THE ABSTRACT RENEWAL EQUATION

STEFAN SCHWABIK

Praha

Abstract. The abstract Perron-Stieltjes integral defined in the Kurzweil-Henstock
sense is used for introducing Stieltjes convolutions. The corresponding facts on inte-
gration are given in [6], [7] and [8].

The approach is used for obtaining the basic existence result for the abstract

renewal equation which was studied e. g. by Diekmann, Gyllenberg and Thieme in
[1] and [2].

For a given Banach space X let L(X) be the Banach space of all bounded linear
operators A : X — X with the uniform operator topology.

For B: L(X)x X — X given by B(A,z) = Az € X for A € L(X) and =z € X,
we obtain the bilinear triple (L(X), X, X) because we have

I1B(A, 2)|lx < [|AllLx)llllx
for the bilinear form B. Similarly, if we define the bilinear form B* : L(X)x L(X) —
L(X) by B*(A,C) = AC € L(X) for A,C € L(X) where AC is the composition of
the linear operators A and C we get the bilinear triple (L(X), L(X), L(X)) because
1B7(A, Oy < 1AC Ly < Ao llCllLe)-

Assume that the interval [0,b] C R is bounded.
Given A : [0,b] — L(X), the function A is of bounded variation on [0, b] if

k
var(o ;) (A) = sup{ Y _ [[A(a;) — A(ey_1)llLx)} < o,
j=1

where the supremum is taken over all finite partitions
D:0=apy<a1 < <ap_1<ap=»>

of the interval [0, b]. The set of all functions A : [0,b] — L(X) with varp ) (A4) < oo
will be denoted by BV ([0, b]; L(X)).
For A :[0,b] — L(X) and a partition D of the interval [0, b] define

k
VJ(A, D) = sup{|| Z[A(Oéj) — Alaj-1)]z;l x },
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where the supremum is taken over all possible choices of z; € X,j =1,...,k with
zllx < 1.
Let us set
svar y(A) = sup V{ (4, D)

where the supremum is taken over all finite partitions D of the interval [0, b].
An operator valued function A : [0,b] — L(X) with svarp ) (A4) < oo is called a
function of bounded semi-variation on [0,b] (cf. [4]).

We denote by BSV([0,b]; L(X)) the set of all functions A : [0,b] — L(X) with
s vargp (A4) < oo.

Assume that 7 > 0 is given and define

k
var), (A) = sup{ > e 71| A(ay) — Alay-1)llx)}
j=1

where the supremum is taken over all finite partitions D of the interval [0, b].
Similarly define

k
Vo (n, A, D) = sup{|| Y _[A(a;) — A(aj—1)]zje "4 x},

j=1

where the supremum is taken over all possible choices of z; € X,j =1,...,k with
|z;]|x <1 and set

svarlg, (A) = sup Vi’ (n, 4, D)

where the supremum is taken over all finite partitions D of the interval [0, b].
Since for every j = 1,...,k we have

e—nb S e M%¥i—1 S 1

we get
(1) e~ NP varyg p)(A) < Varfgy)b](A) < varp ) (A)
and also

e_nb‘/()b(A7 D) S V0b<777 A7 D) S V0b<A7 D)

The last inequalities lead immediately to

(2) e Mg varyg p)(A) < svarfgy)b](A) < svar ) (4).

Let us mention that

(0)

var[oyb](A) = var|o(A) and svarl)) (A) = svarp(A).

[0,0]
It is well known that BV ([0, b]; L(X)) with the norm
[AllBv = [ A(0)]|L(x) + varpoe (A)
is a Banach space and in [8] it was shown that with the norm
[Allsv = [AQO)][(x) + s varp e (A)

the space BSV ([0,b]; L(X)) is also a Banach space.
Taking into account the inequalities (1) and (2) we get the following statement.
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1. Proposition. For every n > 0 the space BV ([0, b]; L(X)) with the norm
[All BV = [[AO)][Lx) + Varfg’)b}(A)

is a Banach space and the space BSV ([0,b]; L(X)) with the norm
|Allsvin = | AQO) ]| x) + s varfg, (A)

1$ also a Banach space.
The norms ||A||pv,, and ||A|pv are equivalent on BV ([0,b]; L(X)) and the
norms ||Al|sv,, and ||Al|sy are equivalent on BSV ([0, b]; L(X)).

Given x : [0,b] — X, the function z is called regulated on [0, b] if it has one—sided
limits at every point of [0, ], i.e. if for every s € [0,b) there is a value z(s+) € X
such that

i () = (s)]lx =0

and if for every s € (0, b] there is a value z(s—) € X such that

i [l (t) — ()] x =0

The set of all regulated functions x : [0,b] — X will be denoted by G([0, b]; X).
The space G([0,b]; X) endowed with the norm

2]l (jo,61:x) = Sup lz(®)]lx, = € G([0,b]; X)
€

)

is known to be a Banach space (see [4, Theorem 3.6)).
It is clear that the space C([0,b]; X) of continuous functions z : [0,0] — X is a
closed subspace of G([0, b]; X), i.e.

C([0,b]; X) € G([0,0]; X).

We are using the concept of abstract Perron-Stieltjes integral based on the
Kurzweil-Henstock definition presented via integral sums (for more detail see e.g.

[51, [6], [7]).

A finite system of points
{Ozo, T1,01,72y .., X1, Tk, Ozk}

such that
O=ap<a; < <ap_1<ap=>b
and

Tj E[aj_l,aj] for j=1,...,k

is called a P-partition of the interval [0, b].

Any positive function ¢ : [0,b] — (0, 00) is called a gauge on [0,b] .

For a given gauge 0 on [0,b] a P—partition {ag, 71,001,702, ., Qk_1, Tk, @k} of
[0, b] is called d—fine if

laj_1,05] C (15 —0(75), 7 +6(5)) for j =1,... k.
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Definition. Assume that functions A,C : [0,0] — L(X) and z : [0,b] — X are
given.

We say that the Stieltjes integral fob d[A(s)]z(s) exists if there is an element
J € X such that for every £ > 0 there is a gauge ¢ on [0, b] such that for

M@

dA x, D Oé] 1)] (Tj)

J:1

we have
|S(dA,z, D) — J||x <e
provided D is a é—fine P—partition of [0,b]. We denote J = fob d[A(s)]x(s).

Analogously we say that the Stieltjes integral fob d[A(s)]C(s) exists if there is an
element J € L(X) such that for every £ > 0 there is a gauge ¢ on [0,b] such that
for

S(dA,C, D)

M»

A(aj-1)]C(75)

J=1

we have

1S(dA,C, D) = J|x) <e

provided D is a é—fine P—partition of [0, b].
Similarly we can define the Stieltjes integral fob A(s)d[C(s)] using Stieltjes inte-
gral sums of the form

S(A,dC, D) =Y A(r;)[C(ay) — Claj_1)].

Assume that U,V : [0,00) — L(X) and z : [0,00) — X are given and define the
convolutions

(U % 2)(t) = / AU (s))e(t - 3)

and

(UxV)(t)= /0 d[U(s)|]V(t — s)

for t € [0, 00).

Let us denote by BSV,.([0,00), L(X)) the set of all U : [0,00) — L(X) for
which U € BSV ([0, b], L(X)) for every b > 0.

In [8] it was shown that if U,V € G([0,00), L(X)) N (B)BV0.([0,0), L(X)) and
x € G([0,00), X) then the convolutions (U x z)(t) and (U % V')(t) are well defined
for every t € [0, 00) when the abstract Perron-Stieltjes integral is used.

It was also shown in [8] that

(3) U VIOl < Ullsv-[Vilsv

holds for every t > 0.
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2. Lemma. Assume that
U € G([0, 00), L(X)) N BSVige([0, 00), LX), f € G([0, ), X)
and that n > 0 is given.
Then the integral fé) d[U(s)]le " f(s) € X exists for every b > 0 and

(4) H / AU F(5)lx < svariy(U) - sup [1£(5)]lx

s |0,
holds.

Proof. The existence of the integral fob d[U(s)]e="* f(s) is clear because the function
e~ f(s) is regulated on [0, 00) (c.f. [6, Proposition 15]).

Assume that b > 0 is fixed. By the existence of the integral, for any £ > 0 there
is a gauge d on [0, b] such that for every J- fine P- partition

D ={0=ap,m1,01,T2,..., k1, Tk, = b}
of [0,d] the inequality

H / AU (s))e™™ f(s) —

holds. Hence

6) | / AU (s)]e" (s Hx<a+||Z Ulay_1)]e™" f(r;)]1x.

M-

Ulaj) = Ulaj-1)le™™ f(mi)llx <e

Let us choose a fixed 4- fine P- partltlon D of [0, b] for which o;_; < 7; for every
7=1,...,k. Then

k
1D 1U(ay) = Ulaj-)le™ (7))l x =

j=1

= 1Y [U(az) = Ulaj1)]e ™51 e 1T =%-1) f ()| x =

j=1

k e—’]’](Tj—Oéj_l) T
= I Ulay) ~ Uy )] 5 spieilx

1f (751 x

and we have
e_n(Tj_ajfl)f(Tj)

U TTEST®

[x <1

forj=1,...,k.
Hence

- e )
||;[U<aj>_maj_1>]e ol <

k
e—n(Tj—aj—l)f(T.)
< su T a~_ e Mj—1 J <
< s Ml 12 P -1 Felx X<
< sup [|£(s)]x - s varl) (U)
s€[0,b]

and this together with (5) gives the result.
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3. Proposition. Assume that U,V € G([0,00), L(X))NBSV}0.([0,00), L(X)) and
that U(0) = V(0) = 0.
Then the convolution

t
(U V)(t) = / dU()V(E - s) € L(X)
0
is well defined for every t € [0,00), and for every b > 0, n > 0 the inequality
(6) s Varfg’)b} (UxV)<s V&I‘Eg?b] (U).s Varfgy)b] (V)

holds.

Proof.
Define
V(e)=V(o) for 0 >0

and

V(e)=0 for o <0.

Assume that b > 0 and let 0 = g < a1 < -+ < i = b be an arbitrary partition
of [0, b].
Using the definition of V' we have for every « € [0, b] the equality

a b 5
/ AU (s)[V(a - 5) = / AU ()7 (a — )
0 0

and therefore we obtain for any choice of z; € X, ||z;||x <1, j =1,...,k the
equalities

k
Z (U * V) (ay) = (U % V)(ay_1)]zze ™| x =
: “ “o i—1 _
:||;[/O AU (s)|V(a; — ) — / AUV (g1 — 8)]aje ™1 | x =

k b ~ ~
= Z/O dlU()][V (e = 8) = V(1 = s)]aje” " [ x =

b k
@ =] / AU (s)]e™ 3V (g — ) — V(g1 — s)Jaje~" @179 .
j=1
The function

k
Z Viajg = s)laje =) e X
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is evidently regulated on [0, b] because V' € G([0,0], L(X)) and therefore by Lemma
2 we obtain

b k
H/ d[U(s)le™™ Y [V( —V(aj 1 — 8)]ajeMu-179)| 5 <
0 =
< s ) sup | Y17 ey =) = Playor — age e
s€[0,b] j=1

On the other hand, for every s € [0,b] we have
k
Z Viej_1 — 8)|zje M-179)| x < svarfn)](V)
and this gives

k
Z (U % V() — (U V)(aj_1)]zje %1 x <

<s Varfg}b} (U)-s Varfg}b} (V)

and by the definition also

S V&I‘fg’)b} (UxV)<s V&I‘fg’)b} (U)-s Varfg’)b} (V).

This inequality yields by (2) also that
svary p (U * V) < o0
i.e. that
(8) UV € BSVip.([0,00), L(X))

because b > 0 can be taken arbitrarily.
Analogously it can be proved that the following statement holds.

4. Proposition. Assume that U,V € BV,.([0,00), L(X)) and that U(0) = V(0) =}
0.

Then the convolution

t
(U V)(t) = / dU()V(E - s) € L(X)
0
is well defined for every t € [0,00) and for every b > 0, n > 0 the inequality

) var(y, (U + V) < varg), (U) - var(, (V)

holds.

In [8] the following result has been proved.
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5. Proposition. For every b > 0 the set of all U : [0,b] — L(X) with U €
C([0,0], L(X)) N BSV([0,b], L(X)) and U(0) = 0 is a Banach algebra with the

Stieltjes convolution U x V' as multiplication and svarjo ) (U) as the norm.
See [8 ,Theorem 15].
6. Remark. Unfortunately a statement of the form:

For every b > 0 the set of all U : [0,b] — L(X) with U € BV([0,b], L(X)) and
U(0) =0 is a Banach algebra with the Stieltjes convolution

(U % V)(t) = /0 AUVt — s)

as multiplication and varjo ) (U) as the norm.

does not hold because in this case the multiplication given by the convolution is
not associative.

It was also shown [8 /Proposition 12 and 13] that the following two statements
hold.

7. Proposition. IfU,V € BV,.(]0,00), L(X)) and U(0) = V(0) = 0 then UxV €
B‘/ZOC([O7OO)7L(X))

8. Proposition. If U,V € C([0,00), L(X)) N BSVj,.(]0,00), L(X)) and U(0) =
V(0) =0 then UV € C([0,00), L(X)) N BSV4([0, 00), L(X)).

9. Lemma. Assume that A € BSV([0,b], L(X)) for some b > 0. Then for every
n >0 and c € (0,b] we have

(10) s V&I‘Egy)b](A) <s varfg’)c](A) +e " V&I‘EZ)()](A).

Proof. Assume that D is a partition of [0, b] given by the points
O=ap< a1 <---<ap=2b

and that z; € X with ||z;||x <1 for j = 1,...,k. Then there is an index | =
1,...,k such that ¢ € (o_1, ] and

[A<05j) - A(Oéj_1)]xje_’70‘j*1 =

k
Jj=

~

[Alay) = Ala)]zze "0 + [Alar) — Aleg-1)]are™" 1+

<.
I
—_

Taking into account that

[A(a) — A(aq—q)]|xie” 141 =
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— [A(Oél) — A(C)]xle_nalfl + [A(C) _ A(al_l)]xle—nal,l
we obtain

| Z[A(Oéj) — Alaj_1)]zje” " |x =

= || i[A(Oéj) — Alay_1)]mje "1 + [A(c) — Aoy_r)]me "1+

J=1

+HA(r) = A(Q)me™ ™ + Y [Alay) — A(ay-1)]zje 7 x <

j=l+1
-1
<D [Alag) = Alaj—1)laje " 4 [A(e) — A(a—1)|ze " || x+
j=1

+H[A(ar) = Ale)Jae "1 + ) [A(ay) — Aoy —1)]wje "% x.
j=l+1

For the first term on the right hand side of this inequality we have evidently
1 [A(ay) — Aoy -1)wje " + [Ale) — Aor—1)]ae "™ x <

<s varfn) l (A)

and for the second

k
I[Aar) = A(Jzie "=t + Y [A(ay) = Alaj-1)]aje " |x =
j=l+1

k
= [I[A(cr) = A(e)]aze ™1 e7 Y 7 [A(ay) = Alayr)]zze "7 x <
j=1+1

< eV, A, Dy) < e var("), (A)

(D4 is the partition of [c, b] given by the points ¢ < a; < -+ < ay = b). Hence

k
Z Alaj_1)]aze 91| x <

<s V&I‘En) [(A) +e7 Varf")](A)

and the lemma is proved.

Similarly it can be shown that the following statement is valid.
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10. Lemma. Assume that A € BV ([0,b], L(X)) for some b > 0. Then for every
n >0 and c € (0,b] we have

(11) Varfg}b} (A) < Varfgfc](A) +e varfz)b} (A).

11. Proposition. If A € C([0,b], L(X)) N BSV([0,b], L(X)), A(0) = 0 and if
there is a ¢ € (0,b] such that
(12) svarjo,(4) <1,

then there erists a unique R € C([0,b], L(X)) N BSV([0,b], L(X)) with R(0) = 0
such that

(13) R(t) —/O A[A(s)|R(t — ) = A(#), € [0, 1]
and
(14) R(t) —/0 A[R(s)]A(t — ) = A(t), t € [0,5].

Proof. By Lemma 9, (2) and (12) we have

s Varfg’)b} (A) <s V&I‘ngc} (A)+e s V&I‘Eg’)b} (A) <

< svary,¢(A) + e "svar y(A)
and this yields that taking n > 0 sufficiently large we get

(15) svarfgi)b](A) < 1.
Let us now define Ag(t) = A(t) and A, 1(t) = (Ax A,)(t), t € [0,0] and put
(16) R(t) = An(t).

n=0

By (6) from Proposition 3 we get the inequalities

svarfgv)b](An) < (s Varfg}b}(A))”, n € N.

Since (15) holds, this implies the convergence of the series (16) in BSV ([0, b], L(X))
and by Proposition 8 also the continuity of its sum R(t), i. e. R € C([0,b], L(X))N
BSV([0,b], L(X)) and clearly also R(0) = 0.
By the definitions we have
N+1 N+1

N N
(O A+ A1) = (A% (D_A))(E) = D Anlt) = Y An(t) = At)
n=0 n=0 n=1 n=0

for every N € N and passing to the limit for N — oo we obtain (13) and (14).
Concerning the uniqueness let us assume that

Q € C([0,0], L(X)) N BSV(]0,b], L(X))
also satisfies (13) and (14). Then
Q—AxQQ=Aand R— RxA=A.
Using the associativity of convolution products we get
R=A4+R+«A=A+R+(Q—-—A*%xQ)=A+R+xQ—-RxAxQ =
=A+(R—RxA)+xQ=A4+A%xQ=Q
and the unicity is proved.
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12. Corollary. Assume that A :[0,00) — L(X), A(0) =0. If
A € C([0,00), L(X)) N BSViac([0, 00), L(X))
and if there is a ¢ € (0,b] such that
svary,¢(A4) <1
then there exists a unique R : [0,00) — L(X),
R € C([0,00), L(X)) N BSVioc([0, 00), L(X))

with R(0) = 0 such that for every b >0 (13) and (14) hold.

R € C(]0,00), L(X)) N BSVie([0,00), L(X)) given in Corollary 12 is called the
resolvent of A € C([0,00), L(X)) N BSViec([0,00), L(X)).

13. Theorem. Assume that A : [0,00) — L(X), A(0) =0, A € C([0,00),L(X))N
BSVe([0,00), L(X)) and that there is a ¢ € (0,b] such that

svario, ] (A) < 1.

Then for every F € G([0, oo) L(X)) and f € G([0,00), X)) there exist unique solu-

tions X : [0,00) — L(X) and x : [0,00) — X for the abstract renewal equations
(17) X(t)=F(t)+ /0 d[A(s)] X (t — s)

and

(18) o) = £+ [ dlAate )

respectively, and the relations

(19) X() = Ft)+ [ RGP,

(20) o) = £+ [ AR

hold for t > 0 where R is the resolvent of A.

Proof. The expression on the right hand side of (19) is well defined and it reads
X(t)=F(t)+ (R*F)(t).
Hence using (13) we obtain

Ax X (t) = AxF(t)+(Ax(RxF))(t) = (A+AxR)xF)(t) = (R+F)(t) = X (t)— F(t)

and this yields that by (19) a solution of (17) is given.
The analogous result for (18) can be shown similarly.
For renewal equations see also the excellent book [3].

The author expresses his thanks to the referee for pointing out that the statement
given in Remark 6 is not valid.
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