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1 Introduction

The oscillation theory and asymptotic behavior of difference equations and their applications
have been and still are receiving intensive attention over the last two decades. Indeed, the
last few years have witnessed the appearance of several monographs and hundreds of research
papers, see for example the references [1, 3, 6, 11]. Determination of oscillatory behavior
for solutions of second order difference equations has occupied a great part of researchers’
interest. Compared to this, however, the study of third order difference equations has
received considerably less attention in the literature even though such equations often arise
in the study of economics, mathematical biology and many other areas of mathematics
whose discrete models are used, we refer to [2, 4, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19].
Some of these results will be briefly stated below. Since we are interested in the oscillatory
and asymptotic behavior of solutions near infinity, we make a standing hypothesis that
the equation under consideration does possess such solutions. The solutions vanishing in
some neighborhood of infinity will be excluded from our consideration. A solution xn is
said to be oscillatory if it is neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. We say that an equation is oscillatory if it has at least one oscillatory
solution.

Here are some background details that may serve the readers and motivate the contents
of this paper.

∗Corresponding Author E-mail Address: jalzabut@psu.edu.sa

EJQTDE, 2010 No. 67, p. 1



For oscillation of linear difference equations: In [14], Smith considered the equation of
the form

∆3xn − pnxn+2 = 0, n ≥ n0 (1)

and studied the asymptotic and oscillatory behavior of the solutions subject to the condition
pn > 0 for n ≥ n0. Indeed, he proved that if

∞
∑

n=n0

pn = ∞ (2)

then (1) is oscillatory. Further, the author considered the quasi-adjoint difference equation

∆3xn + pnxn+1 = 0, n ≥ n0 (3)

and proved that (1) is oscillatory if and only if (3) is oscillatory. However, one can easily
see that the results cannot be applied if pn = n−α for α > 1.

In [12], the authors studied the difference equation of the form

∆3xn + qnxn = 0, n ≥ n0 (4)

and established some sufficient conditions for (4) to have monotonic and nonoscillatory
solutions. They proved that if qn > 1 for n ≥ n0 is a positive sequence then (4) is oscillatory.

In [13], it was proved that if

∞
∑

l=n0

[

l−1
∑

t=n0

t−1
∑

s=n0

ps

]

= ∞ (5)

and there exists a positive sequence ρn such that

lim
n→∞

sup

n
∑

s=n0

[

ρsps −
(∆ρs)

2

4ρs(s− n0)

]

= ∞ (6)

then the solution xn of (3) either oscillates or satisfies limn→∞ xn = 0. Results established
in [13] provided substantial improvements for those obtained in [12] and [14].

In [16], the author considered the linear difference equation

∆3xn − pn+1∆xn+1 + qn+1xn+1 = 0, n ≥ n0, (7)

where pn and qn are nonnegative real sequences satisfying

∆pn + qn+1 > 0 (8)

and proved that if xn is a nonoscillatory solution of (7) then there exists an integer N for
which either xn∆xn > 0 or xn∆xn < 0 for all n > N.

In [15], the author investigated the linear difference equation

∆3xn + pn+1∆xn+2 + qnxn+2 = 0, n ≥ n0, (9)

where pn and qn are real sequences satisfying

pn ≥ 0, qn < 0 and

∞
∑

n=n0

(∆pn − 2qn) = ∞. (10)

It was shown that if pn+1 + qn ≤ 0 for n ≥ n0 then signxn = sign∆xn = sign∆2xn and (9)
has both oscillatory and nonoscillatory solutions. Further, the author established a sufficient
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condition for the existence of oscillatory solutions. The main investigation is based on the
value of the functional F1(xn) = (∆xn)2−2xn+1∆

2xn−pnx
2
n+2. In particular, it was proved

that if there is a solution xn of (9) such that F (xn) > 0 then xn is oscillatory. However, one
can easily see that the condition depends on the solution itself whose determination might
not be possible.

For oscillation of nonlinear difference equations: The authors in [18] considered the
equation

∆(∆2xn + pnxn+1) + pn∆xn + f(xn+1) = 0, n ≥ n0, (11)

where f(x)/x ≥ k > 0 and pn is a bounded real sequence such that

∞
∑

s=n0

pn = ∞. (12)

The authors studied the asymptotic behavior of the solutions and proved that if there exists
a solution xn of (11) satisfying F2(xn) < 0, where F2(xn) = 2xn(∆2xn + pnxn+1)− (∆xn)2,
then xn is oscillatory. On the other hand, the authors proved that if there exists a solution
xn of (11) satisfying F2(xn) > 0 then limn→∞ xn = limn→∞ ∆xn = limn→∞ ∆2xn = 0.
Nevertheless, due to condition (12) the results are no longer valid if pn = n−α for α > 1.

In [16], the author investigated equation of form

∆(∆2xn − pn+1xn+1) − qn+2xn+2 = 0, n ≥ n0, (13)

where pn and qn are nonnegative real sequences and satisfying (8). It was shown that there
exists a solution xn of (13) such that xn∆xn∆2xn 6= 0, xn > 0, ∆xn > 0 and ∆2xn > 0 for
n ≥ n0 and if xn is a nonoscillatory solution then there exists an integer N for which either
xn∆xn > 0 or xn∆xn < 0 for all n > N. Furthermore, the author investigated the same
result for equation (7) and proved that if vn is a nonoscillatory solution of (13) then the two
independent solutions of (7) satisfy the self-adjoint second order equation

∆

(

∆xn

vn

)

+

(

∆2vn−1 − pnvn

vnvn+1

)

xn+1 = 0. (14)

In [8], the authors studied the oscillatory behavior of

∆(cn∆(dn∆(xn))) + qnf(xn−σ+1) = 0, n ≥ n0, (15)

where σ is a nonnegative integer and f ∈ C(R,R) such that uf(u) > 0 for u 6= 0 and satisfies

f(u) − f(v) = g(u, v)(u− v), for u, v 6= 0 and g(u, v) > µ > 0 (16)

and qn, cn, dn are positive sequences of real numbers such that

∞
∑

n=n0

(

1

cn

)

=

∞
∑

n=n0

(

1

dn

)

= ∞ and ∆cn > 0. (17)

For the linear case, they used the Riccati transformation technique and established a suf-
ficient condition for oscillation of equation (15). For the nonlinear case, however, some
oscillation criteria were provided by reducing the oscillation of the equation to the existence
of positive solution of a Riccati difference inequality. Nevertheless, one can easily see that
condition (16) might not be satisfied when f(u) = uγ for γ > 0 and the results are valid
only when ∆cn > 0. Therefore, one of our aims in this paper is to establish some sufficient
conditions for oscillation bypassing condition (16) and removing the restriction in (17).

In [2], the authors considered the nonlinear delay difference equation

∆3xn = pn∆2xn+m + qnF (xn−g, xn−h) = 0, n ≥ n0, (18)
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where pn and qn are positive real sequences, pn is nonincreasing, m, g, h are nonnegative
integers and F (x, y) = signx ≥ |x|c1 |y|c2 where c1 and c2 are nonnegative constants such
that c1 + c2 > 0. They established some sufficient conditions for the existence of oscillatory
solutions. The main results are proved by reducing the order of the equation under consid-
eration. Indeed, the oscillation of equation (18) reduces to the oscillation of a first order
delay or advanced difference equations.

In [5], the authors considered the nonlinear difference equation

∆(cn∆(dn∆(xn))) + qnf(xn+σ) = 0, n ≥ n0, (19)

where cn, dn, qn are sequences of nonneagtive real numbers and the function f ∈ C(R,R)
such that uf(u) > 0 for u 6= 0. The main result in [5] was the classification of the nonoscil-
latory solutions with respect to the sign of their quasi differences.

In [7], the authors considered the nonlinear delay difference equation

∆(cn
(

∆2xn

)γ
) + qnf(x(σn)) = 0, n ≥ n0, (20)

where cn, σn, qn are sequences of nonneagtive real numbers, σn < n, γ is quotient of odd
positive integers, f ∈ C(R,R) such that uf(u) > 0 for u 6= 0, f ′(x) > 0, −f(−xy) ≥ f(xy) ≥
f(x)f(y) for xy > 0 and

∞
∑

n=n0

(

1

cn

)γ

<∞.

The main approach of proving the results in [7] was also based on the reduction of the
oscillation of (20) to the oscillation of first order delay difference equation. However, the
results can only be applied in the case when σn < n. Further, the restriction f ′(x) > 0 might

not be satisfied. Indeed, if f(x) = x
(

1
9 + 1

1+x2

)

then f ′(x) = (x2
−2)(x2

−5)
9(1+x2)2 changes sign four

times.
Following this trend, we are concerned with the oscillation and the asymptotic behavior

of solutions of the nonlinear delay difference equation of form

∆(cn∆(dn∆xn)γ) + qnf(xn−σ) = 0, n ≥ n0, (21)

where γ > 0 is quotient of odd positive integers, σ ∈ N and

(h1) cn, dn, qn are positive sequences of real numbers;

(h2) f ∈ C(R,R) such that uf(u) > 0 for u 6= 0 and f(u)/uγ > K > 0.

Our attention is restricted to those solutions of (21) which exist on [nx, ∞) and satisfy
sup{|x(n)| : n > n1} > 0 for any n1 ≥ nx. It is to be noted that the results of the above
mentioned papers provided several oscillation criteria under the conditions

∞
∑

n=n0

(

1

cn

)γ

= ∞ and

∞
∑

n=n0

(

1

dn

)

= ∞. (22)

Therefore, it will be of great interest to establish oscillation criteria when

∞
∑

n=n0

(

1

cn

)γ

<∞ and

∞
∑

n=n0

(

1

dn

)

<∞. (23)

The aim of the paper is to employ Riccati transformation technique to establish some
new oscillation criteria for equation (21) under assumptions (22). We will prove our results
bypassing condition (16) and removing the restriction ∆cn > 0. Unlike previously obtained
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results, new oscillation criteria are also obtained under assumptions (23). We will comple-
ment and improve the results in [8] and extend those in [13]. Some comparison between our
theorems and those previously known ones are indicated throughout the paper.

The paper is organized as follows: In Section 2, we present some fundamental lemmas
that will be useful in proving our main results. In Section 3, we will state and prove the
main oscillation theorems. An example is given to demonstrate the validity of the results.

2 Some Fundamental Lemmas

In this section, we present some fundamental lemmas that will be used in the proofs of the
main results. For equation (21), we define the quasi differences by

x[0]
n = xn, x[1]

n = dn∆xn, x[2]
n = cn∆

(

x[1]
n

)γ

and x[3]
n = ∆x[2]

n . (24)

It is to be noted that if xn is a solution of (21) then z = −x is also a solution of (21) since
uf(u) > 0 for u 6= 0. Thus, concerning nonoscillatory solutions of (21), we will only restrict
our attention to the positive ones.

We start with the following lemma which provides the signs of the quasi differences of
the solution xn of (21).

Lemma 1. Let xn be a nonoscillatory solution of (21). Assume that (h1) − (h2) hold.

Then there exists N > n0 such that x
[i]
n 6= 0 for i = 0, 1, 2 and n ≥ N.

Proof. Without loss of generality, we assume that xn is an eventually positive solution
of (21) and there exists n1 ≥ n0 such that xn and xn−σ > 0 for n ≥ n1. Since qn > 0, then

x
[3]
n < 0. Thus, there exists n2 ≥ n1 such that x

[2]
n is either positive or negative for n ≥ n2.

It follows that x
[1]
n is either increasing or decreasing for n ≥ n2 and so there exists N ≥ n2

such that x
[0]
n is either positive or negative for n ≥ N.

In view of Lemma 1, we deduce that all nonoscillatory solutions of (21) belong to the
following classes:

C0 = {xn : ∃ N such that xnx
[1]
n < 0, xnx

[2]
n > 0 for n ≥ N},

C1 = {xn : ∃ N such that xnx
[1]
n > 0, xnx

[2]
n < 0 for n ≥ N},

C2 = {xn : ∃ N such that xnx
[1]
n > 0, xnx

[2]
n > 0 for n ≥ N},

C3 = {xn : ∃ N such that xnx
[1]
n < 0, xnx

[2]
n < 0 for n ≥ N}.

Lemma 2. Let xn be a nonoscillatory solution of (21). Assume that (h1) − (h2) hold.
If

∞
∑

n=n0

1

dn

n−1
∑

s=n0

1

(cs)
1
γ

= ∞. (25)

Then C3 is empty.

Proof. To prove that C3 is empty, it is sufficient to show that if there is a positive

solution xn of (21), then the case xnx
[1]
n < 0 and xnx

[2]
n < 0 for n ≥ N is impossible. For

the sake of contradiction, assume that there exists n1 > n0 such that x
[1]
n < 0 and x

[2]
n < 0

for n ≥ n1. Denote a0 = x
[2]
n1
< 0. Then, since x

[2]
n is decreasing we have cn

(

∆x
[1]
n

)γ

< a0

for n ≥ n1. Thus by summing from n1 to n− 1, we have

x[1]
n < x[1]

n1
+ a

1
γ

0

n−1
∑

s=n1

1

(cs)
1
γ

.
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Using that x
[1]
n1
< 0, we get

x[1]
n < a

1
γ

0

n−1
∑

s=n1

1

(cs)
1
γ

.

Summing up from n1 to n− 1, we obtain

xn < xn1
+ a

1
γ

0

n−1
∑

s=n1

1

ds

s−1
∑

u=n1

1

(cu)
1
γ

.

Letting n → ∞, then by (25) we deduce that limn→∞ xn = −∞ which contradicts that
xn > 0. The proof is complete.

Lemma 3. Let xn be a nonoscillatory solution of (21). Assume that (h1) − (h2) hold.
If (22) holds. Then xn ∈ C0 ∪ C2.

Proof. Without loss of generality, we assume that xn is an eventually positive solution
of (21) and there exists n1 > n0 such that xn and xn−σ > 0 for n > n1. In virtue of Lemma

1, we deduce that x
[0]
n , x

[1]
n and x

[2]
n are monotone and eventually of one sign. Therefore

to complete the proof, we show that there are only the following two cases for n > n0

sufficiently large:

(I) x
[0]
n > 0, x

[1]
n > 0 and x

[2]
n > 0;

(II) x
[0]
n > 0, x

[1]
n < 0 and x

[2]
n > 0.

In view of (h2) and (21), we see that x
[3]
n < 0 for n > n1. We claim that there is n2 > n1

such that for n > n2, x
[2]
n > 0. Suppose to the contrary that x

[2]
n ≤ 0 for n > n2. Since x

[2]
n is

nonincreasing, there exists a negative constant L and n3 > n2 such that x
[2]
n ≤ L for n > n3.

Dividing by cn and summing from n3 to n− 1, we obtain

x[1]
n ≤ x[1]

n3
+ L

1
γ

n−1
∑

s=n3

1

(cs)
1
γ

.

Letting n→ ∞, then by ( 22) we deduce that x
[1]
n → −∞. Thus, there is an integer n4 > n3

such that for n > n4, x
[1]
n ≤ x

[1]
n4
< 0. Dividing by dn and summing from t4 to t, we have

xn − xn4
≤ x[1]

n4

n−1
∑

s=n4

1

ds

,

which implies that xn → −∞ as n → ∞. This contradicts the fact that xn > 0. Then

x
[2]
n > 0.

Lemma 4. Let xn be a nonsocillatory solution of (21) that belongs to C0. Assume
that (h1) − (h2) and n− σ ≤ n hold. If

∞
∑

n=n0

1

dn

[

n−1
∑

t=n0

1

ct

t−1
∑

s=n0

qs

]
1
γ

= ∞. (26)

Then limn→∞ xn = 0.
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Proof. Without loss of generality, we assume that xn−σ > 0 for n ≥ n1 where n1 is
chosen sufficiently large. In view of (h2) and (21), we obtain

x[3]
n +Kqnx

γ
n−σ ≤ 0, n ≥ n1. (27)

Since xn is positive and decreasing it follows that limn→∞ xn = b ≥ 0. Now we claim that
b = 0. If b 6= 0 then xγ

n−σ → bγ > 0 as n → ∞. Hence there exists n2 ≥ n1 such that
xγ

n−σ ≥ bγ . Therefore from (27), we have

x[3]
n +Kqnb

γ ≤ 0, n ≥ n2.

Define the sequence un = x
[2]
n for n ≥ n2. Then ∆x

[2]
n ≤ −Aqn where A = Kbγ > 0.

Summing the last inequality from n2 to n− 1, we get x
[2]
n ≤ x

[2]
n2 −A

n−1
∑

s=n2

qs. In view of (26),

it is possible to choose an integer n3 sufficiently large such that x
[2]
n ≤ −A

2

n−1
∑

s=n2

qs for all

n ≥ n3. Hence ∆
(

x
[1]
n

)γ

≤ −A
2

1
cn

n−1
∑

s=n2

qs. Summing the last inequality from n3 to n− 1, we

obtain
(

x[1]
n

)γ

≤
(

x[1]
n3

)γ

− A

2

n−1
∑

t=n3

(

1

ct

t−1
∑

s=n2

qs

)

.

Since ∆xn < 0 for n ≥ n0, the last inequality implies that

∆xn ≤ −
(

A

2

)
1
γ 1

dn

[

n−1
∑

t=n3

1

ct

t−1
∑

s=n2

qs

]
1
γ

.

Summing from n4 to n− 1, we have

xn ≤ xn4
−
(

A

2

)
1
γ

n−1
∑

l=n4

1

dl

[

l−1
∑

t=n3

1

ct

t−1
∑

s=n2

qs

]

1
γ

.

Condition (26) implies that xn → −∞ as n→ ∞ which is a contradiction with the fact that
xn > 0. Then b = 0 and this completes the proof.

Lemma 5. Let xn be a nonoscillatory solution of (21) that belongs to C2. Then there
exists n1 ≥ n0 such that

(

x
[1]
n−σ

)γ

≥ δn−σx
[2]
n , for n ≥ n1,

where δn :=
∑n−1

s=n0

1
cs
.

Proof. Since xn ∈ C2, then without loss of generality we can assume that there exists
N > n0 such that

xn > 0, x[1]
n > 0, x[2]

n > 0 and x[3]
n ≤ 0 for n ≥ N.

Hence
(

x[1]
n

)γ

=
(

x[1]
n1

)γ

+
n−1
∑

s=n1

cs∆(x
[1]
s )γ

cs
≥ δnx

[2]
n , n ≥ n1. (28)
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Since x
[3]
n ≤ 0, we have x

[2]
n−σ ≥ x

[2]
n . This and (28) imply that

(

x
[1]
n−σ

)γ

≥ δn−σx
[2]
n−σ ≥ δn−σx

[2]
n , n ≥ N1 = N + σ.

Thus
(

x
[1]
n−σ

)γ

≥ δn−σx
[2]
n , for n ≥ N1.

3 Oscillation Criteria

In this section, we will establish some new sufficient conditions which guarantee that every
solution xn of (21) either oscillates or satisfies limn→∞ xn = 0. In our analysis, we will
present the proofs of our results under conditions (22) and (23) in two separate investigations.

3.1 Oscillation under condition (22)

Throughout this subsection we assume that there exists a double sequences {Hm,n : m ≥
n ≥ 0} and hm,n such that:

(i) Hm,m = 0 for m ≥ 0;

(ii) Hm,n > 0 for m > n ≥ 0;

(iii) ∆2Hm,n = Hm,n+1 −Hm,n ≤ 0 for m ≥ n ≥ 0;

(iv) hm,n = −∆2Hm,n(Hm,n)−
1

γ+1 , m > n ≥ 0.

For a given sequence ρn, we define

ψn : = Kρnqn − ρn∆(cnαn) +
ρnδ

1
γ

n−σ(cn+1)
1+ 1

γ (αn+1)
1+ 1

γ

dn−σ

ξn : = ∆ρn + γρn(1 +
1

γ
)(cn+1αn+1δn−σ)

1
γ d−1

n−σ

and

φm,n : =
ρ1+γ

n+1

(1 + γ)1+γργ
nδn−σd

−γ
n−σH

γ
m,n

(

ξnHm,n

ρn+1
− hm,nH

1
γ+1

m,n

)1+γ

.

Theorem 6. Let xn be a solution of (21) and ρn be a given positive sequence. Assume
that (h1) − (h2), (22) and (26) hold. If

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

[Hm,nψn − φm,n] = ∞. (29)

Then xn either oscillates or satisfies limn→∞ xn = 0.

Proof. Suppose to the contrary that xn is a nonoscillatory solution. Without loss of
generality, we assume that xn > 0 and xn−σ > 0 for n ≥ n1 where n1 is chosen so large.
In view of Lemma 3, we deduce that condition (22) implies that xn ∈ C0 ∪ C2. If xn ∈ C0,
then we are back to the proof of Lemma 4 to show that limn→∞ xn = 0. We assume that
the solution xn ∈ C2 and define the sequence ωn by the generalized Riccati substitution

ωn := ρn

[

x
[2]
n

xγ
n−σ

+ cnαn

]

, n ≥ n1. (30)
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It follows that

∆ωn = ∆(ρncnαn) + x
[2]
n+1∆

[

ρn

xγ
n−σ

]

+
ρnx

[3]
n

xγ
n−σ

.

In view of (27) and (30), the above equation can be written in the form

∆ωn ≤ −Kρnqn + ρn∆(cnαn) +
∆ρn

ρn+1
ωn+1 −

ρnx
[2]
n+1

xγ
n−σx

γ
n−σ+1

∆(xγ
n−σ). (31)

First: we consider the case when γ ≥ 1. By using the inequality ([9, see p. 39])

xγ − yγ ≥ γyγ−1(x− y) for all x 6= y > 0 and γ ≥ 1,

we may write
∆(xγ

n−σ) = xγ
n−σ+1 − xγ

n−σ ≥ γxγ−1
n−σ∆xn−σ, γ ≥ 1.

Substituting in (31), we find out

∆ωn ≤ −Kρnqn + ρn∆(cnαn) +
∆ρn

ρn+1
ωn+1 −

γρnx
[2]
n+1∆xn−σ

xn−σx
γ
n−σ+1

.

Since xn ∈ C2, it follows from Lemma 5 that there exists n2 ≥ n1 such that

(∆xn−σ)γ ≥ δn−σ

dγ
n−σ

x[2]
n for n ≥ n2. (32)

Using the fact that xn−σ+1 ≥ xn−σ, we obtain

∆ωn ≤ −Kρnqn + ρn∆(cnαn) +
∆ρn

ρn+1
ωn+1 −

γρnδ
1
γ

n−σx
[2]
n+1[x

[2]
n ]

1
γ

dn−σ(xn−σ+1)γ+1
. (33)

Since x
[3]
n < 0, it follows that x

[2]
n+1 ≤ x

[2]
n and thus [x

[2]
n+1]

1
γ ≤ [x

[2]
n ]

1
γ . This yields that

∆ωn ≤ −Kρnqn + ρn∆(cnαn) +
∆ρn

ρn+1
ωn+1 −

γρnδ
1
γ

n−σ

dn−σ

(

x
[2]
n+1

xγ
n−σ+1

)

1+γ
γ

. (34)

Second: we consider the case when 0 < γ < 1. By using the inequality

xγ − yγ ≥ γxγ−1(x− y) for all x 6= y > 0,

we may write
∆(xγ

n−σ) ≥ γxγ−1
n−σ+1∆xn−σ.

Substituting in (31), we have

∆ωn ≤ −Kρnqn + ρn∆(cnαn) +
∆ρn

ρn+1
ωn+1 −

γρnx
[2]
n+1∆xn−σ

xγ
n−σxn−σ+1

.

By using the fact that xn is increasing, we have

−γρnx
[2]
n+1∆xn−σ

xγ
n−σxn−σ+1

≤ −γρnδ
1
γ

n−σ

dn−σ

(

x
[2]
n+1

xγ
n−σ+1

)

1+γ
γ

. (35)
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Thus, we again obtain (34). However, from (30) we see that

(

x
[2]
n+1

xγ
n−σ+1

)1+ 1
γ

=

(

ωn+1

ρn+1
− cn+1αn+1

)1+ 1
γ

. (36)

Then, by using the inequality [19, see p. 534]

(v − u)
1+ 1

γ ≥ v1+ 1
γ +

1

γ
u1+ 1

γ − (1 +
1

γ
)u

1
γ v, γ =

odd

odd
≥ 1,

we may write equation (36) as follows

(

ωn+1

ρn+1
− cn+1αn+1

)1+ 1
γ

≥
(

ωn+1

ρn+1

)1+ 1
γ

+
(cn+1αn+1)

1+ 1
γ

γ
−

(1 + 1
γ
)(cn+1αn+1)

1
γ

ρn+1
ωn+1.

Substituting back in (34), we have

∆ωn ≤ −Kρnqn + ρn∆(cnαn) − ρnδ
1
γ

n−σ(cn+1)
1+ 1

γ (αn+1)
1+ 1

γ

dn−σ

+

(

∆ρn

ρn+1
+
γρn(1 + 1

γ
)(cn+1δn−σαn+1)

1
γ

dn−σρn+1

)

ωn+1

−





γρnδ
1
γ

n−σ

dn−σ(ρn+1)
1+ 1

γ



 (ωn+1)
1+ 1

γ . (37)

Thus,

ψn ≤ −∆ωn +
ξn
ρn+1

ωn+1 −
ρ̄n

(ρn+1)
1+ 1

γ

(ωn+1)
1+ 1

γ , n ≥ n3,

where ρ̄n = γρnδ
1
γ

n−σd
−1
n−σ. Therefore, we have

m−1
∑

n=n3

Hm,nψn ≤ −
m−1
∑

n=n3

Hm,n∆ωn +

m−1
∑

n=n3

ξnHm,n

ρn+1
ωn+1 −

m−1
∑

n=n3

ρ̄nHm,n

(ρn+1)
1+ 1

γ

(ωn+1)
1+ 1

γ ,

which yields after summing by parts

m−1
∑

n=n3

Hm,nψn ≤ Hm,n3
ωn3

+

m−1
∑

n=n3

ωn+1∆2Hm,n +

m−1
∑

n=n3

ξnHm,n

ρn+1
ωn+1

−
m−1
∑

n=n3

ρ̄nHm,n

(ρn+1)
1+ 1

γ

(ωn+1)
1+ 1

γ .

Hence

m−1
∑

n=n3

Hm,nψn ≤ Hm,n3
ωn3

+
m−1
∑

n=n3

(

ξnHm,n

ρn+1
− hm,nH

1
γ+1

m,n

)

ωn+1−
m−1
∑

n=n3

ρ̄nHm,n

(ρn+1)
1+ 1

γ

(ωn+1)
1+ 1

γ .

Using the fact that

Bu −Au1+ 1
β ≤ ββ

(1 + β)1+β

B1+β

Aβ
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for A =
ρ̄nHm,n

(ρn+1)
1+ 1

γ

and B =

(

ξnHm,n

ρn+1
− hm,nH

1
γ+1

m,n

)

, we obtain

m−1
∑

n=n3

[Hm,nψn − φm,n] < Hm,n3
ωn3

≤ Hm,n0
ωn3

,

which implies that

m−1
∑

n=n0

[Hm,nψn − φm,n] < Hm,n0

(

ωn3
+

n3−1
∑

n=n0

ψn

)

.

Hence

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

[Hm,nψn − φm,n] <∞,

which contradicts (29). The proof is complete.

The following result is an immediate consequence of Theorem 6.

Corollary 7. Let xn be a solution of (21) and assume that all the assumptions of
Theorem 6 hold, except that the condition (29) is replaced by

lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

Hm,nψn = ∞ and lim
m→∞

sup
1

Hm,n0

m−1
∑

n=n0

φm,n <∞. (38)

Then xn either oscillates or satisfies limn→∞ xn = 0.

In view of Theorem 6, if we choose Hm,n = 1 and

(αn+1)
1
γ := − γ∆ρn

(γ + 1)ρn

dn−σc
−

1
γ

n+1δ
−

1
γ

n−σ (39)

we deduce that ξn = 0 and we have the following result.

Theorem 8. Let xn be a solution of (21) and ρn be a given positive sequence. Assume
that (h1) − (h2), (22) and (26) hold. If

lim
n→∞

sup
n
∑

s=n0

ψs = ∞. (40)

Then xn either oscillates or satisfies limn→∞ xn = 0.

Theorem 8 improves Theorem 1 of Graef and Thandapani [8] in the sense that our results
are proved for the nonlinear case and do not require condition (16) and that ∆cn ≥ 0 for
n ≥ n0. Moreover, we note that if γ = 1 and ρn = 1 then condition (40) reduces to con-
dition 3 of Theorem 1 in [8]. This implies that Theorem 8 is an extension of Theorem 1 in [8].

Theorem 8 might provide different conditions for oscillation of all solutions of equation
(21). This occurs upon choosing different values for ρn. For instance, let ρn = nλ, n ≥ n0

where λ > 1 is a constant. Then, the next result follows.

Corollary 9. Let xn be solution of equation (21) and assume that all the assumptions
of Theorem 6 hold, except that condition (40) is replaced by

lim
n→∞

sup

n
∑

s=n0



Ksλqs − sλ∆(csαs) +
sλδ

1
γ

s−σ(cs+1)
1+ 1

γ (αs+1)
1+ 1

γ

ds−σ



 = ∞. (41)

EJQTDE, 2010 No. 67, p. 11



Then xn either oscillates or satisfies limn→∞ xn = 0.

By choosing the sequence Hm,n in an appropriate form, one can derive several oscillation
criteria for (21). Let us consider the double sequence Hm,n defined by

Hm,n := (m− n)λ or Hm,n :=

(

log
m+ 1

n+ 1

)λ

, λ ≥ 1, m ≥ n ≥ 0,

or
Hm,n := (m− n)(λ) λ ≥ 1, m ≥ n ≥ 0,

where
(m− n)(λ) = (m− n)(m− n+ 1) . . . (m− n+ λ− 1), (m− n)(0) = 1

and
∆2(m− n)(λ) = (m− n− 1)λ − (m− n)λ = −λ(m− n)(λ−1).

We observe that Hm,m = 0 for m ≥ 0 and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0. Then,
the following results can be formulated.

Corollary 10. Let xn be a solution of (21) and assume that all the assumptions of
Theorem 6 hold, except that the condition (29) is replaced by

lim
m→∞

sup
1

mλ

m−1
∑

n=0

[

(m− n)λψn − ϕm,n

]

= ∞, (42)

where

ϕm,n =
ρ1+γ

n+1

(

ξn(m−n)λ

ρn+1
− λ(m− n)λ−1

)1+γ

(1 + γ)1+γργ
nδn−σd

−γ
n−σ(m− n)λγ

.

Then xn either oscillates or satisfies limn→∞ xn = 0.

Corollary 11. Let xn be a solution of (21) and assume that all the assumptions of
Theorem 6 hold, except that the condition (29) is replaced by

lim
m→∞

sup
1

(log(m+ 1))λ

m−1
∑

n=0

[

(

log
m+ 1

n+ 1

)λ

ψn − ϑm,n

]

where

ϑm,n =

ρ1+γ
n+1

(

ξn(log m+1

n+1
)λ

ρn+1
− [(log m+1

n+2 )λ − (log m+1
n+1 )λ]

)

(1 + γ)1+γργ
nδn−σd

−γ
n−σ(log m+1

n+ )γλ
.

Then xn either oscillates or satisfies limn→∞ xn = 0.

Corollary 12. Let xn be a solution of (21) and assume that all the assumptions of
Theorem 6 hold, except that the condition (29) is replaced by

lim
m→∞

sup
1

mλ

m−1
∑

n=0

(m− n)λ






ψn −

ρ1+γ
n+1

(

ξn

ρn+1
− λ(m− n)−1

)1+γ

(1 + γ)1+γργ
nδn−σd

−γ
n−σ(m− n)λγ






= ∞.

Then xn either oscillates or satisfies limn→∞ xn = 0.
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Example 13. Consider the equation

∆(
1

n
∆( 3

√
n∆xn)) + nxn−1 = 0, n ≥ 1, (43)

where γ = 1, cn = 1
n
, dn = 3

√
n, qn = n and n − σ = n − 1. It follows that δn =

∑n−1
s=1

1
cs

= n(n−1)
2 . It is clear that the sequences cn, dn, qn and the function f satisfy

conditions (h1) − (h2) and (22). It remains to check conditions (26) and (40). From the
above assumptions, it follows that

∞
∑

n=1

1

n
1
3

n−1
∑

t=1

t

t−1
∑

s=1

s = ∞.

This shows that condition (26) is satisfied. By choosing ρn = n, one can easily see that

lim sup
n→∞

n
∑

l=1

[

Kl2 − l
( 1

(l − 1)(l − 2)
2
3 (l − 3)

− 1

l(l − 1)
2
3 (l − 2)

)

+
1

2l(l− 1)
1
3 (l − 2)

]

= ∞.

Thus, condition (40) holds. Therefore, by Theorem 8 we conclude that every solution xn of
equation (43) either oscillates or satisfies limn→∞ xn = 0.

Remark 14. It is obvious that results obtained in [8] can not be applied to equation
(43).

3.2 Oscillation under condition (23)

Throughout this subsection, the sequences ρn, ψn and (αn+1)
1
γ are assumed in similar

manner. In addition, we assume that (25) holds and thus in view of Lemma 2, we deduce
that the class C3 is empty. Therefore, if xn is a solution of (21) then xn ∈ C0 ∪ C1 ∪ C2.

We define the sequence Qn by

Qn := Kqn

(

n−σ
∑

s=N

1

ds

)γ

,

where n− σ > N for N > n0.

Theorem 15. Let xn be a solution of (21) and ρn be a given positive sequence such
that (40) holds. Assume that (h1) − (h2), (23), (25)and (26) hold. If

lim
n→∞

sup

n−1
∑

u=n6

1

du

[

u−1
∑

s=n5

1

cs

s−1
∑

t=n4

Qt

∞
∑

τ=t−σ

1

cτ

]
1
γ

= ∞. (44)

Then xn either oscillates or satisfies limn→∞ xn = 0.

Proof. Suppose to the contrary that xn is a nonoscillatory solution of equation (21).
Without loss of generality we may assume that xn > 0 and xn−σ > 0 for n ≥ n1 where n1 is
chosen so large. Condition (25) implies that the solution xn belongs to the space C0∪C1∪C2.
If xn ∈ C0, then we are back to the proof of Lemma 4 to show that limn→∞ xn = 0. If
xn ∈ C2, then we are back to the proof of Theorem 6 to get a contradiction. To complete
the proof, it is sufficient to show that under condition (44) there is no solution xn ∈ C1.

Therefore, we suppose to the contrary that there exists N > n1 such that x
[1]
n > 0 and

x
[2]
n < 0 for n ≥ N. In view of the quasi differences (24), we observe that

∆xn =
x

[1]
n

dn

.
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Summing up from N to n− 1, we have

xn − xN =

n−1
∑

s=N

x
[1]
s

ds

≥ x[1]
n

n−1
∑

s=N

1

ds

. (45)

Hence, there exists n3 > N such that

xn−σ ≥ x
[1]
n−σ

n−σ
∑

s=N

1

ds

, for n ≥ n3.

Using this in (21), we get

∆
(

cn∆
(

x[1]
n

)γ)

+Kqn

(

n−σ
∑

s=N

1

ds

)γ
(

x
[1]
n−σ

)γ

≤ 0, n ≥ n3. (46)

Setting yn =
(

x
[1]
n

)γ

> 0, we deduce that ∆yn < 0 and yn satisfies the difference inequality

∆(cn (∆yn)) +Qnyn−σ ≤ 0, for n ≥ n3. (47)

Since n− σ → ∞ as n → ∞, we can choose n4 > n3 such that n − σ ≥ n4 for n ≥ n4 and
thus

y∞ − yn−σ =

∞
∑

s=n−σ

∆ys =

∞
∑

s=n−σ

cs∆ys

1

cs

< cn−σ∆yn−σ

∞
∑

s=n−σ

1

cs
< cn4

∆yn4

∞
∑

s=n−σ

1

cs
.

Thus

−yn−σ < cn4
∆yn4

∞
∑

s=n−σ

1

cs
.

Substituting back in (47), we have

∆(cn (∆yn)) < LQn

(

∞
∑

s=n−σ

1

cs

)

, for n ≥ n4, (48)

where L = cn4
∆yn4

< 0. Summing this inequality from n4 to n− 1, we see that

cn (∆yn) < cn (∆yn) − cn4
(∆yn4

) < L

n−1
∑

s=n4

Qs

∞
∑

τ=s−σ

1

cτ
.

where ∆yn < 0. Summing again from n5 to n− 1, we have

yn < L

n−1
∑

s=n5

1

cs

s−1
∑

t=n4

Qt

∞
∑

τ=t−σ

1

cτ

or equivalently

∆xn < (L)
1
γ

(

1

dn

)

[

n−1
∑

s=n5

1

cs

s−1
∑

t=n4

Qt

∞
∑

τ=t−σ

1

cτ

]
1
γ

.
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Summing from n6 to n− 1, we have

xn < xn6
+ (L)

1
γ

n−1
∑

u=n6

1

du

[

u−1
∑

s=n5

1

cs

s−1
∑

t=n4

Qt

∞
∑

τ=t−σ

1

cτ

]
1
γ

.

By condition (44), we have limn→∞ xn = −∞ which contradicts the fact that xn > 0. The
proof is complete.

Theorem 16. Let xn be a solution of (21). Let ρn be a positive sequence. Assume
that (h1) − (h2), (23), (25) and (26) hold. If (44) holds and there exist double sequences
Hm,n and hm,n satisfy (29), then xn either oscillates or satisfies limn→∞ xn = 0.

Proof. Suppose to the contrary that xn is a nonoscillatory solution of equation (21).
Without loss of generality we may assume that xn > 0 and xn−σ > 0 for n ≥ n1 where n1 is
chosen so large. Condition (25) implies that the solution xn belongs to the space C0∪C1∪C2.
If xn ∈ C0, then we are back to the proof of Lemma 4 to show that limn→∞ xn = 0. If
xn ∈ C1, then we are back to the proof of Theorem 15 to get a contradiction. To complete
the proof, it is sufficient to show that under condition (44) there is no solution xn ∈ C1.
Thus, we proceed as in the proof of Theorem 15 to get a contradiction. The proof is complete.

The following results are an immediate consequences of Theorem 16.

Corollary 17. Let xn be solution of equation (21) and assume that all the assumptions
of Theorem 16 hold, except that condition (29) is replaced by (41). Then xn either oscillates
or satisfies limn→∞ xn = 0.

Corollary 18. Let xn be a solution of (21) and assume that all the assumptions
of Theorem 16 hold, except that the condition (29) is replaced by (42). Then xn either
oscillates or satisfies limn→∞ xn = 0.
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