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Abstract

In this note, we obtain a new multiplicative perturbation theorem for local C-
regularized cosine function with a nondensely defined generator A. An application to

an integrodifferential equation is given.
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1 Introduction and preliminaries

Let X be a Banach space, A an operator in X. It is well known that the cosine opera-
tor function is the main propagator of the following Cauchy problem for a second order

differential equation in X:

u’(t) = Au(t), te€ (—o0,00)
u(0) = ug, v'(0) = uq,
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which controls the behaviors of the solutions of the differential equations in many cases (cf.,
e.g., [2, 410, 13, 15, 16, [19-21]); if A is the generator of a C-regularized cosine function
{C(t)}ter, then u(t) = C~1C(t)ug + C~1 fg C(s)uids is the unique solution of the above
Cauchy problem for every pair (ug, u1) of initial values in C(D(A))(see [, 116, 20]). So it
is valuable to study deeply the properties of the cosine operator functions.

As ameaningful generalization of the classical cosine operator functions, the C-regularized
cosine functions have been investigated extensively (cf., e.g., [2, 4, 15, 9, [10, 13, 115, [16, 20,
21]), where C serves as a regularizing operator which is injective.

Stimulated by these works as well as the works on integrated semigroups and C-
regularized semigroups (|3, [L1, [14, [17, [1§]), we study further the multiplicative pertur-
bation of local C-regularized cosine functions with nondensely defined generators, in the
case where (1) the range of the regularizing operator C is not dense in a Banach space X;
(2) the operator C' may not commute with the perturbation operator.

Throughout this paper, all operators are linear; £(X,Y") denotes the space of all con-
tinuous linear operators from X to a space Y, and £(X, X) will be abbreviated to £(X);
Ls(X) is the space of all continuous linear operators from X to X with the strong op-
erator topology; C([0,t],Ls(X)) denotes all continuous £(X)-valued functions, equipped

with the norm |F||oc = sup | F(r)|. Moreover, we write D(A), R(A), p(A), respectively,
rel0,t]

for the domain, the range and the resolvent set of an operator A. We denote by A the

part of A in D(A), that is,

AcC A, D(A) = {x € D(A)|Az € D(A)}.
We abbreviate C-regularized cosine function to C-cosine function.

Definition 1.1. Assume 7 > 0. A one-parameter family {C(t); |t| < 7} C L(X) is called
a local C-cosine function on X if
(i) C(0) =C and C(t +s5)C 4+ C(t —s)C =2C(t)C(s) (V|s], |, |s+t]| < 1),

(ii) C(-)x : [-7,7] — X is continuous for every x € X.

t

The associated sine operator function S(-) is defined by S(t) := / C(s)ds (|t| < 7).
0

The operator A defined by

D(4) = {ze€X; lil(l)n+ %(C(t)x — Cz) exists and is in R(C)},
t—

Az = C7!lim tz(C(t)x—Ca;), Vz € D(A),

t—0t 2

EJQTDE, 2010 No. 57, p. 2



is called the generator of {C(¢);[t| < 7}. It is also called that A generates {C(t); |t| < 7}.
Lemma 1.2. ([2]) Let A generate a local C-cosine function {C(t); |t| < 7} on X.Then
(i)For x € D(A),t € [—7,7],C(t)z, S(t)x € D(A), AC(t)x = C(t) Az, AS(t)x = S(t)Ax;

t

(ii)For x € X, t € [0, 7], /0 S(s)zds € D(A) and A/Ot S(s)xds = C(t)x — Cx;

(iii) For x € D(A), t € [0, 7], /Ot S(s)Axds = A/Ot S(s)zds = C(t)z — Cx.

2 Results and proofs

Definition 2.1. Let {C(t);|t| < 7} be a local C-cosine function on X. If a closed linear

operator A in X satisfies
(1) C(t)A C AC(t), |t| <,
t s
(2) C(t)x =Cx + A/ / C(o)zdods, |t| <1,z € X,
0 Jo

then we say that A subgenerates a local C-cosine function on X, or A is a subgenerator

of a local C-cosine function on X.

Remark 2.2. The generator G of a local C-cosine function {C(t);[t| < 7} is a subgen-
erator of {C(t);|t| < 7}. But for each subgenerator A, one has A C G and G = C1AC.
Moreover, if p(A) # 0, then C~1AC = A.

In fact, for x € D(A), we have

2(C(t)x — Cx)

lim ———=—+% = 2 lim

t s
A / / C(o)xzdods
0 Jo
0+ t2 0+ t?

— CAz € R(0),

=2 lim
t—0t

t s
/ / C(o)Azdods
0 JO
$2

that is x € D(G) and Ax = Gz, i.e., A CG.

For x € D(C'AC), then Cx € D(A) and ACz € R(C), since A C G we have
GCx = ACx € R(C), then C~'ACx = C~'GCx = Gz, i.e., C"'AC C G. On the other
hand, for z € D(G), noting

1 2/
lim 2n2/n/ C(o)xdods = lim —2 =Cuz,
0o Jo

n—oo n—oo %
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and

1
lim A(2n? / / C(o)zdods) = lim 2n2(C(E)x — Czx) =Cgz,

n—oo n—oo

the closedness of A ensures Cz € D(A) and ACx = CGzx, therefore, we have G ¢ C~1AC.
;From Proposition 1.4 in [12], we can obtain C~1AC = A if p(A) # 0.

Theorem 2.3. Let nondensely defined operator A generate a local C-cosine function

{C@);|t| <7} on X, S(t / C(s)ds, and B € L(D(A)). Then
(1) there exists an operator family {E(t);[t| < 7} C L(X) such that
()x—C’:E—I—AI—I—B// o)zdods, |t| <7, x € D(A),
provided that
(H1)
H / S(t — s)C~1B®(s)ds

where ® € C([0,7], X), and M > 0 is a constant.

<M [ sup [[®(s)]do, t € [0, 7],
0 0<s<o

(2) (I 4+ B)A generates a local C,-cosine function on D(A) provided that

where x € D(A), ® € C([0,7], Ls(X)), and M > 0 is a constant,

(H)

< Mllz|| [ sup [[®(s)l|do, t € [0, 7],

t
/ ®(s)CTIBAS(t — s)xds
0 0 0<s<o

(H2) there exists an injective operator C; € L(D(A)) such that R(B) C R(Cy) C
C(D(A)), C1(I + B)A C (I + BYAC,, and C~*Cy(D(A)) is a dense subspace
in D(A),

(H3) p((I + B)A) # 0.

(3) A(I+ B) subgenerates a Cy-cosine function on D(A) provided that C1B = BC}, and
(H1%), (H2), and (H3) hold.

Proof. First, we prove the conclusion (2).

Define the operator functions {Cy,(£) }1¢[0, - as follows:

C(
x—/ Cn_1(s)CTIBAS(t — s)zds, xe€ D(A),tel0,7],n=1,2,---.

By induction, we obtain:
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ii) ||Cn(®)| d sup [|C(s)||, te]0, 7], Yn>0.
e selo, 7]
M"t" )
It follows that the series Z converges uniformly on [0, 7] and consequently,
n=0
t)x = Zc )z € C(]0, 7], D(A)), Vz € D(A),
and satisfies
t
C(t)x = C(t)x +/ C(s)C™'BAS(t — s)zds, x € D(A), t € [0, 7). (2.1)
0

Using (H1’) and Gronwall’s inequality, we can see the uniqueness of solution of (2.1).
Put
C(t):=C@)c—1cy, telo, 7.

It follows from (2.1) and C~'C} € L(D(A)) that for z € D(A),
C(t)e € C((0, 7], D(A)),
and satisfies
C(t)z = C(t)C~'Cra + /Ot C(s)CT BAS(t — s)C ™ Chads, =€ D(A), t € [0, 7). (2.2)

Note that D(A) C D(Cl_lBgCl) and C~1C} maps D(A) into D(A). So, for z € D(A),
by (2.2), we have

t S .
/ / C(0)Cy ' BAC  xdods
0 JO

t S .
/ / C(0)C'BAC, xdods

/ / 0)Cr'B[C(s — 0)CT'BAC 1z — BAC)z]dods. (2.3)
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Therefore, for z € D(A), we have
/ t / ) C(o)(I + B)Azdods
_ / / C(0)C~M(I + B)ACyzdods
+ / /0 C(o)CTIB[C(s — 0)C™H(I + B)AC1z — (I + B)ACyz]dods
= C@)CTCiz—Ciz + /0 t /0 SC(U)C-lBﬁclxdads
+ / t / " C(0) O BC(s — o) AC adods — /O t /O " Co)Cr BAC adods

/ / C(0)CTIB[C(s — 0)C ™' BAC z — BAC,z)dods

C(t)x — Cya. (2.4)
Now we consider the integral equation
t)r = Ciz +/ / )(I + B)Azdods, x € D(A),te0, ], (2.5)

where v(t) € C([0, 7], Ls(D(A))). Let o(t) satisfy the equation (2.5). Then from (2.5), we
obtain, for z € D(A),

)S(t — 5)C~ 1C’1xds—C’1/ S(s)C~1Cxds

S(
Y(I + B) / S(r)C~tCxzdrdods
S(

[t
- [ [
/ U(s)S(t = #)C 1C1xd3—// 0)Cyzdods
/ / / S(r)C~'Cradrdods.
Hence,

t S
/ / 0)Chzdods = C} / S(s)CCrxds + / / o0)BA / C~'Cizdrdods,
0 0

that is,
t ~
(@(t)C)C 101z = C1C(H)C™ Crx + / (¥(s)C)CT'BAS(t — 5)C ™ Chxds.
0
Note that C~2Cy(D(A)) € D(A) is dense in D(A), and the solution @(t) of the equation

w(t)y = C1C(t)y + /0 t w(s)C'BAS(t — s)yds, ye CT'CL(D(A)), t €0, 7]
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in C([0, 7], L5(D(A))) is unique, we can see the solution of (2.5) is also unique.

By the uniqueness of solution of (2.5), we can obtain that

C(—t)z = C(t)z, C(t)Crz = C1C(t)x, for each = € D(A), t € [0, 7].
Moreover, for t,h,t £ h € [0, 7], we have
C(t +h)Ciz + C(t — h)Cyz
- / / )(I + B)ACzdods + /t h/ C(o)(I + B)AC zdods + 20z
/ / (t + ) I+B)A01xdads—|—/ /t (o) + B)AC xdods
+

/ / (t—o)( I+B)A01:Edads+/ / C(t — o)(I + B)AC;zdods

4 /0 /0 C(o)(I + B)ACyzdods — /O /0 Gt — 0)(I + B)AC wdods
+2C%
_ / / { (t+0)Cy + C(t — a)ol] (I + B)Azdods + 2 /Ot(t — )C(s)(I + B)AC xds

+2Cl Z,

and for all z € D(A), t,h € [0, 7], we have

~

WM = 26(7:)[ / " / s@(a)(uB)ZxdadHclx}
= / / 2C )({ + B)Axdods + 2 /t(t - s)@(s)([ + BYAC,zds
+2C%z. :
Therefore, for z € D(A), t € [0, 7],
C(t + h)Ciz + C(t — h)Cyz] — 2C(t)C(h)x

/ / { o+ )01 +Clo =)0 - 2@(0)@(h)}(1 + B)Azdods.

It follows from the uniqueness of solution of (2.5) and the denseness of A in D(A) that

~

2C(t)C(h) = C(t + h)Cy + C(t — h)C,

on D(A), for t,h,t £ h € [0, 7]. Therefore, {a(t)}te[_ﬂ 71 is a local Ci-cosine operator
function on D(A).
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Next, we show that the subgenerator of {(A](t)}te[_ﬂ 7] is operator (I + B)A.

By the equality (2.4), (H3), the uniqueness of solution of (2.5), we obtain on D(A)
(A= (I +B)A)"'C(t) = C(t)(A\ — (I + B)A)™, t € [0, 7], A € p((I + B)A),

therefore,

(I + B)AC(t)x = C(t)(I + B)Az, x € D(A), t € [0, 7], (2.6)

that is,
C(t)(I + B)A C (I + B)AC(t), t € [0, 7).

Moreover, since p((I + B)A) # 0, (I + B)A is a closed operator. It follows from (2.4) and
the closedness of (I + B)A that / / C(o)xdods € D(A) and
0 Jo

~

C(t)r =Cixz+ (I + B)ﬁ/ot /08 C(o)zdods, (2.7)

for each = € D(A), t € [0, 7]. Therefore, (I + B)A is a subgenerator of {(A](t)}te[_ﬂ - By
(H3) and remark 2.2, we can see that (I + B)A is the generator of {a(t)}te[_ﬂ - This
completes the proof of statement (2).

By a combination of similar arguments as above and those given in the proof of [11,
Theorem 2.1], we can obtain the conclusion (1).

Next, we prove the conclusion (3).

In view of statement (1) just proved, we can see that (I+B)A subgenerates {a(t)}te[_ﬂ .

on D(A). Set
Qt)z :C’1:13—|—A/ / C(o)(I + Bladods, |t| <, v € D(A).
0 JO

Obviously, by (2.7) and the fact that the graph norms of A and (I + B)A are equivalent,
we can see that {Q(t)}te[_ﬂ 7] is a strongly continuous operator family of bounded linear

operators on D(A). Moreover, by (2.6) and (2.7), for |[t| < 7, z € D(A), we obtain

QWA +Ble = CLAI+Ba+A / t / Bl + BYA(L + B)adods,
0 JO

= E(I+B)clx+Z(I+B)E/t /Sé(a)(HB)xdads
0 Jo

= A(I+B)Q(t)x
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and

(I+B)/Ot/OSQ(J)xdads _ // (I+B) 01m+// o)(I + Bz — Co(I + B)aldods
_ /0 /0 C(o)(I + B)wdods.

It follows that for any |t| < 7, z € D(A), (I + B) / / Q(o)zdods € D(A) and

A(I + B) /Ot /O Q(0)wdods = Z/Ot /0 C(o)(I + Bledods = Q(z)z — Cra.

According to Definition 2.1, we see that j([ + B) subgenerates a local C-cosine function

{Q(t)}te[—'r, 7] on m 0

Example 2.4. Let  be a domain in R" and write

Co(Q) :={f € C(Q): for each € > 0 there is a compact Q. C
such that |f(s)] < e forall se€ Q\ Q}.

Given ¢ € C(92) with ¢(n) > 0, b € Cp(2) with
be™, qbe™ € Cy(Q), (2.8)

and K € LY(Q), we consider the following Cauchy problem

0u(t,n) B
o2 = q(n) ( (t,m) +b(n / K(o)u(t,o da) (2.9)
U(O,U) = fl( )7 u(’)_f2( )’ nef, 0<t<T,

where f1, fo € Co(92).

Set Af =: qf with D(A) =: {f € Co(Q);qf € Co(Q)}.

When ¢ is bounded, A generates a classical cosine function C(t) on Cy(2) (i.e., I-cosine
function on [0, 00)), with

sup ¢( )>t
o) < < !

. t>0

(for the exponential growth bound of a cosine function (which is closely related to a
strongly continuous semigroup in some cases), as well as its relation with the spectral

bound of the generator, we refer to, e.g., |1, [16]). Nevertheless, when ¢ is unbounded, A
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does not generate a global C-cosine function C(¢) on Cp(2) for any C. On the other hand,

A generates a local C-cosine function C(t) on Cy(2):

Ct)f = {% {et\/ﬁ + e_t\/a] e_T\/af} ,

te[—T, 7]

with Cf = e ™V4f. Set

(BF)(n) = b(n) /Q K(0)f(o)do, | € Co(2).

JFrom (2.8), we see the hypothesis (H1) in Theorem 2.3 holds. This means, by Theorem
2.3 (1) and [20, Theorem 2.4], that the Cauchy problem (2.9) has a unique solution in

C?(]0,7]; Co(£2)) for every couple of initial values in a large subset of Co(€2).

Acknowledgement The authors are grateful to the referees for their valuable sug-
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