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Abstract. We present a compartmental SIR (susceptible–infected–recovered) model to
describe the propagation of an infectious disease in a human population, when indi-
viduals travel between p different cities. The time needed for travel between any two
locations is incorporated, and we assume that disease progression is possible during
travel. The model is equivalent to an autonomous system of differential equations
with multiple delays, and each delayed term is defined through a system of ordinary
differential equations. We establish some necessary and sufficient conditions for the
disease-free equilibrium of the model to be asymptotically stable.

Keywords: stability, functional differential equations, dynamically defined delayed
term, epidemic model.

2010 Mathematics Subject Classification: 34K05, 92D30.

1 Introduction

In recent years there has been an increasing interest in the mathematical modelling commu-
nity for the spatial spread of infectious diseases. Historical examples like the 1918 influenza
pandemic, as well as recent threats like the 2002–2003 SARS epidemic, the 2009 A(H1N1) in-
fluenza pandemic, the 2012 MERS coronavirus outbreak, and the 2015 extensive Ebola virus
(EBOV) outbreak in West Africa exemplify that national boundaries or oceans have never
prevented infectious diseases to reach distant territories. Differential equation-based models
for spatial epidemic spread have been discussed for an array of infectious diseases including
measles, influenza, malaria and SARS; most recent literature includes the work of Arino and
coauthors [1,2], Gao and coauthors [7], Hsieh and coauthors [10], Li and coauthors [14], Ruan
BEmail: d.knipl@ucl.ac.uk
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and coauthors [21], and Wang and coauthors [28, 29]. These studies are mainly concerned
with the spatial dispersal of infected individuals in connected regions, and do not take it into
account that long distance travel also provides a platform for disease dynamics. A recent
report by the European Centre for Disease Prevention and Control [5] confirms that some
infectious diseases, such as tuberculosis, measles and seasonal influenza, are transmissible
during commercial flights, even on those with a duration of less than eight hours. There are
some documented cases of influenza transmission occurring during train journeys, including
when seven healthy people caught Tamiflu-resistant A(H1N1) influenza while travelling for
42 hours on a train in Vietnam (Mai et al. [17]).

In their disease transmission models, Cui and coauthors [3], Lui and Takeuchi [16], and
Takeuchi and coauthors [25] examined the possibility that individuals may contract a disease
while travelling. They used the SIS (susceptible–infected–susceptible) framework to describe
disease progression, and implicitly used the assumption that transportation between regions
takes place instantaneously. This approach ignores that the delay in the transportation can
lead to a significant underestimation of the roles of global travel in the spread of some diseases
of major public health concern, such as SARS and influenza. These diseases are rapidly
progressive (typically, a few days), so even a short delay (a fraction of a day) can be significant.
This consideration motivated the work of Liu, Wu and Zhou [15], where they introduced the
time delay needed to complete the travel into the SIS-type epidemic model and considered the
possibility of infections during this time. The global dynamics was described by Nakata [18]
for two identical regions, and then by Nakata and Röst [19, 20] for multiple regions with
different characteristics and general travel networks.

For most diseases with a potential to pose a threat for a pandemic (like influenza, SARS
and measles), the SIS-type model is inadequate. This was first noted by Knipl and Röst [12]
when they suggested a general framework for SIR (susceptible–infected–recovered)-based
disease progression with a general incidence term. This concept was further elaborated
in an SEAIR (susceptible–exposed–asymptomatic infected–symptomatic infected–recovered)-
framework initiated by Knipl, Röst and Wu [13], closely mimicking the spatiotemporal evo-
lution of the H1N1 pandemic in multiple regions connected by long distance travel. In these
models the framework is required to include a subsystem structured by age, to incorporate
the possibility of disease transmission during travel. In the subsystem, age represents the
time elapsed since the start of the travel. Following the assumption that transmitting the in-
fection is possible on-board, the model setup leads to a system of delay differential equations
with delay representing travel time. The two systems, describing the dynamics in the regions
and during transportation, are interconnected; initial values of the system for disease spread
during travel depend on the state of the system in the regions, while the inflow term of ar-
rivals to the regions after being in transportation for a fixed time arises as the solution of the
subsystem for travel. If the subsystem can be solved analytically (this was the case for the
age-structured SI model used in [15,18,20]), then the system for disease spread in the regions
decouple from the subsystem. Recalling that initial data of the system during travel comes
from the equations for the regions, the inflow term of travellers completing a trip appears as
a delayed feedback term. On the other hand, in case of choosing SIR-type models as an epi-
demic building block when the subsystem does not admit a closed form solution, the delayed
term in the system for the regions cannot be expressed explicitly (as exemplified in [12, 13]),
but is defined dynamically, via the solutions of another system.

The general form of initial value problems for nonautonomous functional differential equa-
tions with dynamically defined delayed feedback function were studied by Knipl [11]. Fun-
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damental properties were obtained such as the usual existence, uniqueness and continuous
dependence result for the solution, and some further, biologically relevant properties were
also studied. Although the paper [11] provides mathematical framework for studying the SIR
model in [12] and the SEAIR model in [13], it remains a major theoretical challenge to classify
the global dynamics in such systems. In particular, no general method has been developed
to our knowledge to investigate stability in delayed systems with dynamically defined de-
layed feedback function. To classify local stability of the disease-free steady state is extremely
important as it characterizes whether the disease will become extinct or persist. This was
attempted in [13] in the special case when the subsystem structured by travel time did obtain
a closed form solution. In this paper, we present a general, delayed SIR model for the spread
of an infectious disease when individuals travel between p cities. The model setup leads to a
differential system with multiple delays, and transport-related infection is incorporated; more
precisely the corresponding subsystems obtain SIR dynamics therefore cannot be solved ana-
lytically. We describe local stability properties of the disease-free equilibrium. The approach
presented in the paper has the potential to be adopted to other delayed differential models
where the delayed feedback term is defined via the solution of another system.

2 Model formulation

We describe the spread of an infectious disease in a population of individuals who travel
between different locations. Considering p locations (cities), we divide the entire populations
into the disjoint classes Ij, Sj, and Rj, where the letters I, S, and R represent the compartments
of infected, susceptible, and recovered individuals respectively, and lower index j (1 ≤ j ≤ p)
specifies the current city. Let Ij(t), Sj(t), and Rj(t) be the number of individuals belonging
to Ij, Sj, and Rj respectively, at time t. We assume constant recruitment terms Aj, while dj
denotes natural mortality in city j. Disease transmission is modelled by standard incidence
and the transmission rate between an infected individual and a susceptible individual in city
j is denoted by β j. Infected individuals in city j recover at rate µj. For the total population
currently being in city j at time t, we use the notation Nj(t) = Ij(t) + Sj(t) + Rj(t).

We denote by mk,j the movement rate from city j to city k (1 ≤ j, k ≤ p, j 6= k), furthermore,
we let mj,j = 0 for j = 1, . . . , p. The total travel outflow rate from city j is given by Mj =

∑
p
k=1 mk,j, and the movement matrix M is defined as M = (mj,k)

p
j,k=1. We assume that M is

an irreducible matrix. We introduce the terms Iτ
j,k, Sτ

j,k, and Rτ
j,k for the inflow of infected,

susceptible, and recovered individuals respectively, into city j from k (j 6= k). These terms
will be precisely described later. Based on the assumptions above, the following system is
formulated for the dynamics of an infectious disease in p cities:

d
dt

Ij(t) = β jSj(t)
Ij(t)
Nj(t)

− (µj + dj)Ij(t)−
(

p

∑
k=1

mk,j

)
Ij(t) +

p

∑
k=1
k 6=j

Iτ
j,k(t),

d
dt

Sj(t) = Aj − djSj(t)− β jSj(t)
Ij(t)
Nj(t)

−
(

p

∑
k=1

mk,j

)
Sj(t) +

p

∑
k=1
k 6=j

Sτ
j,k(t),

d
dt

Rj(t) = µj Ij(t)− djRj(t)−
(

p

∑
k=1

mk,j

)
Rj(t) +

p

∑
k=1
k 6=j

Rτ
j,k(t),

j = 1, . . . , p.

(2.1)
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The time needed to complete travel from city k to j is denoted by τj,k. It is assumed that τj,k > 0
whenever mj,k > 0; however, for convenience we let τj,k = 0 for all j, k such that mj,k = 0, that
is, there is no movement from city k to j.

A principal assumption of our modelling approach is that we do not neglect the possibility
of infection and recovery during the travel between the cities. To describe these processes
during a travel to city j started from city k at any time t∗, we divide the population during
the travel into the classes ij,k, sj,k, and rj,k for infected, susceptible, and recovered travellers,
respectively. Then ij,k(θ), sj,k(θ), and rj,k(θ) give the density of infected, susceptible, and
recovered individuals respectively, who started travel at time t∗, with respect to θ that denotes
the time elapsed since the beginning of the travel. With

nj,k(θ) = ij,k(θ) + sj,k(θ) + rj,k(θ),

and by denoting by βT
j,k and µT

j,k the transmission rate and the recovery rate respectively, we
consider the ODE system for the dynamics of the disease during a travel from city k to j:

d
dθ

ij,k(θ) = βT
j,ksj,k(θ)

ij,k(θ)

nj,k(θ)
− µT

j,kij,k(θ),

d
dθ

sj,k(θ) = −βT
j,ksj,k(θ)

ij,k(θ)

nj,k(θ)
,

d
dθ

rj,k(θ) = µT
j,kij,k(θ).

(2.2)

This system can be obtained in a compact form as

d
dθ

yj,k(θ) = gj,k(yj,k(θ)), (2.3)

where yj,k = (ij,k, sj,k, rj,k) and gj,k : R3 → R3 is defined by the right hand sides in (2.2).
Standard results from the theory of ordinary differential equations guarantee that for any
initial data y∗ ∈ R3 there is a unique solution to (2.3) on [0, ∞). We denote the solution by
ỹj,k(θ) = ỹj,k(θ; 0, y∗).

Let hj,k : R3 → R3, hj,k(v) = mj,kv, and let Ij,k,Sj,k,Rj,k : R3 → R such that

Ij,k(v) =
(
ỹj,k(τj,k; 0, hj,k(v))

)
1 ,

Sj,k(v) =
(
ỹj,k(τj,k; 0, hj,k(v))

)
2 ,

Rj,k(v) =
(
ỹj,k(τj,k; 0, hj,k(v))

)
3 .

(2.4)

For v = (Ik(t∗), Sk(t∗), Rk(t∗)), note that hj,k(v) gives the number of infected, susceptible, and
recovered individuals who leave city k at time t∗ to travel to city j. Therefore ỹj,k(θ; 0, hj,k(v))
describes the density of individuals in the three disease classes θ unites of time after the
beginning of their travel from city k to j, that started at t∗. In particular, for θ = τj,k and using
the notations in (2.4), (Ij,k(v),Sj,k(v),Rj,k(v)) gives the density of infected, susceptible, and
recovered individuals at the end of the travel.

We are now in the position to define the inflow terms Iτ
j,k, Sτ

j,k, Rτ
j,k in system (2.1). The

individuals who arrive at time t to city j from k are precisely those who started their travel
at time t− τj,k; hence, letting t∗ = t− τj,k we derive by the above arguments that the density
of infected, susceptible, and recovered individuals arriving at time t to city j from k is given
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as Ij,k(v), Sj,k(v), and Rj,k(v) respectively, with v = (Ik(t− τj,k), Sk(t− τj,k), Rk(t− τj,k)). It is
therefore meaningful to define the inflow terms as

Iτ
j,k(t) := Ij,k(Ik(t− τj,k), Sk(t− τj,k), Rk(t− τj,k)),

Sτ
j,k(t) := Sj,k(Ik(t− τj,k), Sk(t− τj,k), Rk(t− τj,k)),

Rτ
j,k(t) := Rj,k(Ik(t− τj,k), Sk(t− τj,k), Rk(t− τj,k)).

Note that these terms depend on some past states of the system and therefore they are delayed
terms; however they are not expressed explicitly by the variables of the system (2.1) but are
defined dynamically, through the solution of another system (2.2).

Let σj = max{τk,j : 1 ≤ k ≤ p} for j = 1, . . . , p. We define

Cτ =
p

∏
j=1

C([−σj, 0], R)×
p

∏
j=1

C([−σj, 0], R)×
p

∏
j=1

C([−σj, 0], R),

where for σ > 0 we denote by C([−σ, 0], R) the space of continuous functions on [−σ, 0],
which is a Banach space with the usual uniform norm |φ| = sup{φ(θ) : −σ ≤ θ ≤ 0}. The
generic element of Cτ is denoted by φ = (φ1, . . . , φ3p), and Cτ is a Banach space with the norm
|φ| = ∑

3p
n=1 |φn|. The system (2.1) in a compact form reads as

d
dt

x(t) = f (xt),

where x =
(

I1, . . . , Ip, S1, . . . , Sp, R1, . . . , Rp
)
, and f : Cτ → R3p, f = ( f I1, . . . , f Ip, fS1, . . . , fSp,

fR1, . . . , fRp) where f I j, fSj, fRj : Cτ → R are defined as the right hand side of the corre-
sponding equation in system (2.1), for 1 ≤ j ≤ p. For the segment of the solution we use
the usual notation xt where xt = (xt

1, . . . , xt
3p), and xt

j = xj(t + θ), xt
j+p = xj+p(t + θ) and

xt
j+2p = xj+2p(t + θ) for θ ∈ [−σj, 0], 1 ≤ j ≤ p.

The feasible phase space in our model is defined as the nonnegative cone Cτ
+ of Cτ. The

general form of initial value problems for nonautonomous functional differential equations
with dynamically defined delayed feedback function were studied in [11]. Fundamental prop-
erties were obtained such as the usual existence, uniqueness and continuous dependence re-
sult for the solution, and some further, biologically relevant properties were also studied.

3 Stability analysis

In Appendix A we show that the system (2.1) has a unique disease-free equilibrium (DFE) Ê,
where Ê ∈ Cτ is the constant function equal to (0, . . . , 0, S̄1, . . . , S̄p, 0, . . . , 0) ∈ R3p for all values
of its argument and

(S̄1, . . . , S̄p)
T = (diag(d1 + M1, . . . , dp + Mp)−M)−1(A1, . . . , Ap)

T.

For 1 ≤ k ≤ p we denote by Êk the constant function equal to (0, S̄k, 0) for all values of its ar-
gument. To study the stability of Ê, we investigate the linear variational system corresponding
to Ê:

d
dt

X(t) = FXt, F = D f (Ê). (3.1)
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F = D f (Ê) is a bounded linear operator from Cτ
+ to R3p, that is, F ∈ L(Cτ

+, R3p). For φ ∈ Cτ
+

we give (Fφ)n by computing D fn(Ê)φ for 1 ≤ n ≤ 3p. Note that f j = f I j, f j+p = fSj,
f j+2p = fRj, therefore(

D f j(Ê)φ
)
= (β j − µj − dj −Mj)φj(0)

+
p

∑
k=1, j 6=k

grad(Ij,k(Êk)) ·
(
φk(−τj,k), φk+p(−τj,k), φk+2p(−τj,k)

)
,(

D f j+p(Ê)φ
)
= (−dj −Mj)φj+p(0)

+
p

∑
k=1, j 6=k

grad(Sj,k(Êk)) ·
(
φk(−τj,k), φk+p(−τj,k), φk+2p(−τj,k)

)
,(

D f j+2p(Ê)φ
)
= (−dj −Mj)φj+2p(0)

+
p

∑
k=1, j 6=k

grad(Rj,k(Êk)) ·
(
φk(−τj,k), φk+p(−τj,k), φk+2p(−τj,k)

)

(3.2)

for 1 ≤ j ≤ p, where we use the usual notation a · b for the dot product of two vectors a and
b. In Appendix B we show that the gradients on the right hand side are obtained as

 grad(Ij,k(Êk))

grad(Sj,k(Êk))

grad(Rj,k(Êk))

 =
∂

∂v
ỹj,k(τj,k; 0, hj,k(0, S̄k, 0)) = mj,k


eτj,k(βT

j,k−µT
j,k) 0 0

−βT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
1 0

µT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
0 1

 . (3.3)

The stability of the trivial solution of the linear variational system (3.1) is determined by
the characteristic equation ∆(λ) = 0, which arises by seeking solutions of the form X(t) = eλtu
where u ∈ R3p. If the stability modulus, defined as

s(F) = max{Re λ : ∆(λ) = 0}

is negative then the trivial solution of the linear variational system is locally asymptotically
stable (LAS) whereas it is unstable if s(F) > 0. These stability properties extend to the stability
of the DFE Ê in the system (2.1) by the principle of linearised stability.

Using the equations (3.2) and (3.3) it is possible to rewrite the linear variational system
(3.1) as

d
dt

X(t) = F0X(t) +
p

∑
j,k=1
j 6=k

Fj,kX(t− τj,k),

where F0, Fj,k ∈ R3p×3p,

F0 =

diag(β j − µj − dj −Mj)
p
j=1 O O

? diag(−dj −Mj)
p
j=1 O

? O diag(−dj −Mj)
p
j=1

 ,

and

(Fj,k)
k,k+p,k+2p
j,j+p,j+2p =

 grad(Ij,k(Êk))

grad(Sj,k(Êk))

grad(Rj,k(Êk))

 = mj,k


eτj,k(βT

j,k−µT
j,k) 0 0

−βT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
1 0

µT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
0 1


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with all other elements of Fj,k being zero. It is useful to note that for any j and k it holds that
(Fj,k)u,v = 0 whenever u ≤ p and v > p. This implies that the first p equations (the infection
subsystem) in the linear variational system are independent from the other equations. More-
over, we also note that for any j and k it holds that (Fj,k)u,v = 0 whenever u, v are such that
either p + 1 ≤ u ≤ 2p and v > 2p, or u > 2p and p + 1 ≤ v ≤ 2p holds. It follows that the
two systems, formed by equations p + 1, . . . , 2p (the susceptible subsystem) and by equations
2p + 1, . . . , 3p (the recovered subsystem) respectively, are also independent from one another.
These remarks imply that the characteristic equation factorizes as the product of the char-
acteristic equations of the three subsystems, hence the stability in (3.1) is determined by the
stability properties in the three subsystems. In particular, both the susceptible and recovered
subsystems can be obtained in the form

d
dt

wj(t) = (−dj −Mj)wj(t) +
p

∑
k=1
k 6=j

mj,kwk(t− τj,k), j = 1, . . . , p, (3.4)

and the infection subsystem reads

d
dt

zj(t) = (β j − µj − dj −Mj)zj(t) +
p

∑
k=1
k 6=j

mj,keτj,k(βT
j,k−µT

j,k)zk(t− τj,k), j = 1, . . . , p. (3.5)

We define the following ODE system, that can be associated with (3.5) by ignoring the delays:

d
dt

zj(t) = (β j − µj − dj −Mj)zj(t) +
p

∑
k=1
k 6=j

mj,keτj,k(βT
j,k−µT

j,k)zk(t), j = 1, . . . , p. (3.6)

We present now one of our most important results, which states that the stability analysis
of the DFE in the nonlinear model (2.1) with dynamically defined delayed feedback function
reduces to studying the non-delayed infection subsystem of the linear variational system.

Theorem 3.1. The DFE of the model (2.1) is LAS if and only if the zero solution of system (3.6) is LAS.

Proof. By the above arguments, the stability analysis of the DFE in the model (2.1) reduces to
studying stability in the systems (3.4) and (3.5). It follows from [20, Theorem 4.2] that the zero
solution is LAS in system (3.5) (see system (4.4) in [20] and [9, Theorem 1]).

The principal result of Section 5, Chapter 5 in [24] is that the stability of an equilibrium of
a cooperative and irreducible system of delay differential equations is the same as that of an
associated system of cooperative ordinary differential equations. To study these properties for
system (3.5), we recall some definitions and results from [24] in Appendix C. Then we prove
in Appendix D that the system (3.5) is cooperative and irreducible.

To study the stability of the linear system (3.6), we define

T =
(
cj,kmj,k

)p
j,k=1 + diag(β1, . . . , βp),

Σ = diag(µ1 + d1 + M1, . . . , µp + dp + Mp),

and obtain the matrix of the linear system as T − Σ, where we used the short hand notation
cj,k = eτj,k(βT

j,k−µT
j,k) (j 6= k) and cj,j = 0. The stability of the zero solution is determined by the

eigenvalues of the coefficient matrix; the solution is LAS if s(T − Σ) < 0 and it is unstable
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if s(T − Σ) > 0, where s(A) denotes the maximum real part of all eigenvalues of any square
matrix A.

We say that a square matrix A is a non-singular M-matrix if it has the Z-sign pattern (all
entries are non-positive expect possibly those in the diagonal) and A−1 ≥ 0 holds (several
definitions exist for M-matrices, see [6, Theorem 5.1]). It is easy to see that T is a nonnegative
matrix and Σ is a non-singular M-matrix. The proof of the next result follows by similar
arguments as those in the proof of [26, Theorem 2], where we denote by ρ(A) the dominant
eigenvalue of any square matrix A.

Proposition 3.2. The zero solution of (3.6) is LAS (s(T − Σ) < 0) if and only if ρ(T · Σ−1) < 1, it
is unstable (s(T − Σ) > 0) if and only if ρ(T · Σ−1) > 1, and it also holds that s(T − Σ) = 0 if and
only if ρ(T · Σ−1) = 1.

In the mathematical epidemiology literature, it is common to relate stability properties
with the next-generation matrix (NGM) and the basic reproduction number (R0) (for descrip-
tion of the next-generation method and computation of this matrix and number, see [4] and
the references therein). If we define reproduction (the emergence of new infections) by the
matrix T and transition between the infection classes by Σ then the NGM of system (3.6)
arises as

K := T · Σ−1 =



β1
µ1+d1+M1

c1,2m1,2
µ2+d2+M2

c1,3m1,3
µ3+d3+M3

. . . c1,pm1,p
µp+dp+Mp

c2,1m2,1
µ1+d1+M1

β2
µ2+d2+M2

c2,3m2,3
µ3+d3+M3

. . . c2,pm2,p
µp+dp+Mp

c3,1m3,1
µ1+d1+M1

c3,2m3,2
µ2+d2+M2

β3
µ3+d3+M3

. . . c3,pm3,p
µp+dp+Mp

...
...

...
. . .

...
cp,1mp,1

µ1+d1+M1

cp,2mp,2
µ2+d2+M2

cp,3mp,3
µ3+d3+M3

. . . βp
µp+dp+Mp


.

The dominant eigenvalue of the NGM is denoted by R0 (that is, R0 := ρ(K)), that is of
particular importance as by Theorem 3.1 and Proposition 3.2 it is a threshold quantity for the
stability of the DFE in the model (2.1). However, due to the complexity of the NGM it is not
possible to derive the formula of R0 and therefore we cannot explicitly obtain the stability
condition.

The next section is devoted to addressing this issue as we consider two special cases for
the movement network: first we investigate the case of two cities, then we obtain more general
results as we assume that p cities are organized in a ring-like structure.

4 Stability of system (3.6)

4.1 Two cities

For p = 2, the system (3.6) reduces to

d
dt

z1(t) = (β1 − µ1 − d1 −m2,1)z1(t) + m1,2eτ1,2(βT
1,2−µT

1,2)z2(t),

d
dt

z2(t) = (β2 − µ2 − d2 −m1,2)z2(t) + m2,1eτ2,1(βT
2,1−µT

2,1)z1(t).
(4.1)

We define

T2 =

(
β1 m1,2eτ1,2(βT

1,2−µT
1,2)

m2,1eτ2,1(βT
2,1−µT

2,1) β2

)
, Σ2 =

(
µ1 + d1 + m2,1 0

0 µ2 + d2 + m1,2

)
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and obtain the coefficient matrix of the linear system as T2 − Σ2. We derive that

K2 := T2(Σ2)
−1 =


β1

µ1+d1+m2,1

m1,2eτ1,2(βT
1,2−µT

1,2)

µ2+d2+m1,2

m2,1eτ2,1(βT
2,1−µT

2,1)

µ1+d1+m2,1

β2
µ2+d2+m1,2

 ,

and observe that

K2 ≥ K0
2 := diag

(
β1

µ1 + d1 + m2,1
,

β2

µ2 + d2 + m1,2

)
,

where the relation is meant entry-wise. We introduce the notation

R1 =
β1

µ1 + d1
, R2 =

β2

µ2 + d2
,

P1 =
β1

µ1 + d1 + m2,1
, P2 =

β2

µ2 + d2 + m1,2
,

where Rj and Pj are the basic reproduction numbers in city j in the absence of movement and
in the absence of inflow into city j, respectively. With these definitions, it holds that P1 < R1

and P2 < R2. We arrive at the following result.

Theorem 4.1. If max { P1, P2} ≥ 1 then the zero solution of (4.1) is unstable for all choices of delays.

Proof. With the definitions above, K2 and K0
2 are nonnegative matrices, K2 is irreducible, and

ρ(K0
2) = max { P1, P2}. It follows from the Perron–Frobenius theorem that ρ(K2) > ρ(K0

2),
therefore ρ(K2) > 1 holds and the assertion of the theorem follows by Proposition 3.2.

It remains to investigate stability in the case when P1 < 1 and P2 < 1. In this case,
ρ(K0

2) < 1 holds so it is meaningful to define

T2 : = ρ((K2 − K0
2)(Id2 − K0

2)
−1),

that can be explicitly calculated as

T2 = ρ


 0 m1,2eτ1,2(βT

1,2−µT
1,2)

µ2+d2+m1,2

m2,1eτ2,1(βT
2,1−µT

2,1)

µ1+d1+m2,1
0

(1− β1
µ1+d1+m2,1

0

0 1− β2
µ2+d2+m1,2

)−1


= ρ

 0 m1,2eτ1,2(βT
1,2−µT

1,2)

µ2+d2+m1,2−β2

m2,1eτ2,1(βT
2,1−µT

2,1)

µ1+d1+m2,1−β1
0


=

√
m1,2m2,1eτ1,2(βT

1,2−µT
1,2)+τ2,1(βT

2,1−µT
2,1)

(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)
.

Theorem 4.2. The zero solution of (4.1) is LAS if T2 < 1 whereas it is unstable if T2 > 1. A threshold
for stability in the system (4.1) is given by T2 = 1.

Proof. We use Theorem 2.1 from [22, 23] to establish the relationship between the dominant
eigenvalue of K2 = T2(Σ2)−1 and the number T2. Note that K2 is an irreducible matrix. By
this result, it holds that T2 < 1 if and only if ρ(K2) < 1, T2 = 1 if and only if ρ(K2) = 1, and
T2 > 1 if and only if ρ(K2) > 1. Proposition 3.2 completes the proof.
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We use T2 to give stability conditions in terms of the reproduction numbers and movement
rates. We assume that βT

1,2 − µT
1,2 > 0 and βT

2,1 − µT
2,1 > 0; such conditions are reasonable as

evidence ([5, 27]) supports that the transmission rate of an infectious disease can be much
higher than usual when a large number of passengers are sharing the same cabin during
travel. Furthermore, we consider βT

1,2 − µT
1,2 = βT

2,1 − µT
2,1 =: βT − µT that enables us to give

critical values for the delays. We define

τc :=
1

βT − µT log
(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)

m1,2m2,1
,

and note that τc > 0 if and only if the following condition holds:

H(m1,2, m2,1) :=
(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)

m1,2m2,1
> 1. (c)

Figure 4.1: Stability of the infection subsystem (4.1).

Theorem 4.3. Assume that P1 < 1 and P2 < 1 hold. If R1 > 1 and R2 > 1 then the zero solution
of (4.1) is unstable for all choices of delays. If R1 < 1 and R2 < 1 then the zero solution is LAS for
τ1,2 + τ2,1 < τc whereas it is unstable for τ1,2 + τ2,1 > τc. If R1 > 1 and R2 < 1, or if R1 < 1 and
R2 > 1, then the zero solution is unstable for all choices of delays if the condition (c) does not hold, it
is also unstable if (c) holds and τ1,2 + τ2,1 > τc, and it is LAS if (c) holds and τ1,2 + τ2,1 < τc.

Proof. If R1 > 1 then µ1 + d1 + m2,1 − β1 < m2,1 hence m2,1/(µ1 + d1 + m2,1 − β1) > 1 holds.
Similarly, R2 > 1 yields m1,2/(µ2 + d2 + m1,2 − β2) > 1, so it follows that

m1,2m2,1

(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)
> 1.

The assumption βT − µT > 0 implies that the square root of the left hand side above is a lower
bound for T2, therefore T2 > 1 for all τ1,2 and τ2,1, that is, the zero solution is unstable in the
case when R1 > 1 and R2 > 1.

If R1 < 1 and R2 < 1 then by similar arguments as in the previous case, we derive that
m1,2m2,1

(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)
< 1,

m√
m1,2m2,1

(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)
< 1.
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The last inequality is equivalent to T2 < 1 for τ1,2 = 0, τ2,1 = 0, that is, the zero solution
is stable in the model without delays. T2 is monotonically increasing in the delays, and the
condition T2 < 1 for stability is equivalent to

e(βT−µT)(τ1,2+τ2,1) <
(µ1 + d1 + m2,1 − β1)(µ2 + d2 + m1,2 − β2)

m1,2m2,1
⇔ τ1,2 + τ2,1 < τc.

It can also be shown that T2 > 1 is equivalent to τ1,2 + τ2,1 > τc and T2 = 1 is equivalent to
τ1,2 + τ2,1 = τc, that is, τc gives stability threshold for the delays. Note that µ1 + d1 + m2,1 −
β1 > m2,1 and µ2 + d2 + m1,2 − β2 > m1,2 by R1 < 1 and R2 < 1, respectively, therefore τc is
positive.

In the two cases when R1 < 1 and R2 > 1, and when R1 > 1 and R2 < 1, the derivation
of the stability condition T2 < 1 ⇔ τ1,2 + τ2,1 < τc goes analogously as above; however τc

might be non-positive in which case the zero solution is unstable for all choices of delays. A
necessary and sufficient condition for τc > 0 is that (c) holds, and in this case the zero solution
is stable for τ1,2 + τ2,1 < τc but it loses its stability when the sum of the delays exceeds τc.

4.2 Ring of cities

For a movement network where all movement rates are zero except

m1,p > 0, m2,1 > 0, . . . , mp,p−1 > 0,

the system (3.6) reduces to

d
dt

z1(t) = (β1 − µ1 − d1 −m2,1)z1(t) + m1,peτ1,p(βT
1,p−µT

1,p)zp(t)

d
dt

z2(t) = (β2 − µ2 − d2 −m3,2)z2(t) + m2,1eτ2,1(βT
2,1−µT

2,1)z1(t),

...
d
dt

zj(t) = (β j − µj − dj −mj+1,j)zj(t) + mj,j−1eτj,j−1(βT
j,j−1−µT

j,j−1)zj−1(t),

...
d
dt

zp(t) = (βp − µp − dp −m1,p)zp(t) + mp,p−1eτp,p−1(βT
p,p−1−µT

p,p−1)zp−1(t).

(4.2)

Using the short hand notations c1 = eτ1,p(βT
1,p−µT

1,p) and cj = eτj,j−1(βT
j,j−1−µT

j,j−1) for j = 2, . . . , p, we
define

Tp =


β1 0 0 . . . 0 m1,pc1

m2,1c2 β2 0 . . . 0 0
0 m3,2c3 β3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . mp,p−1cp−1 βp

 ,

Σp = diag(µ1 + d1 + m2,1, µ2 + d2 + m3,2, . . . , µp + dp + m1,p),
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and obtain the matrix of the linear system as Tp − Σp, where Tp is a nonnegative matrix and
Σp is a non-singular M-matrix. Therefore it is meaningful to define

Kp := Tp(Σp)
−1 =



β1
µ1+d1+m2,1

0 0 . . . 0 m1,pc1
µp+dp+m1,p

m2,1c2
µ1+d1+m2,1

β2
µ2+d2+m3,2

0 . . . 0 0

0 m3,2c3
µ2+d2+m3,2

β3
µ3+d3+m4,3

. . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . mp,p−1cp−1

µp−1+dp−1+mp,p−1

βp
µp+dp+m1,p


,

and similarly as in the two-city case, a relationship between s(Tp − Σp) and ρ(Kp) can be
established by Proposition 3.2, as follows: the zero solution of (4.2) is LAS (s(Tp − Σp) < 0)
if and only if ρ(Kp) < 1, it is unstable (s(Tp − Σp) > 0) if and only if ρ(Kp) > 1, and it holds
that s(Tp − Σp) = 0 if and only if ρ(Kp) = 1. We introduce the notation

Rj =
β j

µj + dj
, 1 ≤ j ≤ p,

Pj =
β j

µj + dj + mj+1,j
, 1 ≤ j ≤ p− 1, Pp =

βp

µp + dp + m1,p
,

and observe that

Kp ≥ K0
p := diag

(
β1

µ1 + d1 + m2,1
, . . . ,

βp

µp + dp + m1,p

)
.

The proof of the following result is omitted due to its similarity to Theorem 4.1.

Theorem 4.4. If max1≤j≤r Pj ≥ 1 then the zero solution of (4.2) is unstable for all choices of delays.

If Pj < 1 for all j = 1, 2, . . . , p then ρ(K0
p) < 1 clearly holds, so it is meaningful to define

Tp := ρ((Kp − K0
p)(Idp − K0

p)
−1),

that can be explicitly calculated as

Tp = ρ



0 0 0 . . . 0 m1,pc1
µp+dp+m1,p−βp

m2,1c2
µ1+d1+m2,1−β1

0 0 . . . 0 0
0 m3,2c3

µ2+d2+m3,2−β2
0 . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . mp,p−1cp−1
µp−1+dp−1+mp,p−1−βp−1

0


= p

√
m1,pc1

µp + dp + m1,p − βp

m2,1c2

µ1 + d1 + m2,1 − β1
. . .

mp,p−1cp−1

µp−1 + dp−1 + mp,p−1 − βp−1
.

By the assertion of Proposition 3.2 and [22, 23, Theorem 2.1] we obtain that the zero solution
is LAS if and only if Tp < 1, and the stability threshold Tp = 1 can be used to derive explicit
conditions for the delays. To this end, it is assumed that βT

1,p − µT
1,p = βT

2,1 − µT
2,1 = · · · =

βT
p,p−1 − µT

p,p−1 =: βT − µT and βT − µT > 0, that implies that cj ≥ 1 holds for all j. Let

τ
p
c :=

1
βT − µT log

(µp + dp + m1,p − βp)∏
p−1
j=1 (µj + dj + mj+1,j − β j)

m1,p ∏
p−1
j=1 mj+1,j

,

τ̆ := τ1,p +
p−1

∑
j=1

τj+1,j,
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where τ̆ gives the sum of all delays, and note that τ
p
c > 0 is equivalent with the following

condition:
(µp + dp + m1,p − βp)∏

p−1
j=1 (µj + dj + mj+1,j − β j)

m1,p ∏
p−1
j=1 mj+1,j

> 1. (c*)

Theorem 4.5. If Rj > 1 for all j then the zero solution of (4.2) is unstable for all choices of delays.
If Rj < 1 for all j then the zero solution is LAS for τ̆ < τ

p
c whereas it is unstable for τ̆ > τ

p
c . If there

are j and k such that Rj > 1 and Rk < 1 then the zero solution is unstable for all choices of delays if
the condition (c*) does not hold, it is also unstable if (c*) holds and τ̆ > τ

p
c , and it is LAS if (c*) holds

and τ̆ < τ
p
c .

Proof. If Rj > 1 for all j then it follows by

(µp + dp + m1,p − βp) < m1,p, (µj + dj + mj+1,j − β j) < mj+1,j, j = 1, . . . , p− 1,

that
m1,p ∏

p−1
j=1 mj+1,j

(µp + dp + m1,p − βp)∏
p−1
j=1 (µj + dj + mj+1,j − β j)

> 1,

that implies instability for all choices of delays by Tp > 1. One can easily show that the
above inequality is reversed if Rj < 1 for all j, and it follows that τ

p
c > 0. Straightforward

calculations yield that the zero solution is LAS in the model without delays because Tp < 1
holds, and stability is preserved in the delayed system as long as τ̆ < τ

p
c , where τ

p
c is the

critical threshold for the total sum of delays, derived from Tp = 1.
The condition (c*) is equivalent to Tp < 1 in the special case when all delays are zero,

moreover, Tp is increasing in the delays hence the condition (c*) is necessary for stability in
the case when there are j and k such that Rj > 1 and Rk < 1. The stability threshold τ

p
c for

τ̆ is calculated using Tp = 1, and (c*) guarantees that τ
p
c > 0. The proof is complete.

5 Discussion on the impact of travel on stability

In this last section we return to system (4.1) to comment on the sensitivity of stability in the
movement rates. The following computations are useful:

dH
dm1,2

= − (µ1 + d1 + m2,1 − β1)(µ2 + d2 − β2)

(m1,2)2m2,1
,

dH
dm2,1

= − (µ2 + d2 + m1,2 − β2)(µ1 + d1 − β1)

m1,2(m2,1)2 ,

dτc

dm1,2
=

1
βT − µT

1
H(m1,2, m2,1)

dH
dm1,2

= − 1
βT − µT

(µ2 + d2 − β2)

m1,2(µ2 + d2 + m1,2 − β2)

{
< 0 if R2 < 1,

> 0 if R2 > 1,

dτc

dm2,1
=

1
βT − µT

1
H(m1,2, m2,1)

dH
dm2,1

= − 1
βT − µT

(µ1 + d1 − β1)

m2,1(µ1 + d1 + m2,1 − β1)

{
< 0 if R1 < 1,

> 0 if R1 > 1.
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We learnt from Theorem 4.3 that if R1 < 1 and R2 < 1 then for all choices of the
movement rates there is a stability threshold τc > 0. The above calculations reveal that the
derivative of τc is negative with respect to both movement parameters, which means that
increasing the movement rates shrinks the stability region and therefore it can destabilize the
zero solution.

Stability is also possible if the condition (c) holds and either R1 < 1 and R2 > 1 or
R1 > 1 and R2 < 1. We investigate now the former case, and find that τc increases in m1,2

whereas it decreases in m2,1, thereby the two movement rates have opposite impact on τc. The
first conclusion that we can draw is that encouraging movement from the endemic city 2 to the
non-endemic city 1 expands the stability region and helps stabilizing the DFE. On the other
hand, increasing the movement rate in the other direction can lead to stability loss; there is a
critical value for m2,1, given by

mu
2,1 =

(µ1 + d1 − β1)(µ2 + d2 + m1,2 − β2)

−(µ2 + d2 − β2)

such that τc becomes negative when m2,1 exceeds mu
2,1 (note that the condition (c) ceases to

hold). An important observation to make is that mu
2,1 depends on the other movement rate

m1,2. Lastly, we note that the conditions P1 < 1 and P2 < 1 in Theorem 4.3 give lower
bounds for m2,1 and m1,2, respectively, as m2,1 ≥ 0 > β1− µ1− d1 and m1,2 > β2− µ2− d2 > 0.
Summarizing, in the case when R1 < 1 and R2 > 1 hold, stability is possible only if the
movement rates are chosen such that m1,2 > β2 − µ2 − d2 and m2,1 < mu

2,1(m1,2) hold. Similar
phenomena are observed in the case when R1 > 1 and R2 < 1.

The above analysis revealed some non-trivial dependence of the stability region on the
movement rates when R1 < 1 and R2 > 1. To further investigate this question, we let
m1,2 = m2,1 =: m and study the dependence of τc on the unified movement rate m. In this
special case the function H arises as H(m) = (µ1 + d1 + m− β1)(µ2 + d2 + m− β2)/m2, and
τc is calculated as τc = log

[
(µ1 + d1 + m− β1)(µ2 + d2 + m− β2)/m2]/(βT − µT).

We assume that R1 < 1, R2 > 1 and the condition (c) hold, or equivalently µ1 + d1 − β1 > 0,
µ2 + d2 − β2 < 0, and m is chosen such that H(m) > 1. To satisfy the last inequality, it follows
by

H(m) > 1 ⇔ m(µ1 + d1 − β1 + µ2 + d2 − β2) > −(µ1 + d1 − β1)(µ2 + d2 − β2)

that R1 and R2 must be chosen such that (µ1 + d1 − β1 + µ2 + d2 − β2) > 0 holds, and
therefore H(m) > 1 is equivalent to

m >− (µ1 + d1 − β1)(µ2 + d2 − β2)

(µ1 + d1 − β1 + µ2 + d2 − β2)
=: mH.

By P2 < 1, another condition m > −(µ2 + d2 − β2) arises for m, that is weaker than the one
derived above from H(m) > 1. Straightforward calculations yield

dτc

dm
=

1
βT − µT

(
µ1 + d1 − β1 + µ2 + d2 − β2 + 2m

(µ1 + d1 − β1 + m)(µ2 + d2 − β2 + m)
− 2

m

)
,

and we obtain that

dτc

dm
> 0 ⇔ 0 > 2(µ1 + d1 − β1)(µ2 + d2 − β2) + m(µ1 + d1 − β1 + µ2 + d2 − β2),

⇔ mu :=
−2(µ1 + d1 − β1)(µ2 + d2 − β2)

(µ1 + d1 − β1 + µ2 + d2 − β2)
> m,
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where we used that R1 and R2 are chosen such that (µ1 + d1 − β1 + µ2 + d2 − β2) > 0. It is
easy to see that mu > mH > 0, therefore we arrive at the following conclusions. If R1 and R2

are chosen such that (µ1 + d1 − β1 + µ2 + d2 − β2) > 0 does not hold then the zero solution is
unstable for all movement rates and delays. If the last inequality is reversed, then

τc > 0,
dτc

dm
> 0 ⇔ mu > m > mH,

τc > 0,
dτc

dm
= 0 ⇔ m = mu,

τc > 0,
dτc

dm
< 0 ⇔ m > mu,

with words, for all movement rates m such that m > mH stability is possible for small delays,
however increasing m expands and then shrinks the stability region.

Appendix A DFE of the system (2.1)

A DFE of the system (2.1) is a constant function Ê in Cτ, equal to (0, . . . , 0, S1, . . . , Sp,
R1, . . . , Rp) ∈ R3p for all values of its argument for some S1, R1, . . . , Sp, Rp ∈ R. Note that
when the system (2.1) is at such an equilibrium then the system (2.2) is at the steady state
(0, mj,kSk, mj,kRk). It thus follows that at a DFE, Iτ

j,k, Sτ
j,k and Rτ

j,k are obtained as

Iτ
j,k = Ij,k(0, Sk, Rk) = 0,

Sτ
j,k = Sj,k(0, Sk, Rk) = mj,kSk,

Rτ
j,k = Rj,k(0, Sk, Rk) = mj,kRk.

By Iτ
j,k + Sτ

j,k +Rτ
j,k = mj,k(Sk + Rk) = mj,kNk it follows that the steady state (N1, . . . , Np) for

the total populations in each city can be calculated by solving the algebraic linear system

Aj = (dj + Mj)Nj −
p

∑
k=1
k 6=j

mj,kNk, j = 1, . . . , p. (A.1)

The coefficient matrix on the right hand side is obtained as diag(d1 + M1, . . . , dp + Mp)−M,
where M = (mj,k) is the movement matrix and Mj = ∑

p
i=1,i 6=j mi,j. We note that the sum

of all non-diagonal elements in column j is Mj, which means that the coefficient matrix is
diagonally dominant. This matrix also has the Z-sign pattern: as defined in [6], all entries are
non-positive expect possibly those in the diagonal. Theorem 5.1 in [6] gives necessary and
sufficient conditions for the non-singularity of matrices with the Z-sign pattern; in particular
the equivalence of properties 3 and 11 in [6, Theorem 5.1] implies by the diagonal dominant
property that the coefficient matrix is invertible. We can thus give the unique solution to the
system (A.1), as

(N̄1, . . . , N̄p)
T = (diag(d1 + M1, . . . , dp + Mp)−M)−1(A1, . . . , Ap)

T.

The components of the DFE (0, . . . , 0, S1, . . . , Sp, R1, . . . , Rp) for the recovered classes arise
as the solution of the system

0 = (dj + Mj)Rj −
p

∑
k=1
k 6=j

mj,kRk, j = 1, . . . , p.
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Similar arguments to those for the system (A.1) imply that R̄1 = 0, . . . , R̄p = 0 must hold. It
follows that S̄1 = N̄1, . . . , S̄p = N̄p, and therefore there is a unique DFE, given by (0, . . . , 0,
S̄1, . . . , S̄p, 0, . . . , 0).

Appendix B Calculation of the gradients in the system (3.2)

To derive the gradients on the right hand side of the system (3.2), we recall the definition(
Ij,k(v),Sj,k(v),Rj,k(v)

)
= ỹj,k(τj,k; 0, hj,k(v)) from (2.4), and it follows that grad(Ij,k(v))

grad(Sj,k(v))
grad(Rj,k(v))

 =
∂

∂v
ỹj,k(τj,k; 0, hj,k(v)).

Proposition B.1. It holds that

∂

∂v
ỹj,k(τj,k; 0, hj,k(v)) = e

∫ τj,k
0 Dgj,k(ỹj,k(ν;0,hj,k(v))) dνDhj,k(v).

If hj,k(v) is an equilibrium of the system (2.3) then

∂

∂v
ỹj,k(τj,k; 0, hj,k(v)) = eτj,k Dgj,k(hj,k(v))Dhj,k(v).

Proof. Theorem 3.3 in Chapter I in [8] states that as gj,k has continuous first derivative, the
solution ỹj,k(θ; 0, y∗) of system (2.3) is continuously differentiable with respect to θ and y∗
on its domain of definition. The matrix

( ∂ỹj,k(θ;0,y∗)
∂y∗

)
∈ R3×3 satisfies the linear variational

equation
d
dθ

Y(θ) = Dgj,k(ỹj,k(θ; 0, y∗))Y(θ),

where Y : R→ R3×3 and ∂ỹj,k(0;0,y∗)
∂y∗ = Id3. By solving the linear variational equation, we derive

that Y(θ) = e
∫ θ

0 Dg(ỹj,k(ν;0,y∗)) dνY(0), that yields

∂ỹj,k(τj,k; 0, y∗)
∂y∗

= e
∫ τj,k

0 Dgj,k(ỹj,k(ν;0,y∗)) dν (B.1)

for Y(0) = Id3. Hence the derivative of the solution ỹj,k with respect to v ∈ R3 arises as

∂

∂v
ỹj,k(τj,k; 0, hj,k(v)) =

∂ỹj,k(τj,k; 0, hj,k(v))
∂y∗

Dhj,k(v)

= e
∫ τj,k

0 Dgj,k(ỹj,k(ν;0,hj,k(v))) dνDhj,k(v).

If hj,k(v) is an equilibrium of the system (2.3) then ỹj,k(ν; 0, hj,k(v)) = hj,k(v) holds for all
ν ∈ [0, τj,k], and therefore the above formula reduces to

∂

∂v
ỹj,k(τj,k; 0, hj,k(v)) = eτj,k Dgj,k(hj,k(v))Dhj,k(v).
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In order to calculate grad(Ij,k(Êk)), grad(Sj,k(Êk)) and grad(Rj,k(Êk)), we need to evaluate
∂

∂v ỹj,k(τj,k; 0, hj,k(v)) at v = Êk. Note that hj,k(Êk) = mj,k (0, S̄k, 0) is an equilibrium of the system
(2.3). First, we obtain that Dhj,k(v) = mj,kId3, moreover, Dgj,k(hj,k(Êk)) is derived as

Dgj,k(hj,k(Êk)) =

βT
j,k − µT

j,k 0 0
−βT

j,k 0 0
µT

j,k 0 0

 .

We use the short hand notation G for this matrix. Observe that G2 = (βT
j,k − µT

j,k)G, and
Gn = (βT

j,k − µT
j,k)

n−1G by analogy for n ≥ 2. We deduce that

eτj,kG = Id3 + (τj,kG) +
(τj,kG)2

2!
+ · · ·+

(τj,kG)n

n!
+ · · ·

= Id3 + (τj,kG) +
τ2

j,k(βT
j,k − µT

j,k)G

2!
+ · · ·+

τn
j,k(βT

j,k − µT
j,k)

n−1G

n!
+ · · ·

= Id3 +
G

(βT
j,k − µT

j,k)

(
−1 + 1 + τj,k(βT

j,k − µT
j,k) +

τ2
j,k(βT

j,k − µT
j,k)

2

2!
+ · · ·

+
τn

j,k(βT
j,k − µT

j,k)
n

n!
+ · · ·

)

= Id3 +
eτj,k(βT

j,k−µT
j,k) − 1

(βT
j,k − µT

j,k)
G

=


eτj,k(βT

j,k−µT
j,k) 0 0

−βT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
1 0

µT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
0 1

 .

Using the definition of ỹj,k(τj,k; 0, hj,k(0, S̄k, 0)) and Proposition B.1 we obtain that

 grad(Ij,k(Êk))

grad(Sj,k(Êk))

grad(Rj,k(Êk))

 = mj,k


eτj,k(βT

j,k−µT
j,k) 0 0

−βT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
1 0

µT
j,k

e
τj,k(βT

j,k−µT
j,k)−1

(βT
j,k−µT

j,k)
0 1

 .

Appendix C Cooperative and irreducible FDE

We recall some definitions and theorems from [24]. Let n ∈ Z+ and r1, . . . , rn > 0. For r > 0,
we denote by C([−r, 0], R) the space of continuous functions on [−r, 0], which is a Banach
space with the usual uniform norm |φ| = sup{φ(θ) : −r ≤ θ ≤ 0}. Let

Cr =
n

∏
i=1

C([−ri, 0], R),

that is a Banach space with the norm |φ| = ∑ |φi|. We denote the generic element of Cr by
φ = (φ1, . . . , φn), and by L(Cr, Rn) the space of bounded linear maps from Cr to Rn.
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Consider the general nonautonomous linear system

d
dt

z(t) = L(t)zt, (C.1)

where z : R → Rn, L : R → L(Cr, Rn) is continuous. For the segment of the solution we use
the usual notation zt where zt = (zt

1, . . . , zt
n), zt

i = zi(t + θ) for θ ∈ [−ri, 0]. Let Li(t)φ denote
the i-th component of L(t)φ. We introduce the following definition for the property (K).

Definition C.1. (K) Whenever φ ≥ 0 and φi(0) = 0 holds for some i, then Li(t)φ ≥ 0.

Lemma C.2. (K) holds if and only if there exists ai(t) ∈ R for 1 ≤ i ≤ n and positive Borel measures
ηij(t) for 1 ≤ i, j ≤ n on [−rj, 0] such that L(t) has a representation in terms of Borel measures, as

Li(t)φ = ai(t)φi(0) +
n

∑
j=1

∫ 0

−rj

φj(θ)dθηij(t, θ)

and ηii(t){0} = 0. Moreover, if (K) holds then the representation is unique and ai(t) and ηij(t) are
continuous functions of t.

For 1 ≤ i ≤ n let ei denote the standard basis vectors for Rn, and let êi ∈ Cr be the constant
function equal to ei for all values of its argument. We need two further conditions.

Definition C.3. (R) For each j for which rj > 0, there exists i such that for all t,
ηij(t)([−rj,−rj + ε)) > 0 for all small ε > 0.

Definition C.4. (I) The matrix A(L)(t) defined by

A(L)(t) = col (L(t)ê1, . . . , L(t)ên)

is irreducible.

If (K) holds then by Lemma C.2 we obtain that

A(L)ij(t) = Li(t)êj = ai(t)(ej)i + ηij(t)([−rj, 0]) =

{
ai(t) + ηii(t)([−ri, 0]) if i = j,

ηij(t)([−rj, 0]) if i 6= j.

The condition (K) implies that if a component of a solution of the differential equation gets
turned on, then it stays on. We need the condition (R) to ensure that some component actually
gets turned on if the initial condition is nontrivial. (I) is a kind of irreducibility assumption; it
implies that once one component gets turned on then all components eventually get turned on.

A general autonomous functional differential equation (FDE) is denoted by

d
dt

z(t) = f (zt), (C.2)

where f : U → Rn is continuously differentiable and U is an open subset of Cr. For ψ ∈ U,
D f (ψ) gives a bounded linear operator, that is, D f (ψ)φ ∈ Rn for φ ∈ Cr, and the correspond-
ing linear system arises as

d
dt

z(t) = D f (ψ)zt.

For any φ, ψ ∈ Cr we say that φ ≤ ψ (φ < ψ) holds if and only if φ(s) ≤ ψ(s) (φ(s) < ψ(s))
holds in Rn for every s ∈ ∏[−ri, 0].
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Definition C.5. For a set X, let u, v ∈ X, u < v. Then the order interval generated by u, v is
defined as [u, v] ≡ {x ∈ X : u ≤ x ≤ v}. The set X is said to be order convex if [u, v] ⊂ X
whenever u, v ∈ X satisfy u < v. In particular, for a subset U of Cr, [φ1, φ2] ≡ {ψ ∈ U : φ1 ≤
ψ ≤ φ2} where φ1, φ2 ∈ U, and U is order convex if [φ1, φ2] ⊂ U whenever φ1, φ2 ∈ U satisfy
φ1 < φ2.

Definition C.6. The FDE is cooperative if U is order convex and if D f (ψ) satisfies (K) for each
ψ ∈ U.

If D f (ψ) satisfies (K) then as a consequence of Lemma C.2, d f (ψ) can be represented as in
Lemma C.2, that is, ai = ai(ψ) and ηij = ηij(ψ) exist such that for φ ∈ U

(D f (ψ))φ = aiφi(0) +
n

∑
j=1

∫ 0

−rj

φj(θ)dθηij(θ).

Definition C.7. The FDE is cooperative and irreducible if it is cooperative and the following
hold:

(i) D f (ψ) satisfies (I) for each ψ ∈ U;

(ii) for each j such that rj > 0, there exists i such that for all ψ ∈ U, ηij(ψ)([−rj,−rj + ε)) > 0
for all small ε > 0, where ηij(ψ) is the Borel measure uniquely defined for D f (ψ).

The equilibria of the autonomous FDE (C.2) are those φ ∈ U such that zt(φ) = φ for all
t ≥ 0. Evaluating this equality at θ = 0 gives z(t) = φ(0) for all t ≥ 0, hence φ must be a
constant function and f (φ) = 0. For v ∈ Rn we denote by v̂ an element of Cr that satisfies
v̂(θ) ≡ v, and v̂ is an equilibrium of (C.2) if and only if v̂ ∈ U and f (v̂) = 0. To investigate the
stability of an equilibrium v̂, by the principle of linearized stability it is sufficient to study the
stability of the trivial equilibrium in the linear variational system

d
dt

z(t) = Lzt, (C.3)

where L = D f (v̂) ∈ L(Cr, Rn). Note that (C.3) is a special case of the general nonautonomous
linear system (C.1). The stability of the trivial solution of the linear variational system (3.1) is
determined by the characteristic equation ∆(λ) = 0, which arises by seeking solutions of the
form z(t) = eλtu where u ∈ Rn. More precisely, if the stability modulus, defined as

s(L) = max{Re λ : ∆(λ) = 0},

is negative then the trivial solution of (C.3) is locally asymptotically stable (LAS) whereas it is
unstable if s(L) > 0.

Assume that the nonlinear FDE (C.2) is cooperative and irreducible. Then a cooperative
and irreducible system of ordinary differential equations (ODE) can be associated with (C.2),
by ignoring the delays which appear in (C.2):

d
dt

z(t) = F(z), F(z) = f (ẑ), F : Rn → Rn. (C.4)

The ODE (C.4) has the same equilibria as the FDE (C.2), more precisely, v is an equilibrium
of (C.4) if and only if v̂ is an equilibrium of (C.2). We quote here Corollary 5.2 of Chapter 5,
Section 5 of [24]:
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Corollary C.8. s(L) < 0 (s(L) > 0) if and only if s(DF(v)) < 0 (s(DF(v)) > 0).

Summarizing, the stability of an equilibrium v̂ of the cooperative and irreducible FDE (C.2)
can be investigated by determining the stability of the equilibrium v in the linear approxima-
tion of the associated ODE (C.4). The stability properties of the linear systems extend to the
nonlinear equations by the principle of linearized stability.

Appendix D The system (3.5) is cooperative and irreducible

For the theory of cooperative and irreducible functional-differential equations we refer to the
Appendix C, where we recalled some definitions and results from [24].

The appropriate domain for (3.5) is D = ∏
p
j=1 C([−σj, 0], R+), and we recall that σj is

defined as σj = max{τk,j : 1 ≤ k ≤ p} for j = 1, . . . , p. We obtain system (3.5) in the FDE
form as

d
dt

z(t) = Bzt,

where B ∈ L(D, Rp) and

(Bφ)j = (β j − µj − dj −Mj)φj(0) +
p

∑
k=1
k 6=j

mj,keτj,k(βT
j,k−µT

j,k)φk(−τj,k)

for 1 ≤ j ≤ p. It follows from mj,keτj,k(βT
j,k−µT

j,k) ≥ 0 and the definition of B that the condition (K)
holds, that is, the system is cooperative. A unique representation of (Bφ)j in terms of Borel
measures arises, as

(Bφ)j = ajφj(0) +
p

∑
j,k=1
j 6=k

∫ 0

−τj,k

φk(−τj,k)dηj,k(θ)

with aj = (β j − µj − dj −Mj) and ηj,k(θ) ≡ mj,keτj,k(βT
j,k−µT

j,k).
For every k such that σk > 0 there is a j such that σk = τj,k, hence the condition (R) follows

from ηj,k([−τj,k,−τj,k + ε)) = mj,keτj,k(βT
j,k−µT

j,k) > 0 for 0 < ε < τj,k. To check the condition (I),
note that

col(Bê1, . . . ,Bêp) = B0 +
p

∑
j,k=1
j 6=k

Bj,k.

It follows from the irreducibility of M that B0 + ∑
p
j,k=1, j 6=k Bj,k is irreducible and hence (I) is

satisfied. The conditions (R) and (I) ensure that the system (3.5) is irreducible, which completes
the proof.
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