1xdσds

+

∫ h

0

∫ t

0
Ĉ(t − σ)(I + B)AC1xdσds +

∫ h

0

∫ s

0
Ĉ(t − σ)(I + B)AC1xdσds

+

∫ t

0

∫ t−s

0
Ĉ(σ)(I + B)AC1xdσds −

∫ h

0

∫ t

0
Ĉ(t − σ)(I + B)AC1xdσds

+2C2
1x

=

∫ h

0

∫ s

0

[
Ĉ(t + σ)C1 + Ĉ(t − σ)C1

]
(I + B)Axdσds + 2

∫ t

0
(t − s)Ĉ(s)(I + B)AC1xds

+2C2
1x,

and for all x ∈ D(Ã), t, h ∈ [0, τ ], we have

2Ĉ(t)Ĉ(h)x = 2Ĉ(t)

[ ∫ h

0

∫ s

0
Ĉ(σ)(I + B)Ãxdσds + C1x

]

=

∫ h

0

∫ s

0
2Ĉ(t)Ĉ(σ)(I + B)Axdσds + 2

∫ t

0
(t − s)Ĉ(s)(I + B)ÃC1xds

+2C2
1x.

Therefore, for x ∈ D(Ã), t ∈ [0, τ ],

[Ĉ(t + h)C1x + Ĉ(t − h)C1x] − 2Ĉ(t)Ĉ(h)x

=

∫ t

0

∫ s

0

{
[Ĉ(σ + h)C1 + Ĉ(σ − h)C1] − 2Ĉ(σ)Ĉ(h)

}
(I + B)Ãxdσds.

It follows from the uniqueness of solution of (2.5) and the denseness of Ã in D(A) that

2Ĉ(t)Ĉ(h) = Ĉ(t + h)C1 + Ĉ(t − h)C1

on D(A), for t, h, t ± h ∈ [0, τ ]. Therefore, {Ĉ(t)}t∈[−τ, τ ] is a local C1-cosine operator

function on D(A).
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Next, we show that the subgenerator of {Ĉ(t)}t∈[−τ, τ ] is operator (I + B)Ã.

By the equality (2.4), (H3), the uniqueness of solution of (2.5), we obtain on D(A)

(λ − (I + B)Ã)−1Ĉ(t) = Ĉ(t)(λ − (I + B)Ã)−1, t ∈ [0, τ ], λ ∈ ρ((I + B)Ã),

therefore,

(I + B)ÃĈ(t)x = Ĉ(t)(I + B)Ãx, x ∈ D(Ã), t ∈ [0, τ ], (2.6)

that is,

Ĉ(t)(I + B)Ã ⊂ (I + B)ÃĈ(t), t ∈ [0, τ ].

Moreover, since ρ((I + B)Ã) 6= ∅, (I + B)Ã is a closed operator. It follows from (2.4) and

the closedness of (I + B)Ã that

∫ t

0

∫ s

0
Ĉ(σ)xdσds ∈ D(Ã) and

Ĉ(t)x = C1x + (I + B)Ã

∫ t

0

∫ s

0
Ĉ(σ)xdσds, (2.7)

for each x ∈ D(A), t ∈ [0, τ ]. Therefore, (I + B)Ã is a subgenerator of {Ĉ(t)}t∈[−τ, τ ]. By

(H3) and remark 2.2, we can see that (I + B)Ã is the generator of {Ĉ(t)}t∈[−τ, τ ]. This

completes the proof of statement (2).

By a combination of similar arguments as above and those given in the proof of [11,

Theorem 2.1], we can obtain the conclusion (1).

Next, we prove the conclusion (3).

In view of statement (1) just proved, we can see that (I+B)Ã subgenerates {Ĉ(t)}t∈[−τ, τ ]

on D(A). Set

Q(t)x = C1x + Ã

∫ t

0

∫ s

0
Ĉ(σ)(I + B)xdσds, |t| ≤ τ, x ∈ D(A).

Obviously, by (2.7) and the fact that the graph norms of Ã and (I + B)Ã are equivalent,

we can see that {Q(t)}t∈[−τ, τ ] is a strongly continuous operator family of bounded linear

operators on D(A). Moreover, by (2.6) and (2.7), for |t| ≤ τ, x ∈ D(A), we obtain

Q(t)Ã(I + B)x = C1Ã(I + B)x + Ã

∫ t

0

∫ s

0
Ĉ(σ)(I + B)Ã(I + B)xdσds,

= Ã(I + B)C1x + Ã(I + B)Ã

∫ t

0

∫ s

0
Ĉ(σ)(I + B)xdσds

= Ã(I + B)Q(t)x
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and

(I + B)

∫ t

0

∫ s

0
Q(σ)xdσds =

∫ t

0

∫ s

0
(I + B)C1x +

∫ t

0

∫ s

0
[Ĉ(σ)(I + B)x − C1(I + B)x]dσds

=

∫ t

0

∫ s

0
Ĉ(σ)(I + B)xdσds.

It follows that for any |t| ≤ τ, x ∈ D(A), (I + B)

∫ t

0

∫ s

0
Q(σ)xdσds ∈ D(Ã) and

Ã(I + B)

∫ t

0

∫ s

0
Q(σ)xdσds = Ã

∫ t

0

∫ s

0
Ĉ(σ)(I + B)xdσds = Q(x)x − C1x.

According to Definition 2.1, we see that Ã(I + B) subgenerates a local C1-cosine function

{Q(t)}t∈[−τ, τ ] on D(A).

Example 2.4. Let Ω be a domain in Rn and write

C0(Ω) :={f ∈ C(Ω) : for each ε > 0 there is a compact Ωε ⊂ Ω

such that |f(s)| < ε for all s ∈ Ω \ Ωε}.

Given q ∈ C(Ω) with q(η) ≥ 0, b ∈ C0(Ω) with

beτq, qbeτq ∈ C0(Ω), (2.8)

and K ∈ L1(Ω), we consider the following Cauchy problem





∂2u(t, η)

∂t2
= q(η)

(
u(t, η) + b(η)

∫

Ω
K(σ)u(t, σ)dσ

)
,

u(0, η) = f1(η), u′(0, η) = f2(η), η ∈ Ω, 0 ≤ t ≤ τ,

(2.9)

where f1, f2 ∈ C0(Ω).

Set Af =: qf with D(A) =: {f ∈ C0(Ω); qf ∈ C0(Ω)}.

When q is bounded, A generates a classical cosine function C(t) on C0(Ω) (i.e., I-cosine

function on [0,∞)), with

‖C(t)‖ ≤ e

 

sup
η∈Ω

q(η)

!

t

, t ≥ 0

(for the exponential growth bound of a cosine function (which is closely related to a

strongly continuous semigroup in some cases), as well as its relation with the spectral

bound of the generator, we refer to, e.g., [1, 16]). Nevertheless, when q is unbounded, A
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does not generate a global C-cosine function C(t) on C0(Ω) for any C. On the other hand,

A generates a local C-cosine function C(t) on C0(Ω):

C(t)f =

{
1

2

[
et

√
q + e−t

√
q
]
e−τ

√
qf

}

t∈[−τ, τ ]

,

with Cf = e−τ
√

qf . Set

(Bf)(η) = b(η)

∫

Ω
K(σ)f(σ)dσ, f ∈ C0(Ω).

¿From (2.8), we see the hypothesis (H1) in Theorem 2.3 holds. This means, by Theorem

2.3 (1) and [20, Theorem 2.4], that the Cauchy problem (2.9) has a unique solution in

C2([0, τ ];C0(Ω)) for every couple of initial values in a large subset of C0(Ω).

Acknowledgement The authors are grateful to the referees for their valuable sug-

gestions.
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