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Abstract

In this paper, regarding the delay as parameter, we investigate the effect of delay on

the dynamics of a Rössler system with multiple delayed feedback proposed by Ghosh

and Chowdhury. At first we consider the stability of equilibrium and the existence

of Hopf bifurcations. Then an explicit algorithm for determining the direction and

the stability of the bifurcating periodic solutions is derived by using the normal

form theory and center manifold argument. Finally, we give a numerical simulation

example which indicates that chaotic oscillation is converted into a stable steady

state or a stable periodic orbit when the delay passes through certain critical values.

Keywords: Rössler system; delayed feedback control; Hopf bifurcation

1 Introduction

The study of chaotic systems has increasingly gained interest of many researchers

since the pioneering work of Lorenz [8]. For a quite long period of time, people

thought that chaos was neither predictable nor controllable. Recently the trend of

analyzing and understanding chaos has been extended to controlling and utilizing
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chaos. The main goal of chaos control was to eliminate chaotic behavior and to

stabilize the chaotic system at one of the system’s equilibrium points. More spe-

cially, when it is useful, we want to generate chaos intentionally. Until now, many

advanced theories and methodologies have been developed for controlling chaos.

Many scientists have more concerns with delayed control (see Guan, Chen and Peng

[5], Shu et al.[16], Zhang and Su [21]). The existing control method can be classi-

fied, mainly, into two categories. The first one, the OGY method developed by Ott,

Grebogi and Yorke [9] in 1990s of the last century has completely changed the chaos

research topic. The second one, proposed by Pyragas [10, 11], using time-delayed

controlling forces. Compared with the first one, it is much simpler and more conve-

nient on controlling chaos in continuous dynamics system. Here, we mainly study

the Rössler system with delayed controlling method developed by Pyragas. Rössler

system is described by the following three-dimensional smooth autonomous system

(see Rössler [13])

ẋ(t) = −y(t) − z(t),

ẏ(t) = x(t) + β1y(t),

ż(t) = β2 + z(t) (x(t) − γ) ,

(1)

which is chaotic when β1 = β2 = 0.2, γ = 5.7.

Rössler system is a quite simple set of differential equations with chaos to simplify

the Lorenz model of turbulence that contains just one (second order) nonlinearity

in one variable. Due to its simplicity, the Rössler system has become a standard one

to issue the effectiveness of the chaos control strategy. Recently, many literatures

adopted controlling strategy for the Rössler system. In the last years there are many

studies on Rössler system. For example, Pyragas [10] stabilized unstable periodic

orbits of a Rössler system to a desired periodic orbit by self-controlling feedback.

Tao et al. [18] used the speed feedback control such that the controlled Rössler

system will gradually converge to unsteadily equilibrium point. Tian et al. [19]

used a nonlinear open-plus-closed-loop (NOPCL) control to Rössler system. Yang

et. al. [20] presented an impulsive control to achieve periodic motions for the Rössler

system. Moreover there are extensive study, for example Amhed et al. [1], Chang

et al. [2], Chen et al. [3], Rasussen et al. [12]. Recently, Ghosh et al. [4] have

proposed the multiple delayed system in the following form:

ẋ(t) = −y(t) − z(t) + α1x(t− τ1) + α2x(t− τ2),

ẏ(t) = x(t) + β1y(t),

ż(t) = β2 + z(t) (x(t) − γ) ,

(2)
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where αi, βi (i = 1, 2) and γ are all positive constants. They studied the system (2)

in numerical simulations mainly. The purpose of the present paper is to investigate

system (2) analytically and numerically. Our analytical results show that the stabil-

ity changes as the delays vary. Meanwhile, our numerical simulations indicate that

chaotic oscillation is converted into a stable steady state or a stable periodic orbit

when the delay passes through certain critical values. This shows that the chaos

property changes as the delay varies.

The rest of the paper is organized as follows. In Section 2, we study the distri-

bution of the eigenvalues by using the result due to Ruan and Wei [14, 15] on the

analysis of distribution of the zeros of exponential polynomial. Hence the stability

and existence of Hopf bifurcations are obtained. In Section 3, the direction and

stability of the Hopf bifurcation are determined by using the center manifold and

normal forms theory. Some numerical simulations are carried out for supporting the

analysis results in Section 4. Conclusions and discussions are given in Section 5.

2 Analysis of stability and bifurcation

In this section, we shall study the stability of the interior equilibrium and the exis-

tence of local Hopf bifurcations. For convenience, denote

A = 1 + (α1 + α2) β1.

Proposition 2.1. (i) If γ2A < 4β1β2, then system (2) has no equilibrium, and if

γ2A = 4β1β2, the system has only one equilibrium given by
(

γ

2
,
−γ
2β1

,
2β2

γ

)

.

(ii) If

(H0) γ2 >
4β1β2

A

holds, then the system (2) has two equilibria (x0, y0, z0) and (x1, y1, z1), where

x0 = −β1X+, y0 = X+, z0 =
β2

β1X+ + γ
, x1 = −β1X−, y1 = X−, z1 =

β2

β1X− + γ
,

and

X± =
1

2β1
[−γ ±

√

γ2 − 4β1β2

A
].
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Thorough out this paper, we always assume that (H0) is satisfied and only

consider the dynamics of system (2) near the equilibrium (x0, y0, z0).

Let u1 = x− x0, u2 = y − y0 and u3 = z − z0. Then system (2) can be written

in the following form

u̇1(t) = −u2(t) − u3(t) + α1u1(t− τ1) + α2u1(t− τ2),

u̇2(t) = u1(t) + β1u2(t),

u̇3(t) = u1(t)u3(t) + u3(t)(x0 − γ) + z0u1(t).

(3)

The characteristic equation of system (3) at the equilibrium (0, 0, 0) is

λ3 +a2λ
2 +a1λ+a0−α1(λ

2 +a2λ+b0)e
−λτ1 −α2(λ

2 +a2λ+b0)e
−λτ2 = 0, (4)

where
a0 = γ − x0 − β1z0,

a1 = −β1γ + β1x0 + 1 + z0,

a2 = γ − x0 − β1,

b0 = −β1γ + β1x0.

Now we employ the method due to Ruan and Wei [14, 15] to investigate the

distribution of roots of Eq.(4).

When τ1 = 0 and τ2 = 0, Eq.(4) becomes

λ3 + (a2 − α1 − α2)λ
2 + (a1 − α1a2 − α2a2)λ+ a0 − α1b0 − α2b0 = 0. (5)

For convenience, we make the following hypothesis:

(H1)

{

a0 − α1b0 − α2b0 > 0, a2 − α1 − α2 > 0,

(a2 − α1 − α2)(a1 − α1a2 − α2a2) − a0 + α1b0 + α2b0 > 0.

By Routh-Hurwitz criterion we know that if (H1) holds, then all roots of Eq.(5)

have negative real parts. Let iν(τ1)(ν > 0) be a root of Eq.(4) with τ2 = 0. Then it

follows that
{

−a2ν
2 + a0 + α2ν

2 − α2b0 = (α1b0 − α1ν
2) cos ντ1 + α1a2ν sin ντ1,

−ν3 + a1ν − α2a2ν = α1a2ν cos ντ1 − (α1b0 − α1ν
2) sin ντ1,

(6)

which leads to

ν6 + pν4 + qν2 + r = 0, (7)

where
p = (α2 − a2)

2 + 2(α2a2 − a1) − α2
1,

q = 2(α2 − a2)(a0 − α2b0) − (α2a2 − a1)
2 + 2b0α

2
1 − α2

1a
2
2,

r = (a0 − α2b0)
2 − α2

1b
2
0.
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If we set z = ν2, then Eq.(7) becomes

z3 + pz2 + qz + r = 0. (8)

Denote

h(z) = z3 + pz2 + qz + r.

Hence
dh(z)

dz
= 3z2 + 2pz + q.

Set

△ = p2 − 3q.

When r ≥ 0 and △ > 0, the following equation

3z2 + 2pz + q = 0

has two real roots

z∗1 =
−p+

√
△

3
and z∗2 =

−p−
√
△

3
.

Applying the Claim 3 and Lemma 2.1 of Ruan and Wei [14], we have the following

conclusions.

Lemma 2.1. For Eq.(8), we have following conclusions:

(i) If r < 0, then Eq.(8) has at least one positive root.

(ii) If r ≥ 0 and △ ≤ 0, then Eq.(8) has no positive root.

(iii) If r ≥ 0 and △ > 0, then Eq.(8) has one positive roots if and only if z∗1 > 0

and h(z∗1) ≤ 0.

Without loss of generality, we assume that Eq.(8) has three positive roots,

denoted by x1, x2 and x3, respectively. Then Eq.(7) has three positive roots

νk =
√
xk, k = 1, 2, 3. Substituting νk into (6) gives

cos νkτ1 =
(b0 − ν2

k)[(α2 − a2)ν
2
k + a0 − α2b0] + a2νk[(a1 − α2a2)νk − ν3

k ]

α1(b0 − ν2
k)

2 + α1a2
2ν

2
k

.

Let

τ
(j)
1k =

1

νk
[arccos

(b0 − ν2
k)[(α2 − a2)ν

2
k + a0 − α2b0] + a2νk[(a1 − α2a2)νk − ν3

k ]

α1(b0 − ν2
k)

2 + α1a2
2ν

2
k

+2jπ],
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where k = 1, 2, 3; j = 0, 1, · · · , and τ
(0)
1k νk ∈ (0, 2π] is determined by the sign of

sin(νkτ
(0)
1 ). These show that (νk, τ

(j)
1k ) is a root of Eq.(6). This shows that ±iνk is a

pair of purely imaginary roots of Eq.(4) with τ2 = 0 when τ1 = τ
(j)
1k .

Define

τ 0
1 = min

1≤k≤3,j≥0
{τ (j)

1k }.

Let λ(τ1) = α(τ1) + iν(τ1) be the root of Eq.(4) with τ2 = 0 satisfying α(τ
(j)
1k ) =

0, ν(τ
(j)
1k ) = νk. Then the following transversality condition holds.

Lemma 2.2. Suppose that zk = ν2
k , and h′(zk) 6= 0. Then

d(Reλ(τ
(j)
1k

))

dτ1
6= 0 and the

sign of
d(Reλ(τ

(j)
1k

))

dτ1
is coincident with that of h′(zk).

Proof. Substituting λ(τ1) into Eq(4) with τ2 = 0 and differentiating both sides with

respect to τ1, it follows that

(
dλ

dτ1
)−1 = − [3λ2 + 2(a2 − α2)λ+ a1 − α2a2]e

λτ1

α1λ(λ2 + a2λ+ b0)
+

2λ+ a2

λ(λ2 + a2λ+ b0)
+
τ1
λ
.

And hence,
[

d(Reλ(τ1))

dτ1

]−1

τ1=τ
(j)
1k

= Re

[

(3λ2 + 2(a2 − α2)λ+ a1 − α2a2)e
λτ1

−α1λ(λ2 + a2λ+ b0)

]

τ1=τ
(j)
1k

+Re

[

2λ+ a2

λ(λ2 + a2λ+ b0)

]

τ1=τ
(j)
1k

+Re(
τ1
λ

)
τ1=τ

(j)
1k

=
1

Λ
{3ν6

k + 2[(α2 − a2)
2 + 2(α2a2 − a2) − α2

1]ν
4
k

+ [(a1 − α2a2)
2 + 2(α2 − a2)(a0 − α2b0) − α2

1a
2
2 + 2b0α

2
1]ν

2
k}

=
1

Λ
(3ν6

k + 2pν4
k + qν2

k)

=
zk
Λ
h′(zk),

where

Λ = α2
1[a

2
2ν

4
k + (ν2

k − b0)
2ν2
k ].

Notice that Λ > 0 and zk > 0, we conclude that

sign[
d(Reλ(τ1))

dτ1
]−1

τ1=τ
(j)
1k

= sign{h′(zk)}.

This completes the proof.

By the Lemmas 2.1, 2.2 and applying the Hopf bifurcation theorem for functional

differential equations (see Hale [6], Chapter 11, Theorem 1.1), we can conclude the

existence of Hopf bifurcation as stated in the following theorem.
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Theorem 2.3. Suppose that (H1) is satisfied and τ2 = 0.

(i) If r > 0 and △ = p2 − 3q ≤ 0, then all roots of Eq.(4) have negative real

parts for all τ1 ≥ 0, and hence the equilibrium (x0, y0, z0) of system (2) is

asymptotically stable for all τ1 ≥ 0.

(ii) If either r < 0 or r ≥ 0 and △ > 0, z∗1 > 0 and h(z∗1) ≤ 0 hold, then h(z)

has at least a positive root zk, all roots of Eq.(4) have negative real parts for

τ1 ∈ [0, τ 0
1 ). Hence the equilibrium (x0, y0, z0)of system (2) is asymptotically

stable when τ1 ∈ [0, τ 0
1 ).

(iii) If all conditions as stated in (ii) and h′(zk) 6= 0 hold, then system (2) un-

dergoes a Hopf bifurcation at the equilibrium (x0, y0, z0), when τ1 = τ
(j)
1k (j =

0, 1, 2, · · · ).

We have known that (H1) ensures that all roots of Eq.(5) have negative real

parts. Now we consider (H1) is not satisfied. For convenience, denote

a = (a2 − α1 − α2), b = (a1 − α1a2 − α2a2), c = a0 − α1b0 − α2b0.

Then Eq.(5) becomes

λ3 + aλ2 + bλ + c = 0.

Let λ = X − a/3. Then it reduces to

X3 + p1X + q1 = 0, (9)

where p1 = b− 1
3
a2 and q1 = 2

27
a3 − 1

3
ab+ c.

Denote

∆1 = (
p1

3
)3 + (

q1
2

)2, ε =
−1

2
+

√
3

2
i,

α = 3

√

−q1
2

+
√

∆1 and β = 3

√

−q1
2
−

√

∆1.

Then from Cardano’s formula for the third degree algebra equation we have the

followings.

Proposition 2.2. If ∆1 > 0, then Eq.(9) has a real root α+β and a pair of conjugate

complex roots −α+β
2

± i
√

3
2

(α− β), that is, that Eq.(5) has a real root α+ β − a
3

and

a pair of conjugate complex roots −(α+β
2

+ a
3
) ± i

√
3

2
(α− β).
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We make the following assumptions:

(H2) ∆1 > 0, α + β − a

3
< 0,

α + β

2
+
a

3
< 0, α− β 6= 0.

Theorem 2.4. Suppose that (H2) is satisfied and τ2 = 0.

(i) If r > 0 and △ = p2 − 3q ≤ 0, then at least one of the roots of Eq.(4) has

positive real parts for all τ1 ≥ 0, and hence the equilibrium (x0, y0, z0) of system

(2) is unstable for all τ1 ≥ 0.

(ii) If either r < 0 or r ≥ 0 and △ > 0, z∗1 > 0 and h(z∗1) ≤ 0 hold, then h(z)

has at least a positive root zk, at least one of the roots of Eq.(4) has positive

real parts for τ1 ∈ [0, τ 0
1 ). Hence the equilibrium (x0, y0, z0) of system (2)

is unstable when τ1 ∈ [0, τ 0
1 ). Additionally, if d(Reλ(τ1))

dτ1
|τ1=τ0

1
< 0, then the

equilibrium (x0, y0, z0)of system (2) is asymptotically stable when τ1 ∈ (τ 0
1 , τ

1
1 ),

where τ 1
1 is the second critical value.

(iii) If all conditions as stated in (ii) and h′(zk) 6= 0 hold, then system (2) un-

dergoes a Hopf bifurcation at the equilibrium (x0, y0, z0), when τ1 = τ
(j)
1k (j =

0, 1, 2, · · · ).

From the discussions above, we know that there may exist stability switches as

τ1 varies for system (2) with τ2 = 0. So denote I as stable interval of τ1, that is the

equilibrium (x0, y0, z0) of Eq.(2) is asymptotically stable when τ1 ∈ I and τ2 = 0.

Let τ1 ∈ I, and λ = iω(τ2) (ω > 0) be a root of Eq.(4). Then we obtain

{

−a2ω
2 + a0 − α1(b0 − ω2) cosωτ1 − α1a2ω sinωτ1 = α2(b0 − ω2) cosωτ2 + α2a2ω sinωτ2,

a1ω − ω3 − α1a2ω cosωτ1 + α1(b0 − ω2) sinωτ1 = α2a2ω cosωτ2 − α2(b0 − ω2) sinωτ2.

Then we have

ω6 + (a2
2 − 2a1 − α2

2 + α2
1)ω

4 + [a2
1 − 2a0a2 + (2b0 − a2

2)(α
2
2 − α2

1)]ω
2 + a2

0

−b20(α2
2 − α2

1) − 2[α1(a0 − a2ω
2)(b0 − ω2) + α1a2ω(a1ω − ω3)] cosωτ1

−2[α1a2ω(a0 − a2ω
2) − α1(a1ω − ω3)(b0 − ω2)] sinωτ1 = 0,

(10)

and

cosωτ2 = 1
α2[a22ω

2+(b0−ω2)2]
{(b0 − ω2)[−a2ω

2 + a0 − α1(b0 − ω2) cosωτ1 − α1a2ω sinωτ1]

+ a2ω[a1ω − ω3 − α1a2ω cosωτ1 + α1(b0 − ω2) sinωτ1]}.
(11)
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We know that Eq.(10) has at most finite positive roots. Without loss of generality,

we assume that Eq.(10) has N positive roots, denoted by ωk (k = 1, 2, · · · , N).

According to (11), define

τ
(j)
2k =

1

ωk
[± arccos(A) + 2jπ], k = 1, 2, · · · , N ; j = 0, 1, 2, · · · ,

where A is the value of right hand of (11) with ω = ωk and the sign of arc-cosine

function are determined by sinωτ2. Then ±iωk is a pair of purely imaginary roots

of Eq.(4) with τ
(j)
2k . Denote

τ 0
2 = τ

(0)
2k0

= min
k∈{1,2,··· ,N}

{τ (0)
2k }, ω0 = ωk0.

Let λ(τ2) = α(τ2) + iω(τ2) be the root of Eq.(4) satisfying α(τ
(j)
2k ) = 0, ω(τ

(j)
2k ) = ωk.

By computation, we obtain

α′(τ 0
2 ) = Λ1{RS − TU − 2α2

2ω
2
0 + 2b0α

2
2ω

2
0 − a2

2α
2
2ω

2
0 + (RBω0 − ATω0) sinω0τ

0
2

+ (−QB − PA)ω0 cosω0(τ1 + τ 0
2 ) + (−AQ+ PB)ω0 sinω0(τ1 + τ 0

2 )

− (ARω0 +BTω0) cosω0τ
0
2 + (SP + UQ) cosω0τ1 + (QS − PU) sinω0τ1}−1,

where

P = α1(−a2 + b0τ1 − τ1ω
2
0), Q = α1(−2ω0 + a2τ1ω0), R = −3ω2

0 + a1,

Λ1 = a2
2α

2
2ω

4
0 + (b20 − ω2

0)
2α2

2ω
2
0, A = α1a2ω0, B = α1(b0 − ω0),

S = a1ω
2
0 − ω4

0, T = 2a2ω0, U = −a2ω
3
0 + a0ω0.

Summarizing the discussions above, we have the following conclusions.

Theorem 2.5. Suppose that either (H1) or (H2) is satisfied, τ1 ∈ I and Eq.(10)

has positive roots. Then all roots of Eq.(4) have negative real parts for τ2 ∈ [0, τ 0
2 ).

Furthermore, the equilibrium (x0, y0, z0) of system (2) is asymptotically stable when

τ2 ∈ [0, τ 0
2 ). Additionally, if α′(τ 0

2 ) 6= 0, then system (2) undergoes a Hopf bifurca-

tion at the equilibrium (x0, y0, z0) when τ2 = τ 0
2 .

3 Stability and direction of the Hopf bifurcation

In the previous section, we obtained conditions for Hopf bifurcation to occur when

τ2 = τ 0
2 . In this section we study the direction of the Hopf bifurcation and the

EJQTDE, 2010 No. 63, p. 9



stability of the bifurcating periodic solutions when τ2 = τ 0
2 , using techniques from

normal form and center manifold theory (see e.g. Hassard et al.[7]).

We assume τ1 > τ 0
2 and denote τ2 = τ 0

2 + µ. Then the system (3) can be written

as an FDE in C = C([−τ1, 0], R3) as

u̇(t) = Lµ(ut) + F (µ, ut), (12)

where u = (u1, u2, u3)
T , ut(θ) = u(t + θ) ∈ C, and Lµ : C → R3, F : R × C → R3

are given, respectively, by

Lµϕ = Aϕ(0) +B1ϕ(−τ1) +B2ϕ(−(τ 0
2 + µ)), (13)

where

A =







0 −1 −1

1 β1 0

z0 0 x0 − γ






,

B1 =







α1 0 0

0 0 0

0 0 0






, B2 =







α2 0 0

0 0 0

0 0 0






,

ϕ(t) = (ϕ1(t), ϕ2(t), ϕ3(t))
T ,

and

F (µ, ϕ) =







0

0

ϕ1(0)ϕ3(0)






.

From the discussion in Section 2, we know that system (2) undergoes a Hopf bifur-

cation at (0, 0, 0) when µ = 0, and the associated characteristic equation of system

(2) with µ = 0 has a pair of simple imaginary roots ±iω0.

By the Riesz Representation Theorem, there exists a function η(θ, µ) of bounded

variation for θ ∈ [−τ1, 0], such that

Lµϕ =
∫ 0

−τ1 dη(θ, µ)ϕ(θ), for ϕ ∈ C. (14)

In fact, we can choose

η(θ, µ) =



























A +B1 +B2, θ = 0,

B1 +B2, θ ∈ (−τ2, 0),

B1, θ ∈ (−τ1,−τ2],
0, θ = −τ1.
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For ϕ ∈ C1([−τ1, 0], R3), we set

A(µ)ϕ =

{

dϕ(θ)
dθ

, θ ∈ [−τ1, 0),
∫ 0

−τ1 dη(ξ, µ)ϕ(ξ), θ = 0,

and

R(µ)ϕ =

{

0, θ ∈ [−τ1, 0),

f(µ, ϕ), θ = 0.

Then system (12) can be rewritten as

u̇t = A(µ)ut +R(µ)ut, (15)

where

ut(θ) = u(t+ θ)

for θ ∈ [−τ1, 0].

For ψ ∈ C1([0, τ1], (R
3)∗), define

A∗ψ(s) =

{

−dψ(s)
ds

, s ∈ (0, τ1],
∫ 0

−τ1 ψ(−t)dη(t, 0), s = 0.

For ϕ ∈ C1([−τ1, 0], R3) and ψ ∈ C1([0, τ1], (R
3)∗), using the bilinear form

< ψ, ϕ >= ψ̄(0)ϕ(0) −
∫ 0

−τ1

∫ θ

ξ=0

ψ̄(ξ − θ)dη(θ)ϕ(ξ)dξ, (16)

where η(θ) = η(θ, 0), we know that A∗ and A = A(0) are adjoint operators. By the

discussion in Section 2, we know that ±iω0 are eigenvalues of A(0). Thus they are

eigenvalues of A∗.

We know that the eigenvector of A(0) corresponding to the eigenvalue iω0 de-

noted by q(θ) satisfies A(0)q(θ) = iω0q(θ). By the definition of A(0) we obtain

q(θ) = (1,
1

iω0 − β1
,

z0
iω0 − x0 + γ

)eiω0θ (17)

Similarly, it can be verified that

q∗(s) = D(1,
1

iω0 + β1
,

1

iω0 + x0 − γ
)eiω0s

is a eigenvector of A∗ corresponding to −iω0, where D is a constant such that

< q∗(s), q(θ) >= 1. Denote

a =
1

iω0 − β1

, b =
z0

iω0 − x0 + γ
, a∗ =

1

iω0 + β1

, and b∗ =
1

iω0 + x0 − γ
.
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By (16) we have

< q∗(s), q(θ) >= D(1, a∗, b∗)(1, a, b)T −
∫ 0

−τ1
∫ θ

ξ=0
(1, a∗, b∗)e−i(ξ−θ)ω0dη(θ)(1, a, b)T eiξω0dξ

= D[1 + aa∗ + bb∗ −
∫ 0

−τ1(1, a
∗, b∗)θeiθω0dη(θ)(1, a, b)T ]

= D[1 + aa∗ + bb∗ + α1τ1e
−iω0τ1 + α2τ

0
2 e

−iω0τ
0
2 ].

Hence, we can choose

D =
1

1 + a∗ā+ b∗b̄+ α1τ1eiω0τ1 + α2τ 0
2 e

iω0τ
0
2

so that < q∗, q >= 1. Clearly, < q∗, q̄ >= 0.

Following the algorithms in Hassard et al. [1981] to describe the center manifold

C0 at µ = 0. Let ut be the solution of Eq.(15) when µ = 0. Define

z(t) =< q∗(s), ut(θ) >, W (t, θ) = ut(θ) − 2Re{z(t)q(θ)}. (18)

On the center manifold C0 we have

W (t, θ) = W (z(t), z(t), θ),

where

W (z, z, θ) = W20(θ)
z2

2
+W11(θ)zz +W02(θ)

z2

2
+ · · · ,

z and z are local coordinates for center manifold C0 in the direction of q∗ and q∗.

Note that W is real if ut is real. We consider only real solution.

For solution ut ∈ C0 of (13), since µ = 0,

ż(t) = iω0z+ < q∗(θ), f(0,W (z, z, θ) + 2Re{zq(θ)}) >
= iω0z + q∗f(0,W (z, z, 0) + 2Re{zq(0)})

def
= iω0z + q∗(0)f0(z, z).

We rewrite this equation as

ż(t) = iω0z(t) + g(z, z), (19)

where

g(z, z) = q∗(0)f0(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · · . (20)

By (18), we have

ut(θ) = (u1t, u2t, u3t) = W (t, θ) + zq(θ) + zq(θ),
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and then

u1t(0) = z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ · · · ,

u3t(0) = bz + bz +W
(3)
20 (0)

z2

2
+W

(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+ · · · .

From(20), we have

g(z, z) = q̄∗(0)f0(z, z) = D̄b̄∗u1t(0)u3t(0)

= D̄b̄∗(z + z +W
(1)
20 (0)

z2

2
+W

(1)
11 (0)zz +W

(1)
02 (0)

z2

2
+ · · · )(bz + bz +W

(3)
20 (0)

z2

2

+W
(3)
11 (0)zz +W

(3)
02 (0)

z2

2
+ · · · ).

(21)

Comparing the coefficients with (20), we have

g20 = 2D̄b̄∗b,

g11 = D̄b̄∗(b+ b),

g02 = 2D̄b̄∗b,

g21 = 2Db̄∗(1
2
W

(1)
20 (0)b+ 1

2
W

(3)
20 (0) +W

(3)
11 (0) + bW

(1)
11 (0)).

We still need to compute W20(θ) and W11(θ). From (15) and (18), we have

Ẇ = u̇t − żq − zq =

{

AW − 2Re{q∗(0)f0q(θ)}, θ ∈ [−τ ∗1 , 0),

AW − 2Re{q∗(0)f0q(0)} + f0, θ = 0,
def
= AW +H(z, z, θ),

(22)

where

H(z, z, θ) = H20(θ)
z2

2
+H11(θ)zz +H02(θ)

z2

2
+ · · · , (23)

A(0)W (t, θ) =
1

2
A(0)W20(θ)z

2 + A(0)W11(θ)zz + · · · , (24)

and

Ẇ = Wz ż +Wz ż = (W20(θ)z +W11(θ)z +W02(θ)
z2

2
+ · · · )(iω0z + g(z, z))

+ (W02(θ)z +W11(θ)z + · · · )(iω0z + g(z, z))

= 2iω0W20(θ)zz + · · · ,

A(0)W (t, θ) − Ẇ = (A(0) − 2iω0)W20(θ)
z2

2
+ A(0)W11()zz + · · · .

Hence

(A(0)−2iω0)W20(θ)
z2

2
+A(0)W11(θ)zz+· · · = −H20(θ)

z2

2
−H11(θ)zz−H02(θ)

z2

2
+· · · .
(25)
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Comparing the coefficients, we obtain

(A− 2iω0I)W20(θ) = −H20(θ), AW11(θ) = −H11(θ), · · · . (26)

By (22), we know that for θ ∈ [−τ1, 0),

H(z, z, θ) = −q∗(0)f0q(θ) − q∗(0)f0q(θ) = −gq(θ) − gq(θ). (27)

Comparing the coefficients with (23) gives that

H20(θ) = −g20q(θ) − g02q(θ),

H11(θ) = −g11q(θ) − g11q(θ).
(28)

From (26), (27) and the definition of A, we obtain

Ẇ20 = 2iω0W20(θ) + g20q(θ) + g02q(θ).

Solving for W20(θ), we obtain

W20(θ) =
ig20

ω0
q(0)eiω0θ +

ig02

3ω0
q(0)e−iω0θ + E1e

2iω0θ,

and similarly

W11(θ) = −ig11

ω0

q(0)eiω0θ +
ig11

ω0

q(0)e−iω0θ + E2,

where E1 and E2 are both three-dimensional vectors, and can be determined by

setting θ = 0 in H . In fact, since

H(z, z, 0) = −2Re{q∗(0)f0q(0)} + f0,

we have

H20(0) = −g20q(0) − g02q(0) + fz2,

and

H11(0) = −g11q(0) − g11q(0) + fzz,

where

f0 = fz2
z2

2
+ fzzzz + fz2

z2

2
+ · · · .

Hence, combining with the definition of A, we obtain

∫ 0

−τ1
dη(θ)W20(θ) = 2iω0W20(0) + g20q(0) + g02q(0) − fz2,
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and
∫ 0

−τ1
dη(θ)W11(θ) = g11q(0) + g11q(0) − fzz.

Notice that
(

iω0I −
∫ 0

−τ1
eiω0θdη(θ)

)

q(0) = 0,

(

−iω0I −
∫ 0

−τ1
e−iω0θdη(θ)

)

q(0) = 0

we have
(

2iω0I −
∫ 0

−τ1
e2iω0θdη(θ)

)

E1 = fz2.

Similarly, we have

−
(

∫ 0

−τ1
dη(θ)

)

E2 = fzz.

Hence, we get







2iω0 − α1e
−2iω0τ1 − α2e

−2iω0τ
0
2 1 1

−1 2iω0 − β1 0

−z0 0 2iω0 − x0 + γ






E1 =







0

0

b







and






−α1 − α2 1 1

−1 −β1 0

−z0 0 −x0 + γ






E2 =







0

0

b+ b






.

Then g21 can be expressed by the parameters.

Based on the above analysis, we can see that each gij can be determined by the

parameters. Thus we can compute the following quantities:

C1(0) =
i

2ω0

(

g11g20 − 2|g11|2 −
|g02|2

3

)

+
g21

2
,

µ2 = −Re(C1(0))

Re(λ′(τ 0
2 ))

,

β2 = 2Re(C1(0)),

T2 = −Im(C1(0)) + µ2Im(λ′(τ 0
2 ))

ω0
.

Theorem 3.1. For system (2)

(i) µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (resp.µ2 <

0), then the bifurcating periodic solutions exist for τ2 in a right hand side

neighborhood (τ 0
2 , τ

0
2 + ǫ) (resp. left hand side neighborhood (τ 0

2 − ǫ, τ 0
2 )) of the

bifurcation value τ 0
2 .
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(ii) β2 determines the stability of bifurcating periodic solutions: the bifurcating

periodic solutions are orbitally asymptotically stable (resp. unstable) if β2 <

0 (resp.β2 > 0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period in-

creases (resp. decreases) if T2 > 0 (resp. T2 < 0).

4 Numerical examples

In this section, we shall use MATLAB to perform some numerical simulations on

system (2).

In the following, we choose a set of parameters as follows::

(a) α1 = 0.2, α2 = −0.2, β1 = 0.2, β2 = 0.2, γ = 5.7.

With these parameters, one can find that (H2) is satisfied. When τ2 = 0, by a

direct computation we obtain that Eq.(7) has two positive roots ν1
.
= 0.8327 and

ν2
.
= 1.1506. Substituting them and the data (a) into Eq.(6) gives, respectively,

τ
(j)
11

.
= 2.2945 + 7.5456j (j = 0, 1, 2, · · · ), τ

(j)
12

.
= −1.1036 + 5.4608j (j = 1, 2, · · · ).

Eq.(4) has pure imaginary roots when τ1 = τ
(j)
11 or τ1 = τ

(j)
12 . Further α′(τ

(j)
11 ) < 0

and α′(τ
(j)
12 ) > 0. By Theorem 2.4 we know that the stability switches exist, that is

the equilibrium is unstable when τ1 ∈ [0, 2.2945), and asymptotically stable when

τ1 ∈ (2.2945, 4.3572). The results are illustrated in Fig.1-Fig.4.

0 20 40 60 80 100 120 140 160 180 200
−10

0

10

20

x

0 20 40 60 80 100 120 140 160 180 200
−20

−10

0

10

y

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

t

z

−10
−5

0
5

10
15

−15

−10

−5

0

5

10
0

5

10

15

20

xy

z

Fig.1. The equilibrium is unstable, and chaos exists for system (2) with the data (a) and

τ1 = τ2 = 0.
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Fig.2. The equilibrium is unstable and chaos phenomenon still exists for system (2) with

the data (a), τ1 ∈ [0, 2.2945) and τ2 = 0, where τ1 = 1.

0 50 100 150 200
−2

0

2

x

0 50 100 150 200
−2

0

2

y

0 50 100 150 200
0

0.05

0.1

t

z

−2
−1

0
1

2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

Fig.3. The equilibrium becomes stable and the chaos phenomenon disappears for system

(2) with the data (a), τ1 ∈ (2.2945, 4.3572) and τ2 = 0, where τ1 = 3.
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Fig.4. The equilibrium is unstable, and a bifurcating periodic solution appears for system

(2) with the data (a) and τ1 > 4.3572 and close to 4.3572, and τ2 = 0, where τ1 = 5.

Let τ1 = 3.0 ∈ (2.2945, 4.3572), we obtain τ 0
2
.
= 1.6295. By the Theorem 2.4

we know that (x0, y0, z0) is asymptotically stable for τ1 = 3 and τ2 ∈ [0, 1.6295).

Furthermore by direct computation using the algorithm derived in Section 3, we

have C1(0)
.
= −0.0003 + 0.0002i, β2

.
= −0.0006 < 0, and µ2 > 0. We know that, at

τ 0
2
.
= 1.6295, the bifurcating periodic solution is orbitally asymptotically stable, and

the direction of the Hopf bifurcation is forward, which are illustrated in Fig.5-Fig.6.

On the other hand, the numerical simulations show that the bifurcating periodic

solutions disappear when the delay τ2 is far away τ 0
2 = 1.6295, and chaos occurs

again. This is shown in Fig.7.
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Fig.5. The equilibrium is asymptotically stable for system (2) with the data (a), τ1 ∈
(2.2945, 4.3572) and τ2 ∈ [0, τ0

2 ), where τ1 = 3, and τ2 = 1.
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Fig.6. The equilibrium is unstable, and a bifurcating periodic solution appears for system

(2) with the data (a), τ1 ∈ (2.2945, 4.3572) and τ2 > τ0
2 is close to τ0

2 , where τ1 = 3 and τ2 =

2 > 1.6295.
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Fig.7. Chaos occurs again for system (2) with the data (a), τ1 ∈ (2.2945, 4.3572) and

τ2 > τ0
2 increasing further, where τ1 = 3, τ2 = 3.5 > 1.6295.

5 Conclusion

Bifurcation in Rössler system with single delay has been observed by many re-

searchers. However, there are few papers on the bifurcation of Rössler system with

multiple delays.

In this paper we have analyzed the Rössler system with multiple delays on two

different conditions. We find out that there are stability switches for the interior
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equilibrium when τ1 varies in the case of τ2 = 0. Then for τ1 in a stability interval,

regarding the delay τ2 as parameter, we show that there exists a first critical value

of τ2 at which the interior equilibrium loses its stability and the Hopf bifurcation

occurs. We also investigate the direction of the Hopf bifurcation and the stability of

the bifurcating periodic solutions, by using the center manifold theory and normal

form method.

Our theoretical results and numerical simulations show that, for a Rössler sys-

tem with chaos phenomena, the chaos oscillation can be controlled by delays. For

example, the multiple delayed Rössler system we studied possess chaos oscillation

when τ1 = τ2 = 0. The chaos disappears when the delays increase, and the stability

of the equilibrium is lost at same time, and the periodic solutions occur from Hopf

bifurcation. As the delays increasing further, the numerical simulations show that

the periodic solution disappears and the chaos oscillation appears again.
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