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Abstract

In this paper, we investigate the existence of nontrivial solutions
to the nonlinear g-fractional boundary value problem

(Dgy)(x) = —f(z,y(x)), 0<z<1,
y(0) =0 =y(1),

by applying a fixed point theorem in cones.
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1 Introduction

The g-difference calculus or quantum calculus is an old subject that was first
developed by Jackson [9, 10]. Tt is rich in history and in applications as the
reader can confirm in the paper [6].
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The origin of the fractional ¢-difference calculus can be traced back to
the works by Al-Salam [3] and Agarwal [1]. More recently, perhaps due to
the explosion in research within the fractional calculus setting (see the books
[13, 14]), new developments in this theory of fractional ¢-difference calculus
were made, specifically, g-analogues of the integral and differential fractional
operators properties such as ¢g-Laplace transform, ¢-Taylor’s formula [4, 15],
just to mention some.

To the best of the author knowledge there are no results available in
the literature considering the problem of existence of nontrivial solutions for
fractional ¢-difference boundary value problems. As is well-known, the aim of
finding nontrivial solutions is of main importance in various fields of science
and engineering (see the book [2] and references therein). Therefore, we find
it pertinent to investigate on such a demand within this ¢-fractional setting.

This paper is organized as follows: in Section 2 we introduce some no-
tation and provide to the reader the definitions of the g-fractional integral
and differential operators together with some basic properties. Moreover,
some new general results within this theory are given. In Section 3 we con-
sider a Dirichlet type boundary value problem. Sufficient conditions for the
existence of nontrivial solutions are enunciated.

2 Preliminaries on fractional g-calculus
Let ¢ € (0,1) and define

a

la]y = ~—1

= , a€clR
l1—gq
The g-analogue of the power function (a — b)" with n € Ny is
n—1
(a—0)°=1, (a—0b)"= H(a—bqk), neN, abekR
k=0

More generally, if a € R, then

o _bn
(a — b)@ :aanu

st a — bqoz-‘,-n :
Note that, if b = 0 then a!® = a®. The g-gamma function is defined by
(1—gtV
(x)=—-—=-—7, ze€R\{0,—-1,-2,...},
Q( ) (1 _q)x_l \{ }
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and satisfies I',(z + 1) = [z], I, (2).
The ¢-derivative of a function f is here defined by

f(z) — flgx)
(1—q)x
and ¢-derivatives of higher order by

(Dgf)(@) = f(z) and  (Dgf)(z) = Do(Dy~'f)(z), ne€N.
The ¢-integral of a function f defined in the interval [0, b] is given by

(Dyf) () = - (D,)(0) = lim(D, f) (),

(/) () = / 0t = 21— ) fade, @€ [0,

n=0

If a € [0,0] and f is defined in the interval [0, ], its integral from a to b is

defined by , ,
d,t = dgt — d,t.
/a f(t)d,t /0 f(t)d,t /0 f(t)d,t

Similarly as done for derivatives, it can be defined an operator I, namely,

(1) (@) = f(x) and (I} f)(z) = L,(I; f)(z), neN.
The fundamental theorem of calculus applies to these operators I, and D,,
ie.,
(Dglyf)(x) = f(x),
and if f is continuous at z = 0, then

(IgDyf)(x) = f(x) = f(0).

Basic properties of the two operators can be found in the book [11]. We
point out here four formulas that will be used later, namely, the integration
by parts formula

/O " F()(Dagtdyt = [F(£)g(6)]=% — / "(Duf) (B)g(at)dt,

and (;D, denotes the derivative with respect to variable 7)

[a(t — )] = a®(t - 5)', (1)
eDy(t = )@ = [a]y(t — 5)7Y, (2)
5Dy(t = 5)' = —[a](t — gs)* . (3)
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Remark 2.1. We note that if > 0 and a < b < ¢, then (t —a)® > (t—b)@.
To see this, assume that a < b <t. Then, it is intended to show that

i ~ t—bg
t — > t" —_—. 4
Ut—aq‘”r"_ THt—bq‘”" )
Let n € Ny. We show that
(t —aq™)(t — bg*™) > (t — bg")(t — ag®™). (5)
Indeed, expanding both sides of the inequality (5) we obtain
t2 o tbqa-i-n o taqn + aqana—l—n > t2 o taqa-‘rn o tbqn + bqnaqa—l—n
©q"(ag” +b) = ¢"(bg" + a)
sb—a>q%(b—a)
i

Since inequality (5) implies inequality (4) we are done with the proof.

The following definition was considered first in [1]

Definition 2.2. Let @« > 0 and f be a function defined on [0,1]. The
fractional ¢-integral of the Riemann-Liouville type is (I f)(z) = f(z) and

1
I'y(a)

The fractional g-derivative of order o > 0 is defined by (DY f)(x) = f(x)
and (D¢ f)(xz) = (DJ I~ f)(z) for a > 0, where m is the smallest integer
greater or equal than a.

Let us now list some properties that are already known in the literature.
Its proof can be found in [1, 15].

1)) = s | @ Vs a0, se

Lemma 2.3. Let o, 3 > 0 and [ be a function defined on [0,1]. Then, the
next formulas hold:

1 (112 ) (@) = (150 f) (@),
2. (D2Ief)(x) = f(x).

The next result is important in the sequel. Since we didn’t find it in the
literature we provide a proof here.
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Theorem 2.4. Let o > 0 and p be a positive integer. Then, the following
equality holds:

3
L

xaprrk

Fla+k—p+1)

(Ig Dgf) () = (DEIg f)(x) — (Dgf)(0).  (6)

b
Il

0

Proof. Let a be any positive number. We will do a proof using induction on

P.
Suppose that p = 1. Using formula (3) we get:

Dyl(@ =) V()] = (2 = )" VDo f(1) = [o = Uyl — qt) 2 f(1).

Therefore,

(19D, f)(x) = — Aﬂx—kaWDdxw%t

Ly(a)
_ [Oé - 1](] ¢ a—2 1 a—1 t=x
= (D17 )(e) = frs SO
Suppose now that (6) holds for p € N. Then,
(I3 Dy f) (@) = (I Dy D, f)(x
pb— po—ptk
= (DPISD DI
(D3I, f) () - Or4a+k N0
p—1 7Ptk
— P (64 k+1
-0y (0,13 - )] - D e e AL
e p pa—(p+1)+k
_ p+1 T ) — _ k
= (DY) () fngﬁﬂm )y e e AL
P ro—(p+1)+k
The theorem is proved. O
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3 Fractional boundary value problem

We shall consider now the question of existence of nontrivial solutions to the
following problem:

(Dgy)(x) = = f(z,y(z)), 0<wz<1, (7)
subject to the boundary conditions
y(0)=0, y(1)=0, (8)

where 1 < a <2and f:[0,1] x R — R is a nonnegative continuous function
(this is the g-analogue of the fractional differential problem considered in [5]).
To that end we need the following theorem (see [8, 12]).

Theorem 3.1. Let B be a Banach space, and let C' C B be a cone. Assume
Qq, Q_g are open disks contained in B with 0 € Qy, Qy C Qo and let T
C'N(Q\Q) — C be a completely continuous operator such that

1Tyl = [lyll, y € CN O and | Tyl < llyll, vy € €N Q.
Then T has at least one fized point in C N (Q2\€2).

Let us put p = 2. In view of item 2 of Lemma 2.3 and Theorem 2.4 we
see that

(D2y)(a) = —f(a.y(2)) & (EDUy)(@) = —I2 (2. y(a))
a—1 a—2 ]‘ ¢ a—1
& 1fe) = e b = s [ @ - sy

for some constants ¢, co € R. Using the boundary conditions given in (8) we
take ¢; = % fol(l —qt) @V f(t,y(t))d,t and c; = 0 to get

y(x) = rim /0 (1= qt) D2 f(t, y(1))dyt
1 v a—1
- / (x — gt) @V f(t,y(t))dt

T, U (le( = gDV = (@ = t)*) f(t.y(t)dyt

n / (1 — )@ £t y(0))dyt|
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If we define a function G by

1 (z(1 =)D —(z—t)oe=D  0<t<z <,
GWt%‘Q@){@@—QWI% 0<z<t<l,

then, the following result follows.

Lemma 3.2. y is a solution of the boundary value problem (7)-(8) if, and
only if, y satisfies the integral equation

1
) = [ Glaa) 0t
0
Remark 3.3. If we let a = 2 in the function GG, then we get a particular case

of the Green function obtained in [16], namely,

_Jtl—2), 0<t<z<l1
aﬁw—{xﬂ—ﬂ,ogxgtgl

Some properties of the function G needed in the sequel are now stated
and proved.

Lemma 3.4. Function G defined above satisfies the following conditions:

G(z,qt) > 0 and G(z, qt) < G(qt, qt) for all0 < x,t < 1. 9)
Proof. We start by defining two functions g, (z,t) = (z(1 — )@ — (z —
He b 0<t<z<land go(a,t) = (x(1—t)) eV 0< 2 <t <1 Itis
clear that go(z, gt) > 0. Now, in view of Remark 2.1 we get,

iz, qt) = 21— gt) @V — (1—Q)“”
Z l‘a_l(l _ qt)(a_l) _ l‘a_l(l _ q )(a—l) — 0

Moreover, for ¢ € (0,1] we have that

Dwﬂwﬂ—-DK( ) = (o= )+
= o= 1,0 ="~ fa = U)o = )

=[a—1], [ R (1—£)m21
-

[a—l 22 (1= = (1 1))

IA

| /\
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which implies that g;(z,t) is decreasing with respect to = for all ¢ € (0, 1].
Therefore,
gi(z,qt) < gi(qt,qt), O0<wzt <L (10)

Now note that G(0,qt) = 0 < G(qt, qt) for all t € [0,1]. Therefore, by (10)
and the definition of gy (it is obviously increasing in x) we conclude that
G(z,qt) < G(qt, qt) for all 0 < x,t < 1. This finishes the proof. O

Let B = C[0, 1] be the Banach space endowed with norm [|u|| = sup;¢(o 1 [u(?)]-
Define the cone C' C B by

C={ueB:ut) >0}

Remark 3.5. It follows from the nonnegativeness and continuity of G and f
that the operator T': C' — B defined by

(Tu)(z) = / G, qt) (£, u(t))dyt,

satisfies T'(C') C C and is completely continuous.

For our purposes, let us define two constants

1 -1 T2 -1
M = ( / G(qt,qt)dqt) , N= ( / G (qt, qt) dqt) :
0 1

where 7 € {0,¢™} and 75 = ¢" with m,n € Ny, m > n. Our existence result
is now given.

Theorem 3.6. Let f(t,u) be a nonnegative continuous function on [0,1] x
[0,00). If there exists two positive constants ro > r; > 0 such that

f(t,u) < Mry, for (t,u) € [0,1] x [0, 73], (11)
f(t,u) > Nry, for (t,u) € [m1, 7] x [0,7], (12)

then problem (7)-(8) has a solution y satisfying r1 < ||y|| < 7.

Proof. Since the operator T : C — C' is completely continuous we only
have to show that the operator equation y = Ty has a solution satisfying
< [yl < 7.
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Let Q ={y € C : |ly]|] <m}. Forye CNoS, we have 0 < y(t) < mr
on [0,1]. Using (9) and (12), and the definitions of 7, and 75, we obtain (see
page 282 in [7]),

T2

1
nm%mw/ammmawmym/Gmthmw
0

0<z<1 m
Let Qy ={y € C : ||ly|]| < re}. Fory € CN0Qy, we have 0 < y(t) < ry on
[0,1]. Using (9) and (11) we obtain,

1 1
7yl = o |G (aat) St ole)dst < Mr | Glatatydt = |
0 0

0<z<1

Now an application of Theorem 3.1 concludes the proof. U
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