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Abstract. This paper deals with a dynamical systems approach for studying nonlinear
autonomous differential equations with bounded state-dependent delay. Starting with
the semiflow generated by solutions of such an equation, we revisit the principles of
linearized stability and instability enabling the local stability analysis of equilibria via
linearization. In particular, we prove both principles in an elementary way by using
only a quantitative version of continuous dependence of the semiflow on initial data
together with basic properties of the discrete semi-dynamical system induced by itera-
tions of some time-t-map.
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1 Introduction

Despite the fact that the first studies of differential equations with state-dependent delay may
be dated back at least to the beginning of the 19th century, this type of equations became a
subject of broader research activity in mathematics and other sciences only during the last
sixty years. Particularly in about the past two decades there was a significantly increasing in-
terest in differential equations with state-dependent delay, whereas in earlier times there were
only a few studies of such equations as, for instance, carried out by Driver in his pioneering
work [4–7], or some years later by Nussbaum in [15] or by Alt in [1, 2].

In recent times more and more applications in numerous branches of science such as in
mechanics (e.g., Insperger et al. [11]), population dynamics (e.g., Arino et al. [3]), infectious
diseases (e.g., Qesmi et al. [16]), or in economy (e.g., [19]) were reported. Furthermore, at
the beginning of this century the work [23] of Walther initiated the development of a general
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theory to study differential equations with (bounded) state-dependent delay from dynamical
systems point of view. In [23] Walther shows the existence of a continuous semiflow with
continuously differentiable time-t-maps for a class of abstract functional differential equa-
tions; and that is done under smoothness conditions which are typically satisfied when the
right-hand side of the functional differential equation represents a differential equation with
(bounded) state-dependent delay in a more abstract form.

In about last ten years, the semiflow from [23] and its properties were analyzed in various
studies, and by now different concepts and methods from dynamical systems theory are well
known. For instance, the survey paper [10] of Hartung et al. provides a detailed exposition
of the linearization of the semiflow at equilibria and its spectral properties. Furthermore, [10]
also contains a discourse on the existence of continuously differentiable local stable, center
and unstable manifolds at an equilibrium. The existence of C1-smooth local center-stable
manifolds is discussed in Qesmi and Walther [17], whereas [18] shows the existence and
[20] an attraction property of C1-smooth local center-unstable manifolds. These two last-
mentioned types of local invariant manifolds may also be used in order to give an alternative
proof for the existence of local center manifolds as done in [22]. However, with respect to
applications, the most significant results are certainly the so-called principles of linearized
stability and instability.

Indeed, given a differential equation arising as a mathematical model in some application
and describing the time evolution of the associated system, one of the first questions is the one
about the existence of solutions; and the most simple kind of solutions are equilibria. Next,
having determined the equilibria, it is natural to ask about their stability properties, and the
most common technique here is to consider the linearized equation and its spectral proper-
ties. If all eigenvalues of the linearized equation have negative real part then the principle of
linearized stability asserts that the equilibrium under consideration is locally asymptotically
stable. On the other hand, if the linearized equation has some eigenvalues with positive real
part then the principle of linearized instability asserts that the equilibrium under considera-
tion is unstable.

Before the semiflow concept from Walther [23], it was unclear how to linearize a differential
equation with state-dependent delay. And so, for a long time, heuristic or formal techniques
were used to address the local stability analysis of differential equations with state-dependent
delay by linearization. Here, the study [12] of Cooke and Huang or the studies [8, 9] of
Hartung and Turi are indicative: after “freezing” the delay at some equilibrium, they linearize
the resulting differential equation and then study the local stability of the equilibrium by
means of the obtained formal linear equation with constant delay. However, as the discussion
about the linearization at equilibria in Hartung et al. [10] substantiates this heuristic approach,
the studies [8,9,12] may be considered as the first principles of linearized stability for general
classes of differential equations with state-dependent delay. Furthermore, the works [8, 12]
also contain the assertion (comp. [8, Remark 3.4] and [12, statement (ii) of Theorem 2.1]) that
an equilibrium is unstable, provided the formal linear equation with constant delay has an
eigenvalue with positive real part. But in both studies a detailed proof is omitted and only
a short outline is sketched. In [13, comp. Section 5] Krisztin revisits the class of delay differ-
ential equations from [12] as an example and gives a proof for the corresponding principle of
linearized instability.

In the context of the semiflow described above, the principle of linearized stability is stated
and shown in Hartung et al. [10, Theorem 3.6.1 in Section 3.6]. It is a straightforward conse-
quence of the discussion about the existence of local stable manifolds at equilibria. Indeed,
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if the linearization at some equilibrium does not have any center or unstable direction then
all initial values sufficiently close to the equilibrium belong to some local stable manifold.
Moreover, by shrinking the neighborhood about the equilibrium and using the continuous de-
pendence on initial values together with the invariance and attraction property of local stable
manifolds, it is possible to show that the associated solutions do not only stay close to the
equilibrium for all t ≥ 0 but also converge to the equilibrium as t→ ∞.

The principle of linearized instability for the semiflow from Walther [23] follows as well,
more or less, from the discourse on local invariant manifolds in Hartung et al. [10], despite
the fact that the survey work [10] does not contain a corresponding statement or a proof in
detail. The point here is as follows: If the linearization at some equilibrium has an eigenvalue
with positive real part then, as pointed out in [10], there exist local unstable manifolds of
positive dimension at the equilibrium. In particular, such a local unstable manifold contains a
solution which is different from the equilibrium, is defined for all t ≤ 0 and which converges
to the equilibrium as t → −∞. In other words, in this situation we find some neighborhood
of the equilibrium with the property that any close vicinity of the equilibrium contains some
initial value leading to a solution that leaves the neighborhood under consideration for some
positive t. Compare here also the work [13] of Krisztin.

The main purpose of this study is now to revisit both, the principle of linearized stability
– comp. Theorem 3.1 – and the principle of linearized instability – comp. Theorem 4.1 – for
the semiflow from Walther [23], and to give more elementary proofs in detail. To be more
precisely, we establish both principles by using only a result about continuous dependence on
initial data and the dynamical behavior of the discrete semi-dynamical systems induced by
the time-t-maps of the semiflow. Such an approach is natural for continuous (semi)-dynamical
systems, and was, for instance, used by Diekmann et al. [14] to show analogous results for
smooth semiflows generated by autonomous differential equations with constant delays. We
adapt the technique from [14], and prove both principles without using the more advanced
theory of local invariant manifolds as done in Hartung et al. [10].

It is worth to mention that the situation where the linearization at some equilibrium of
the semiflow considered here does not have any eigenvalue with positive real part but at least
one eigenvalue on the imaginary axis, and hence where an application of the principle of
linearized stability or instability for the local stability analysis fails, was studied in the recent
work [21]. In this case the equilibrium has the same stability behavior as the equilibrium of
the ordinary differential equations obtained from a center manifold reduction.

The rest of this paper is organized as follows: The next section contains some basic facts
about the mentioned semiflow approach from Walther [23] for studying differential equations
with (bounded) state-dependent delay. In Section 3 we state and prove the principle of lin-
earized stability whereas Section 4 presents the statement and the proof of the principle of
linearized instability.

2 Preliminaries

In the following we summarize without proofs the relevant material on studying differential
equations with state-dependent delay in the context of dynamical systems theory. For the
proofs we refer the reader to Hartung et al. [10] and the references therein.

Throughout this paper, let h > 0 and n ∈ N be fixed. Further, let C denote the Ba-
nach space of all continuous functions ϕ : [−h, 0] → Rn, equipped with the norm ‖ϕ‖C =

max−h≤s≤0 ‖ϕ(s)‖Rn of uniform convergence. Similarly, we write C1 for the Banach space of
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all continuously differentiable functions ϕ : [−h, 0] → Rn, provided with the norm ‖ϕ‖C1 =

‖ϕ‖C + ‖ϕ′‖C. If x is any continuous function with values in Rn and defined on some domain
containing the interval [t− h, t], t ∈ R, then by the segment xt we understand the element of C
given by the formula xt(s) := x(t + s), s ∈ [−h, 0].

The equation under consideration. From now on, we consider the functional differential
equation

x′(t) = f (xt) (2.1)

defined by some function f : U → Rn from an open subset U ⊂ C1 into Rn. In doing so, we
assume that the closed subset

X f := {ψ ∈ U | ψ′(0) = f (ψ)} (2.2)

of U is non-empty and that additionally f satisfies the following standing smoothness condi-
tions:

(S1) f is continuously differentiable, and

(S2) at each ϕ ∈ U the derivative D f (ϕ) : C1 → Rn of f at ϕ extends to a linear mapping
De f (ϕ) : C → Rn such that the map

U × C 3 (ϕ, χ) 7→ De f (ϕ)χ ∈ Rn

is continuous.

In particular, the above smoothness assumptions are typically satisfied if Eq. (2.1) repre-
sents a differential equation with a (bounded) state-dependent delay. To make this point more
clear, consider for simplicity the differential equation

x′(t) = g(x(t− r(x(t)))) (2.3)

defined by some function g : Rn → Rn and a delay function r : Rn → [0, h]. Defining the map
f̃ : C1 → Rn by f̃ (ϕ) := g(ϕ(−r(ϕ(0)))) for all ϕ ∈ C1 and using the segment notation, we
obtain

x′(t) = g(x(t− r(x(t)))) = g(xt(−r(xt(0))) = f̃ (xt);

that is, the differential equation (2.3) with state-dependent delay takes the more abstract form
of Eq. (2.1). Moreover, under the hypothesis that both g and r are continuously differentiable
it is not hard to see that f̃ satisfies the smoothness conditions (S1) and (S2). If we now
additionally assume that g(0) = 0 then the associated set X f̃ is clearly non-empty due to
0 ∈ X f̃ . As a consequence, instead of studying Eq. (2.3), we may just as well study Eq. (2.1)
under all assumptions imposed above and with f replaced by f̃ .

The continuous semiflow. A solution of Eq. (2.1) is either a globally defined continuously
differentiable function x : R → Rn satisfying both xt ∈ U and Eq. (2.1) for all t ∈ R, or a
continuously differentiable function x : [t0 − h, te) → Rn, t0 < te ≤ ∞, with xt ∈ U for all
t0 ≤ t < te and x satisfies Eq. (2.1) as t0 < t < te. Under the assumptions considered here, the
question about the existence and uniqueness of solutions for Eq. (2.1) was firstly addressed
by Walther in [23]: The set X f defined by Eq. (2.2) forms a continuously differentiable sub-
manifold of U with codimension n, and each ϕ ∈ X f uniquely defines some t+(ϕ) > 0 and
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an in the forward t-direction non-continuable solution xϕ : [−h, t+(ϕ))→ Rn of Eq. (2.1) with
initial value xϕ

0 = ϕ. All the segments xϕ
t , ϕ ∈ X f and 0 ≤ t < t+(ϕ), belong to the solution

manifold X f and the relations
F(t, ϕ) := xϕ

t

induce a continuous semiflow F : Ω→ X f with domain

Ω :=
{
(t, ψ) ∈ [0, ∞)× X f | 0 ≤ t < t+(ψ)

}
and with continuously differentiable time-t-maps

Ft :
{

ψ ∈ X f | 0 ≤ t < t+(ψ)
}
3 ϕ 7→ F(t, ϕ) ∈ X f .

Equilibria and their stability properties. Now, suppose that ϕ0 ∈ X f is an equilibrium of the
semiflow F; that is, suppose that F(t, ϕ0) = ϕ0 for all t ≥ 0. We call ϕ0 stable if for each ε > 0
there exists some δ(ε) > 0 such that for all ϕ ∈ X f with ‖ϕ− ϕ0‖C1 < δ(ε) we have

‖F(t, ϕ)− F(t, ϕ0)‖C1 = ‖F(t, ϕ)− ϕ0‖C1 < ε

as 0 ≤ t < t+(ϕ). If the equilibrium ϕ0 is not stable, then ϕ0 is called unstable. In terms of
neighborhoods of ϕ0, this properties may clearly be characterized as follows: If ϕ0 is stable
then, given any neighborhood V ⊂ X f of ϕ0, for each initial point ϕ ∈ V, which is sufficiently
close to ϕ0, the orbit γ([0, t+(ϕ)) of the associated trajectory γ : [0, t+(ϕ)) 3 t 7→ F(t, ϕ) ∈ X f
stays in V. On the other hand, if ϕ0 is unstable then there exists some neighborhood V of ϕ0 in
X f with the property that for any δ > 0 we find some initial value ϕ ∈ V with ‖ϕ− ϕ0‖C1 < δ

but F(t, ϕ) 6∈ V for some 0 < t < t+(ϕ).
The equilibrium ϕ0 is locally asymptotically stable if ϕ0 is stable and if in addition there exists

some ε > 0 such that for all ϕ ∈ X f with ‖ϕ− ϕ0‖C1 < ε we have t+(ϕ) = ∞ and

‖F(t, ϕ)− F(t, ϕ0)‖C1 = ‖F(t, ϕ)− ϕ0‖C1 → 0 as t→ ∞.

So, in this case the orbit γ([0, ∞)) of a trajectory γ : [0, ∞) 3 t 7→ F(t, ϕ) ∈ X f with ϕ in close
vicinity of ϕ0 does not only stay in a small neighborhood of ϕ0 but is also attracted by ϕ0 as
t→ ∞.

Remark 2.1. It is worth to point out that an equilibrium ϕ0 ∈ X f is stable if and only if for
each ε > 0 there is some δ(ε) > 0 such that for all ϕ ∈ X f with ‖ϕ− ϕ0‖C1 < δ(ε) we have
both t+(ϕ) = ∞ and ‖F(t, ϕ)− ϕ0‖C1 < ε as 0 ≤ t < ∞. The one direction of this assertion
is obvious, whereas the other immediately follows from Proposition 3.3 in [21] which shows
that, provided a solution xϕ : [−h, t+(ϕ)) → Rn, ϕ ∈ X f , of Eq. (2.1) stays in close vicinity of
ϕ0, we necessarily have t+(ϕ) = ∞.

The linearization and spectrum at an equilibrium. The tangent space Tϕ0 X f of the solution
manifold X f at the equilibrium ϕ0 is given by

Tϕ0 X f :=
{

χ ∈ C1 ∣∣ χ′(0) = D f (ϕ0)χ
}

and it is a Banach space with the norm ‖ · ‖C1 of the greater Banach space C1. The strongly
continuous semigroup {T(t)}t≥0 of bounded linear operators T(t) := D2F(t, ϕ0), t ≥ 0, on
Tϕ0 X f forms the linearization of the semiflow F at ϕ0. Given any χ ∈ Tϕ0 X f , we have

T(t)χ = D2F(t, ϕ0)χ = vχ
t
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with the uniquely determined solution vχ : [−h, ∞)→ Rn of the linear initial value problem

v′(t) = D f (ϕ0)vt, v(0) = χ.

In particular, we have 0 ∈ Tϕ0 X f and T(t)0 = 0 for all t ≥ 0; that is, 0 ∈ Tϕ0 X f forms an
equilibrium of the linearization. The infinitesimal generator of the linearization T of F at ϕ0 is
defined by the linear operator G : D(G) 3 χ 7→ χ′ ∈ Tϕ0 X f with domain

D(G) :=
{

χ ∈ C2 ∣∣ χ′(0) = D f (ϕ0)χ, χ′′(0) = D f (ϕ0)χ
′
}

where C2 denotes the set of all twice continuously differentiable functions χ : [−h, 0]→ Rn.
Now, recall from the standing assumption (S2) on page 4 that the bounded linear operator

L := D f (ϕ0) : C1 → Rn extends to a bounded linear operator Le := De f (ϕ0) : C → Rn on
the greater Banach space C. In particular, Le defines the linear retarded functional differential
equation

v′(t) = Levt.

As, for instance, discussed in Diekmann et al. [14], for each χ ∈ C the associated initial value
problem

v′(t) = Levt, v0 = χ (2.4)

has a uniquely determined solution; i.e., there exists a unique continuous vχ : [−h, ∞) → Rn

which is continuously differentiable on (0, ∞), its segment vχ
0 at t = 0 coincides with initial

value χ, and which satisfies (vχ)′(t) = Lev
χ
t for all t > 0. Further, the segments vχ

t , χ ∈ C and
t ∈ [0, ∞), of all these solutions of initial value problem (2.4) induce a strongly continuous
semigroup Te = {Te(t)}t≥0 of bounded linear operators Te(t) : C → C on the Banach space
C where the action is given by Te(t)χ = vχ

t . The linear operator Ge : D(Ge) 3 χ 7→ χ′ ∈ C
defined on

D(Ge) = {ψ ∈ C1 | ψ′(0) = Leψ}

forms the associated infinitesimal generator of Te. Clearly, we have D(Ge) = Tϕ0 X f . Moreover,
as can be found in Hartung et al. [10], T(t)ϕ = Te(t)ϕ for all ϕ ∈ D(Ge) and all t ≥ 0, and the
two spectra σ(G), σ(Ge) ⊂ C of the generators G, Ge, respectively, coincide.

The spectrum σ(Ge), and so as well the spectrum σ(G), is given by the roots of a familiar
characteristic equation. In particular, it is discrete and consists only of eigenvalues with finite-
dimensional generalized eigenspaces. In addition, to the right of any line parallel to the
imaginary axis in the complex plane there are at most a finite number of eigenvalues of Ge.

Exponential trichotomy. Let σu(Ge), σc(Ge), and σs(Ge) denote the subsets of the spectrum
σ(Ge) with positive, zero, and negative real part, respectively. Obviously, we have

σ(Ge) = σu(Ge) ∪ σc(Ge) ∪ σs(Ge)

and each of the spectral sets σu(Ge) and σc(Ge) is either empty or finite. Hence, the associated
(realified) generalized eigenspaces Cu and Cc, which are called the unstable and center space of
Ge, respectively, are finite dimensional subspaces of C. In contrast to Cu and Cc, the stable space
Cs ⊆ C, i.e., the (realified) generalized eigenspace associated with the spectral part σs(Ge), is
infinite dimensional. All these subspaces of C are closed, invariant under Te(t) for all t ≥ 0,
and provide the decomposition

C = Cu ⊕ Cc ⊕ Cs
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of the Banach space C. Further, Te may be extended to a one-parameter group on Cu as well as
on Cc since the restriction of Te to each of these finite dimensional subspaces has a bounded
generator. For the action of Te on the closed subspaces Cu, Cc, and Cs we have the following
exponential estimates: There are reals K ≥ 1, cs < 0 < cu, and cc > 0 with cc < min{−cs, cu}
such that

‖Te(t)ϕ‖C ≤ Kecut‖ϕ‖C, t ≤ 0, ϕ ∈ Cu,

‖Te(t)ϕ‖C ≤ Kecc|t|‖ϕ‖C, t ∈ R, ϕ ∈ Cc,

‖Te(t)ϕ‖C ≤ Kecst‖ϕ‖C, t ≥ 0, ϕ ∈ Cs.

(2.5)

The unstable and stable space of G coincide with Cu and Cc, respectively, whereas the
stable space of G is given by the intersection Cs ∩D(Ge). Consequently, we obtain the spectral
decomposition

Y = Cu ⊕ Cc ⊕Ys (2.6)

for the Banach space Y := Tϕ0 X f , where Ys := Cs ∩ D(Ge). All the spaces Cu, Cc, Ys are
invariant under the semigroup T, and similarly to Te, T forms a one-parameter group on each
of the both finite dimensional spaces Cu and Cc. Using the exponential trichotomy (2.5), it is
not hard to see the analogous estimates

‖T(t)ϕ‖C1 ≤ Kecut‖ϕ‖C1 , t ≤ 0, ϕ ∈ Cu,

‖T(t)ϕ‖C1 ≤ Kecc|t|‖ϕ‖C1 , t ∈ R, ϕ ∈ Cc,

‖T(t)ϕ‖C1 ≤ Kecst‖ϕ‖C1 , t ≥ 0, ϕ ∈ Ys,

(2.7)

characterizing the action of T on the decomposition of Y.

Local coordinates for the semiflow F in a neighborhood of ϕ0. Recall that the tangent
space Y = Tϕ0 X f of X f at the equilibrium ϕ0 is a closed subspace of C1 with codimension n.
Therefore, we find a closed linear subspace E ⊂ C1 of dimension n which is complementary to
Y in C1; that is, C1 = Y⊕ E. In particular, the projection P of C1 along E onto Y is continuously
differentiable, and the equation

N(ϕ) = P(ϕ− ϕ0)

defines a manifold chart for X f on some open neighborhood V ⊂ X f of the equilibrium ϕ0.
Thereby, the image Y0 := N(V) of V under N forms an open neighborhood of 0 = N(ϕ0) in
the Banach space Y equipped with norm ‖ · ‖C1 . The inverse of N is given by a continuously
differentiable map R : Y0 → C1, and the derivative DN(ϕ0) of N at ϕ0 as well as the derivative
DR(0) of R at 0 ∈ Y0 is the identity operator on Y in each case. Therefore we may assume that
there is a constant LR > 0 with

‖R(χ1)− R(χ2)‖C1 ≤ LR‖χ1 − χ2‖C1 (2.8)

for all χ1, χ2 ∈ Y0.
Let now a > 0 be given. By compactness of the interval [0, a] together with the continuity

of the map
(R×V) ∩Ω 3 (t, χ) 7−→ F(t, R(χ)) ∈ X f ,

we find an open neighborhood Ya of 0 in Y0 such that F(t, R(χ)) is well-defined for all (t, χ) ∈
[0, a] × Ya and that F([0, a], R(Ya)) ⊂ V. As a consequence, we are able to represent the
semiflow F in local coordinates, namely by the map

Ha : [0, a]×Ya 3 (t, χ) 7−→ N(F(t, R(χ))) ∈ Y. (2.9)
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Obviously, we have Ha(t, 0) = 0 and Ha(t, Ya) ⊂ Y0 for all 0 ≤ t ≤ a. The function Ha is also
continuous. Moreover, for each 0 ≤ t ≤ a the induced map

Ha
t : Ya 3 χ 7−→ Ha(t, χ) ∈ Y

is continuously differentiable with derivative given by

DHa
t (0) = DN(ϕ0) ◦ D2F(t, ϕ0) ◦ DR(0) = D2F(t, ϕ0) = T(t).

Suppose that we have Ha(s, χ) ∈ Ya for a fixed (s, χ) ∈ [0, a] × Ya. Then all values
Ha(t, Ha(s, χ)), 0 ≤ t ≤ a, are well-defined. Accordingly, by setting

Ha(t + s, χ) := Ha(t, Ha(s, χ))

for 0 ≤ t ≤ a we may represent the positive semi-orbit of the semiflow F through R(χ) in the
local coordinates constructed above at least on the interval [0, s + a]. Additionally, in this case
we see at once that the semigroup property of F implies

Ha(t + s, R(χ)) = Ha(t, Ha(s, χ)) = N(F(t + s, R(χ)))

for 0 ≤ t ≤ a. Therefore, we may extend the domain for the local representation Ha of the
semiflow F to the set {

(t, χ) ∈ [0, ∞)×Ya
∣∣ N(F(bt/ac a, R(χ))) ∈ Ya

}
,

where bt/ac denotes the integer part of the real t/a. For instance, [0, ∞)× {0} belongs to this
extended domain of the map Ha and the equilibrium ϕ0 ∈ X f can obviously be represented
by 0 ∈ Y0 for all t ≥ 0.

3 The principle of linearized stability

After the preliminaries in the last section we are now in the position to state the announced
principle of linearized stability for the semiflow F induced by solutions of Eq. (2.1).

Theorem 3.1 (The principle of linearized stability). Suppose the function f : U −→ Rn, U ⊂ C1

open, satisfies (S1) and (S2), and ϕ0 ∈ X f is an equilibrium of the semiflow F. If <(λ) < 0 for all
eigenvalues λ ∈ σ(Ge), then ϕ0 is locally asymptotically stable as an equilibrium of F.

Moreover, under the conditions stated above, the (local) attraction rate of ϕ0 is exponential; that is,
there exist reals ε > 0, γ > 0 and κ ≥ 0 such that for each ϕ ∈ X f with ‖ϕ− ϕ0‖C1 < ε we have
t+(ϕ) = ∞ and

‖F(t, ϕ)− ϕ0‖C1 ≤ κe−γt for all t ≥ 0.

As mentioned in the introduction, we will prove Theorem 3.1 in an elementary way by
reducing the question about the stability of ϕ0 for the continuous dynamical system given by
the semiflow F to the one for the discrete dynamical system given by some (appropriate) time-
t map F(t, ·). But in doing so, we may not ignore all the “pieces in between” of a trajectory.
Here, we will need the next result from Hartung et al. [10] about a quantitative version of
continuous dependence of semiflow F on initial data. For the sake of completeness, we also
repeat the proof of the statement.
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Proposition 3.2 (Proposition 3.5.3 in [10]). Let f : U → Rn, U ⊂ C1 open, with (S1) and (S2)
be given, and let ϕ0 be an equilibrium of the semiflow F. Then for each a > 0 there exist an open
neighborhood X f ,a of ϕ0 in X f and some constant ca ≥ 0 such that [0, a]× X f ,a ⊂ Ω and

‖F(t, ϕ)− ϕ0‖C1 ≤ ca‖ϕ− ϕ0‖C1 (3.1)

for all (t, ϕ) ∈ [0, a]× X f ,a.

Proof. 1. First, observe that, by using smoothness condition (S2) of function f , it is not hard to
see that f has the following local Lipschitz property: there exist a neighborhood VL of ϕ0 in
U and a real LV ≥ 0 with

‖ f (ψ)− f (χ)‖Rn ≤ LV‖ψ− χ‖C

for all ψ, χ ∈ VL (see, for instance, Corollary 1 in Walther [24]).
2. Let now a > 0 be given. Then, the continuity of the semiflow F : Ω → X f and the

compactness of the interval [0, a] implies the existence of some neighborhood X f ,a of ϕ0 in X f
such that [0, a]× X f ,a ⊂ Ω and F([0, a]× X f ,a) ⊂ VL with VL from the last part.

3. Set ξ := ϕ0(0), and let ϕ ∈ X f ,a be given. Then, in view of f (ϕ0) = 0 and the first part,
it follows that for all 0 ≤ t ≤ a we have

‖xϕ(t)− ξ‖Rn =

∥∥∥∥xϕ(0)− ξ +
∫ t

0
(xϕ)′(s)ds

∥∥∥∥
Rn

=

∥∥∥∥xϕ(0)− ξ +
∫ t

0
f (xϕ

s )ds
∥∥∥∥

Rn

≤ ‖ϕ− ϕ0‖C + LV

∫ t

0
‖xϕ

s − ϕ0‖C ds.

Given any t ∈ [0, a], observe that there is some t0 ∈ [t− h, t] satisfying

‖xϕ(t0)− ξ‖Rn = ‖xϕ
t − ϕ0‖C.

In case t0 < 0, we have
‖xϕ

t − ϕ0‖C = ‖ϕ− ϕ0‖C,

whereas in the other case t0 ≥ 0 we obtain

‖xϕ
t − ϕ0‖C ≤ ‖x

ϕ
0 − ϕ0‖C + LV

∫ t0

0
‖xϕ

s − ϕ0‖C ds

≤ ‖ϕ− ϕ0‖C + LV

∫ t

0
‖xϕ

s − ϕ0‖C ds.

However, in any case we have

‖xϕ
t − ϕ0‖C ≤ ‖ϕ− ϕ0‖C + LV

∫ t

0
‖xϕ

s − ϕ0‖C ds

such that Gronwall’s lemma shows

‖F(t, ϕ)− ϕ0‖C = ‖xϕ
t − ϕ0‖C ≤ ‖ϕ− ϕ0‖C eLV t

for all t ∈ [0, a]. Furthermore, by combining the last estimate with the first part, we also see
that

‖(xϕ)′(t)‖Rn ≤ ‖ f (xϕ
t )− f (ϕ0)‖Rn ≤ LV eLV t‖ϕ− ϕ0‖C
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as t ∈ [0, a]. Consequently, it follows that

‖(xϕ
t )
′ − (ϕ0)

′‖C ≤ LV eLV t‖ϕ− ϕ0‖C

and finally

‖F(t, ϕ)− ϕ0‖C1 = ‖xϕ
t − ϕ0‖C1 ≤ (1 + LV)eLV t‖ϕ− ϕ0‖C ≤ (1 + LV)eLV t‖ϕ− ϕ0‖C1

on [0, a]. Setting ca := (1 + LV)eLV a completes the proof.

As the last preparatory step towards a proof of the principle of linearized stability, we
show that, under the assumptions of Theorem 3.1 and for a > 0 sufficiently large, the asso-
ciated time-t-map Ha

a = Ha(a, ·) : Ya → Y in local coordinates is a contractive self-map on a
neighborhood of 0 ∈ Y. To be more precisely, we prove the following result.

Proposition 3.3. Let the hypothesis of Theorem 3.1 hold. Then for each sufficiently large a > 0
there exist an open neighborhood Yc,a ⊂ Ya of 0 ∈ Y such that the restriction H := Ha

a |Yc,a satisfies
H(Yc,a) ⊂ Yc,a and

‖H(χ1)− H(χ2)‖C1 ≤
1
2
‖χ1 − χ2‖C1 (3.2)

for all χ1, χ2 ∈ Yc,a.

Proof. 1. Under given assumptions, we clearly have Cu = Cc = {0} and Ys = Y. Consequently,
(2.7) implies

‖T(t)‖ ≤ Kecst

for all t ≥ 0. Fix any a > 0 with Kecsa < 1/4, which is possible due to the fact cs < 0, and let
H : Ya → Y denote the corresponding time-a-map Ha(a, ·) in the following.

2. Recall that H is continuously differentiable and that DH(0) = DHa
a = T(a). For this

reason, we find some open ball Bε(0) = {χ ∈ Y | ‖χ‖C1 < ε} of radius ε > 0 about 0 in Y with
Bε(0) ⊂ Ya and

‖DH(χ)− DH(0)‖ < 1
4

for all χ ∈ Bε(0). Combining that with the first part gives

‖DH(χ)‖ ≤ ‖DH(0)‖+ 1
4
= ‖T(a)‖+ 1

4
≤ Kecsa +

1
4
<

1
2

as χ ∈ Bε(0). Hence, given any χ1, χ2 ∈ Bε(0),

‖H(χ1)− H(χ2)‖C1 ≤
∫ 1

0
‖DH(χ2 + s(χ1 − χ2))(χ1 − χ2)‖C1 ds

≤ max
s∈[0,1]

‖DH(χ2 + s(χ1 − χ2))‖‖χ1 − χ2‖C1

≤ sup
χ∈Bε(0)

‖DH(χ)‖‖χ1 − χ2‖C1

≤ 1
2
‖χ1 − χ2‖C1 .

3. It remains to prove that H is a self-map of Bε(0). But this point is immediate in
consideration of H(0) = 0 and the contraction property from the part above. Indeed, we have

‖H(χ)‖C1 = ‖H(χ)− H(0)‖C1 ≤
1
2
‖χ− 0‖C1 = ‖χ‖C1 < ε

for all χ ∈ Bε(0).
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Remark 3.4. Note that the last result proves that the fixed point χ0 = 0 of the discrete semi-
dynamical system induced by iterations of H : Yc,a → Yc,a is asymptotically stable. Indeed, for
each χ ∈ Yc,a and all k ∈N0 we have

‖Hk(χ)‖C1 ≤
1
2
‖H(k−1)(χ)‖C1 ≤

(
1
2

)k

‖χ‖C1

and so Hk(χ)→ 0 as k→ ∞.

Now, we are able to prove the principle of linearized stability.

Proof of Theorem 3.1. 1. To begin with, let constant a > 0, open neighborhood Yc,a ⊂ Ya of
0 ∈ Y, and the map H as in Proposition 3.3 be given. Set VN := R(Yc,a). Further, fix constant
ca ≥ 0 and open neighborhood X f ,a ⊂ X f of equilibrium ϕ0 ∈ X f as in Proposition 3.2.
Observe that, in view of the proof of Proposition 3.3, there is no loss of generality in assuming
VN ⊂ X f ,a. Indeed, otherwise we could start with a smaller neighborhood Yc,a ⊂ Ya of 0 ∈ Y.

2. For each ϕ ∈ VN we have F(a, ϕ) ∈ VN . In fact, by Proposition 3.3, H(χ) ∈ Yc,a for
χ := N(ϕ) ∈ N(VN) = N(R(Yc,a)) = Yc,a and so

F(a, ϕ) = R(N(F(a, R(χ)))) = R(H(χ)) ∈ R(Yc,a) = VN .

As VN ⊂ X f ,a it clearly follows that [0, ∞)× VN ⊂ Ω. Moreover, any point ψ ∈ VN defines
a trajectory {ψj}j∈N0 with ψ0 := ψ of the time-a-map F(a, ·) in VN , and the associated points
χj := N(ψj) a trajectory of H in Yc,a as

χj+1 = N(ϕj+1) = N(F(a, ψj)) = N(F(a, R(χj))) = H(χj).

Using the Lipschitz continuity (2.8) of R and contraction property (3.2) of H, we obtain

‖ψj − ϕ0‖C1 = ‖R(χj)− R(0)‖C1

≤ LR‖χj − 0‖C1

= LR‖H(χj−1)‖C1

≤ LR
1
2
‖χj−1‖C1

≤ LR

(
1
2

)j

‖χ0‖C1

= LR

(
1
2

)j

‖N(ψ0)‖C1

= LR

(
1
2

)j

‖P(ψ0 − ϕ0)‖C1

≤ LR‖P‖
(

1
2

)j

‖ψ0 − ϕ0‖C1

for all j ≥ 0 and all trajectories {ψj}j∈N0 with ψ0 ∈ VN .

3. Set γ := − log(1/2)
a > 0, and let ψ ∈ VN and t ≥ 0 be given. Fix j ∈ N0 satisfying
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ja ≤ t < (j + 1)a. Then, in view of Proposition 3.2 and the last part,

‖F(t, ψ)− ϕ0‖C1 = ‖F(t− ja, F(ja, ψ))− ϕ0‖C1

≤ ca‖F(ja, ψ)− ϕ0‖C1

≤ caLR‖P‖
(

1
2

)j

‖ψ− ϕ0‖C1

= caLR‖P‖ej log(1/2)‖ψ− ϕ0‖C1

= caLR‖P‖e(t log(1/2))/ae
(

j− t
a

)
log(1/2)‖ψ− ϕ0‖C1

≤ caLR‖P‖e−γte− log(1/2)‖ψ− ϕ0‖C1

= κe−γt‖ψ− ϕ0‖C1

with κ := 2caLR‖P‖ ≥ 0.
4. Let now ε > 0 be given. Choose δ > 0 such that κδ < ε and such that for all ϕ ∈ X f

with ‖ϕ − ϕ0‖C1 < δ we have ϕ ∈ VN with VN defined above. Then, given ϕ ∈ X f with
‖ϕ− ϕ0‖C1 < δ, we have t+(ϕ) = +∞ and the last part clearly implies both

‖F(t, ϕ)− ϕ0‖C1 < κδ < ε

for all t ≥ 0 as well as F(t, ϕ)→ ϕ0 exponentially as t→ ∞. This shows the assertion.

4 The principle of linearized instability

This final section is devoted to prove the principle of linearized instability which allows to infer
the instability of an equilibrium ϕ0 ∈ X f of the semiflow F from the instability of the trivial
equilibrium of the associated linearization T. More precisely, we will establish the following
result.

Theorem 4.1 (The principle of linearized instability). Suppose the function f : U −→ Rn, U ⊂ C1

open, satisfies (S1) and (S2), and ϕ0 ∈ X f is an equilibrium of the semiflow F. If <(λ) > 0 for some
eigenvalue λ ∈ σ(Ge), then ϕ0 is unstable for the semiflow F.

Similarly to the last section, we begin with a statement concerning the dynamics induced
by iterations of some time-t-map of F in local coordinates before proving the principle of
linearized instability.

Proposition 4.2. Let the hypothesis of Theorem 3.1 hold. Then there is some a > 0 such that χ0 =

0 ∈ Y is unstable as a fixed point of the discrete semi-dynamical system generated by iterations of the
map H := Ha

a : Ya → Y. In fact, there exists an open neighborhood Yc,a ⊂ Ya of χ0 = 0 ∈ Y such that
for each ε > 0 there is some χ ∈ Yc,a with ‖χ‖C1 < ε but Hk(χ) 6∈ Yc,a for some k ∈N.

Proof. 1. Consider the decomposition (2.6) of Y and the associated trichotomy given by (2.7).
Defining Ycs := Cc ⊕Ys and ccs := cc, we obtain the decomposition

Y = Cu ⊕Ycs

with the exponential estimates

‖T(t) χ‖C1 ≤ Kecut‖ϕ‖C1 , t ≤ 0, χ ∈ Cu,

‖T(t) χ‖C1 ≤ Keccst‖ϕ‖C1 , t ≥ 0, χ ∈ Ycs.
(4.1)
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Fix 0 < q < 1 with 1/q > K ≥ 1. Then for all t ≥ 0 and χ ∈ Cu we have

‖χ‖C1 = ‖T(−t) T(t) χ‖C1 ≤ Ke−cut‖T(t) χ‖C1 ≤
1
q

e−cut‖T(t) χ‖C1 ,

that is,

q ecut‖χ‖C1 ≤ ‖T(t) χ‖C1 . (4.2)

Since ccs < cu it follows that ϑ1 := q ecua − K eccsa > 0 for all sufficiently large a > 0. Fix such a
constant a > 0. Then the estimates (4.1) and (4.2) for the linear operator L := T(a) imply the
two inequalities

‖L χ‖C1 ≥ (ϑ1 + ϑ2)‖χ‖C1 , χ ∈ Cu,

‖L χ‖C1 ≤ ϑ2‖χ‖C1 , χ ∈ Ycs,
(4.3)

where ϑ2 := K eccsa > 1.
2. Let P̂u : Y −→ Y denote the projection of Y along Ycs onto the unstable space Cu of the

operator G. Using the continuity of P̂u, it is easily seen that

‖ϕ‖u := ‖P̂u ϕ‖C1 + ‖(id− P̂u) ϕ‖C1 ,

where id denotes the identity operator, defines a norm on Y. In particular, the norm ‖ · ‖u

is equivalent to ‖ · ‖C1 on Y. Consider now the time-a-map H := Ha(a, ·) : Ya −→ Y of the
semiflow F in local coordinates. Since Ya is an open neighborhood of the origin in Y, and L is
the derivative of H at χ = 0, we find a sufficiently small ε1 > 0 such that for all χ ∈ Y with
‖χ‖u < ε1 we have χ ∈ Ya and

‖H(χ)− L χ‖u ≤
1
4

ϑ1 ‖χ‖u. (4.4)

Suppose for χ ∈ Y with ‖χ‖u < ε1 there holds ‖(id− P̂u) χ‖C1 ≤ ‖P̂u χ‖C1 . Then we claim that
the value H(χ) satisfies the same cone condition as χ; that is,

‖(id− P̂u)(H(χ))‖C1 ≤ ‖P̂u(H(χ))‖C1 .

To see this, note first that the above assumptions on χ immediately imply the inequality
‖χ‖u ≤ 2‖P̂u χ‖C1 . Therefore the invariance of the spaces Cu, Ycs for L and the estimates (4.3),
(4.4) yield

‖P̂u H(χ)‖C1 ≥ ‖P̂u L χ‖C1 − ‖P̂u(H(χ)− L χ)‖C1

= ‖L P̂u χ‖C1 − ‖P̂u(H(χ)− L χ)‖C1

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 − ‖H(χ)− L χ‖u

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 −
1
4

ϑ1‖χ‖u

≥ (ϑ1 + ϑ2)‖P̂u χ‖C1 −
1
2

ϑ1‖P̂u χ‖C1

≥
(

ϑ2 +
1
2

ϑ1

)
‖P̂u χ‖C1
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and
‖(id− P̂u) H(χ)‖C1 ≤ ‖(id− P̂u) L χ‖C1 + ‖(id− P̂u)(H(χ)− L χ)‖C1

= ‖L (id− P̂u) χ‖C1 + ‖(id− P̂u)(H(χ)− L χ)‖C1

≤ ϑ2‖(id− P̂u) χ‖C1 + ‖H(χ)− L χ‖u

≤ ϑ2‖(id− P̂u) χ‖C1 +
1
4

ϑ1‖χ‖u

≤ ϑ2‖(id− P̂u) χ‖C1 +
1
2

ϑ1‖P̂u χ‖C1

≤
(

ϑ2 +
1
2

ϑ1

)
‖P̂u χ‖C1 ,

which proves the claim. Thus for all χ ∈ Y with ‖χ‖u < ε1 we have the implication

‖(id− P̂u) χ‖C1 ≤ ‖P̂u χ‖C1 =⇒ ‖(id− P̂u)(H(χ))‖C1 ≤ ‖P̂u(H(χ))‖C1 .

3. Consider now any 0 < ε2 < ε1/(‖P̂u‖ + ‖id − P̂u‖), and assume that for every suffi-
ciently small χ ∈ Y with ‖χ‖u < ε1 and ‖(id− P̂u) χ‖C1 ≤ ‖P̂u χ‖C1 there holds

‖Hk(χ)‖C1 < ε2

for all k ∈N. Then we would have

‖Hk(χ)‖u = ‖P̂u(Hk(χ))‖C1 + ‖(id− P̂u)(Hk(χ))‖C1

≤ ‖P̂u‖ ‖Hk(χ)‖C1 + ‖id− P̂u‖ ‖Hk(χ)‖C1

≤ (‖P̂u‖+ ‖id− P̂u‖) ε2

< ε1,

and hence by the part above

‖P̂u(Hk(χ))‖C1 ≥
(

ϑ2 +
1
2

ϑ1

)k

‖P̂u χ‖C1

for all k ∈N. Subsequently, in consideration of ϑ1 > 0 and ϑ2 > 1, this would imply

‖P̂u(Hk(χ))‖C1 → ∞

for k → ∞ whenever χ 6= 0. But, as by hypothesis of the proposition dim Cu ≥ 1, we see at
once the existence of any desired small χu ∈ Y\{0} satisfying

‖(id− P̂u) χu‖C1 ≤ ‖P̂u χu‖C1 ≤ ‖χu‖u < ε1.

This leads to a contradiction to our assumption on boundedness for the iterations of H. Thus,
setting Yc,a := {χ ∈ Ya | ‖χ‖C1 < ε2} shows the assertion.

Remark 4.3. Note that the statement of the last result may be sharpened. For instance, our
proof shows that the assertion is true for all time-t-maps Ht

t : Yt → Y with t ≥ a. However, for
our purpose, namely, a proof of Theorem 4.1, it is sufficient to have only a single time-t-map
with the stated property.

Now, we return to the proof of the principle of linearized instability. Observe that, contrary
to the principle of linearized stability, the “pieces in between” of a trajectory may be ignored
such that the instability assertion carries over, more or less, immediately from the discrete
dynamical system to the continuous dynamical system.
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Proof of Theorem 4.1. Contrary to the statement, suppose that the equilibrium ϕ0 ∈ X f is stable
for the semiflow F. Choose a > 0 and open neighborhood Yc,a of χ0 = 0 ∈ Y according
Proposition 4.2, and let P : C1 → C1 denote the projection operator along Y onto E involved in
our construction of local coordinates for X f . Then there clearly is some sufficiently small ε > 0
such that the open ball {χ ∈ Y | ‖χ‖C1 < ‖P‖ε} is contained in Yc,a. Next, by assumption and
Remark 2.1, we find a constant 0 < δ < ε such that for all ϕ ∈ X f with ‖ϕ− ϕ0‖C1 < δ and all
t ≥ 0

‖F(t, ϕ)− ϕ0‖C1 < ε

holds. Now, consider any χ ∈ Yc,a satisfying ‖χ‖C1 < δ/LR where LR > 0 is the constant from
the Lipschitz condition (2.8) for the map R. As

‖R(χ)− ϕ0‖C1 = ‖R(χ)− R(0)‖C1 ≤ LR‖χ‖C1 < δ

it follows that
‖Hk(χ)‖C1 = ‖Ha(k a, χ)‖C1

= ‖N(F(k a, R(χ)))‖C1

= ‖P(F(k a, R(χ))− ϕ0)‖C1

≤ ‖P‖ ‖F(k a, R(χ))− ϕ0‖C1

< ‖P‖ε
for all k ∈ N. For this reason, if ϕ0 would be stable then for all sufficiently small χ ∈ Yc,a we
would have Hk(χ) ∈ Yc,a as k ∈N. But this is clearly impossible due to Proposition 3.3. Thus
ϕ0 is unstable, which proves the theorem.
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