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Abstract

In this paper, we study the existence of solutions for a boundary value prob-
lem of differential inclusions of order ¢ € (1,2] with non-separated boundary
conditions involving convex and non-convex multivalued maps. Our results are
based on the nonlinear alternative of Leray Schauder type and some suitable
theorems of fixed point theory.
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1 Introduction

Fractional calculus (differentiation and integration of arbitrary order) has proved to be
an important tool in the modelling of dynamical systems associated with phenomena
such as fractals and chaos. In fact, this branch of calculus has found its applications in
various disciplines of science and engineering such as mechanics, electricity, chemistry,
biology, economics, control theory, signal and image processing, polymer rheology, reg-
ular variation in thermodynamics, biophysics, blood flow phenomena, aerodynamics,
electro-dynamics of complex medium, viscoelasticity and damping, control theory, wave
propagation, percolation, identification, fitting of experimental data, etc. [1-4].
Recently, differential equations of fractional order have been addressed by several re-
searchers with the sphere of study ranging from the theoretical aspects of existence and
uniqueness of solutions to the analytic and numerical methods for finding solutions.
For some recent work on fractional differential equations, see [5-11] and the references
therein.
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Differential inclusions arise in the mathematical modelling of certain problems in
economics, optimal control, etc. and are widely studied by many authors; see [12-15]
and the references therein. For some recent development on differential inclusions of
fractional order, we refer the reader to the references [16-21].

In this paper, we consider the following fractional differential inclusion with non-
separated boundary conditions

¢Dix(t) € F(t,x(t)), t€[0,T], T>0, 1<q<2, 11
ZL‘(O) = )\1[L‘(T) +M1, ZL‘I(O) = )\Ql‘/(T) +[12, )\1 7é ]_, )\2 7é 1, ( ) )

where D7 denotes the Caputo fractional derivative of order ¢, F': [0,7] x R — P(R)
is a multivalued map, P(R) is the family of all subsets of R, and Aj, Ao, u1, p2 € R.

2 Preliminaries

Let C([0,T]) denote a Banach space of continuous functions from [0, 7] into R with the
norm ||z = supep 1 l2(t)]. Let L'([0, T],R) be the Banach space of measurable func-

tions x : [0,7] — R which are Lebesgue integrable and normed by ||z||;: = fo |x(t)|dt.

Now we recall some basic definitions on multi-valued maps [22, 23].

For a normed space (X, |.]|), let Py(X) = {Y € P(X) : Y is closed}, Py(X) =
{Y € P(X) : Y is bounded}, P.,(X) = {Y € P(X) : Y is compact}, and P, .(X) =
{Y € P(X) : Y is compact and convex}. A multi-valued map G : X — P(X)
is convex (closed) valued if G(z) is convex (closed) for all x € X. The map G is
bounded on bounded sets if G(B) = U,epG(x) is bounded in X for all B € Py(X)
(i.e. sup,ep{sup{ly| : y € G(z)}} < o0). G is called upper semi-continuous (u.s.c.)
on X if for each 2y € X, the set G(x() is a nonempty closed subset of X, and if for
each open set N of X containing G(xg), there exists an open neighborhood Ny of xg
such that G(Np) € N. G is said to be completely continuous if G(B) is relatively com-
pact for every B € P, (X). If the multi-valued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed graph, i.e.,
Ty, = Tuy Yn — Y, Yn € G(xy,) imply y,. € G(z). G has a fixed point if there is x € X
such that = € G(x). The fixed point set of the multivalued operator G will be denoted
by FizG. A multivalued map G : [0;1] — P.4(R) is said to be measurable if for every
y € R, the function

t—d(y,G(t)) = inf{ly — z| : 2 € G(¢)}
is measurable.

Definition 2.1.A multivalued map F : [0, T] xR — P(R) is said to be L' —Carathéodory
if

(i) t — F(t,x) is measurable for each z € R;
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(ii) x — F(t,z) is upper semicontinuous for almost all ¢ € [0, T;
(iii) for each o > 0, there exists ¢, € L*([0,T],RT) such that

|EF(t,x)|| = sup{|v| : v € F(t,x)} < @u(t) for all ||z]|oc < a and for a. e.t € [0,T].

For each y € C([0,T],R), define the set of selections of F' by
Spy:={v e L'([0,T],R) : v(t) € F(t,y(t)) for a.e. t € [0,7T]}.

Let X be a nonempty closed subset of a Banach space ' and G : X — P(F) be a
multivalued operator with nonempty closed values. G is lower semi-continuous (l.s.c.)
if the set {y € X : G(y)N B # 0} is open for any open set B in E. Let A be a subset of
[0,T] xR. Ais L& B measurable if A belongs to the o—algebra generated by all sets of
the form J x D, where J is Lebesgue measurable in [0, 7] and D is Borel measurable
in R. A subset A of L'([0,T],R) is decomposable if for all u,v € A and measurable
J C [0, T] = J, the function x su+ xs_7v € A, where y 7 stands for the characteristic
function of J.

Definition 2.2. Let Y be a separable metric space and let N : Y — P(L([0,T],R))
be a multivalued operator. We say N has a property (BC) if NV is lower semi-continuous
(Ls.c.) and has nonempty closed and decomposable values.

Let F :[0,7] x R — P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,T] x R) — P(L'([0,T],R)) associated with F
as

F(x) = {we L*([0,1],R) : w(t) € F(t,z(t)) for a.e. t € [0,T]},

which is called the Nymetzki operator associated with F.

Definition 2.3. Let F': [0,7] x R — P(R) be a multivalued function with nonempty
compact values. We say F' is of lower semi-continuous type (L.s.c. type) if its asso-
ciated Nymetzki operator F is lower semi-continuous and has nonempty closed and
decomposable values.

Let (X,d) be a metric space induced from the normed space (X;|.||). Consider
H;:P(X) x P(X)— RU{oo} given by

Hy(A, B) = max{supd(a, B),supd(A,b)},
acA beB

where d(A,b) = inf,cad(a;b) and d(a, B) = infyepd(a;b). Then (P 4(X), Hy) is a
metric space and (Py(X), Hy) is a generalized metric space (see [24]).

Definition 2.4. A multivalued operator N : X — P,(X) is called
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(a) y—Lipschitz if and only if there exists v > 0 such that
Hy(N(z), N(y)) < yd(z,y) for each z,y € X

(b) a contraction if and only if it is y—Lipschitz with v < 1.
The following lemmas will be used in the sequel.
Lemma 2.1. ([25]) Let X be a Banach space. Let F' : [0,7] x R — P, .(X) be an

L'— Carathéodory multivalued map and let © be a linear continuous mapping from
LY([0,T], X) to C([0,T], X). Then the operator

©0Sp: C([0,T], X) = Py o(C([0,T], X)), z+— (O085p)(x) =O(Sks)
is a closed graph operator in C([0,7], X) x C([0,T7], X).
Lemma 2.2. ([26]) Let Y be a separable metric space and let N : Y — P(L'([0, T],R))
be a multivalued operator satisfying the property (BC). Then N has a continuous se-

lection, that is, there exists a continuous function (single-valued) g : Y — L'([0,T], R)
such that g(z) € N(z) for every x € Y.

Lemma 2.3. ([27]) Let (X, d) be a complete metric space. If N : X — P,(X) is a
contraction, then FizN # ().

Let us recall some definitions on fractional calculus [1-3].

Definition 2.5. For a function g : [0,00) — R, the Caputo derivative of fractional
order ¢ is defined as

1 t
‘Dig(t) = m/ (t—s)" g™ (s)ds, n—1<qg<n, n=I[g+1, ¢>0,
- 0

where [g] denotes the integer part of the real number ¢ and T' denotes the gamma
function.

Definition 2.6. The Riemann-Liouville fractional integral of order ¢ for a function g
is defined as

17(t) = F(lq) /O C i]<j))1qu’ q>0,

provided the right hand side is pointwise defined on (0, 00).

Definition 2.7. The Riemann-Liouville fractional derivative of order ¢ for a function
g is defined by

Dqg(t):#(dY/ot(&ds, n=lg+1, ¢>0,

['(n—q) dt t — s)a—ntl
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provided the right hand side is pointwise defined on (0, c0).
In order to define a solution of (1.1), we consider the following lemma.

Lemma 2.4. For a given p € C]0,T], the unique solution of the boundary value
problem

Dixg(t)=p(t), 0<t<T, 1<q<2, (2.1)
2(0) = \x(T) + pa, 2'(0) = X2/ (T) + po, '
is given by
T
pa[MT + (1 — )] G}
r(t) = G(t,s)p(s)ds + — ,
0= [ Gltspla)s + T - I
where G(t, s) is the Green’s function given by
(t—s)q_l _ Al(T—S)q_l )\2[>\1T+(1—)\1)t}(T—8)q_2
T~ or@ T eu-nigy 0 0SsSstsT
G(t,s) = (2.2)
M (T—s)771 XM T+(1=X2)t)(T—s5)2"2
“ent@ T e Dou-nry 0 0StESs<T
Proof. As argued in [8], for some constants ¢y, c; € R, we have
t (t _ S)qfl
x(t) =1p(t) — co — 1t = / —————p(s)ds — ¢o — 1t (2.3)
0 I'(g)

In view of the relations °D? [12(t) = x(t) and I? IPx(t) = I7Px(t) for ¢,p > 0,2 €
L(0,T), we obtain

2 (t) = /0 %p(s)ds — 1.

Applying the boundary conditions for (2.1), we find that

o= s | [ R g ([ g+ £2) 1 22

(M —1) I'(q) (A2 —1) I'(g—1) X/ N
N (T —s)"? 2
S iT ) T Ot
Substituting the values of ¢y and ¢; in (2.3), we obtain the unique solution of (2.1)
given by
B Pt —s)1! A (T - s)r!
() = | r s - oty | S
Ao[MT + (1= )t [T (T — )72
e, Ty P
p[MT + (1 — )] g
(=D -1)  (M—1)
r palMT + (1 — )] G}
= [ Gt BRESEENE - s
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where G(t, s) is given by (2.2). This completes the proof.

Definition 2.8. A function z € C*([0,T]) is a solution of the problem (1.1) if there
exists a function f € L'([0,T],R) such that f(t) € F(t,z(t)) a.e. on [0,7T] and

() = /0 U= rigyas — =2 /0 (T =" ¢gyas

['(q) (A —1) ['(q)
MMT + (1 =)t [T(T — 5)772
e Dn—1) Jo T I
+M2P\1T +(A=M)
Ce—D(M—-1  (n—1)

3 Main results

Theorem 3.1. Assume that
(Hy) F:[0,T] x R — P(R) is L' —Carathéodory and has convex values;

(Hy) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and a
function p € L'([0, T],R™) such that

1F(t 2)|lp = sup{ly| : y € F(t,2)} < p(t)¢(||z]lo) for each(t,z) € [0,T] x R;

(Hs) there exists a number M > 0 such that

M >1
oD Pl + v~
where
p= I g P a0 A= Dl AT e
['(q) A =1 (e = DA = 1)[ /7 I(

A= DA =1 [A =1
(3.1)

Then the boundary value problem (1.1) has at least one solution on [0, T7.

Proof. Define an operator

O(z) = {h € C([0,T],R) : h(t) = /0 %f(s)ds

B A T (T — S)qil $\ds )\2[)\1T + (1 — )\1)75] T (T — S)qi2 $ds
| s+ / f(s)d

(A —1) ['(q) (A2 = 1)(A1 — 1) ['(g—1)
pa[MT + (1 — )] G}
De—Dn=1)  n=1y !¢ SF@}'
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We will show that {2 satisfies the assumptions of the nonlinear alternative of Leray-
Schauder type. The proof consists of several steps. As a first step, we show that
Q(z) is convex for each x € C([0,T],R). For that, let hy, hy € Q(x). Then there exist
f1, f2 € Sk, such that for each ¢t € [0,T], we have

hi(t) = /0 ﬂfi(s)ds_ (Al)\i 1)/0 (T — )" £(6)ds

[(a) '@
MM T + (1= M)t (T —s)" (s)ds
Oo— D\ — 1) /0 I'(q—1) fils)d
plM T+ (A —A)]
Ge=Du -1 -1 T

Let 0 < w < 1. Then, for each t € [0,T], we have

o+ —apnli) = [0+ (-0
A (T —s)r!
5 | R + - s

MonT 4 (1= )] / (r< D i(s) + (1 — w)fa(s)lds

)

(A2 = 1)(\ — 1) q—1)

p2[MT + (1= At )
Q=DM =1 (A —1)

Since Sp, is convex (F' has convex values), therefore it follows that why + (1 —w)hy €
Next, we show that Q(z) maps bounded sets into bounded sets in C([0,7],R). For
a positive number r, let B, = {x € C([0,T],R) : ||z||.o < r} be a bounded set in
C([0,T],R). Then, for each h € Q(z),z € B,, there exists f € Sr, such that

o = [T - A [T s

) (o)
MaMT + (1 =Mt [T (T —s5)72 ags oy T A=) g
e DD Jo Ta-1 /W™ Dn—n)  nD)

/‘t L |d8+))\1—1)/ = ‘)| (s)lds

and

)\2[)\1T+ (]_ A )t |T S|q 2

Co— DA — 1) ’/ [ (s)lds
,ug[)\lT + (1 — )\1)75

Do — Dy —1) ’+’(>\1—1)’
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Ta—1 [A1] Aa(1 4+ A1)(g— 1) T
o (1 T e =11, # O

[p2(1+ M)[T ||
(A=D1 =D [\ =1

IN

Thus,

T M e+ M) (@ =Dy [T
[l < P(q)(1+|A1_1|+ |(>\2—1)(>\1—1)|>/0 ©r(s)ds

|2 (1 + M)|T ||
(A =DM =D [\ =1

Now we show that 2 maps bounded sets into equicontinuous sets of C'([0,T],R). Let
R

t',t" € [0,T] with ¢’ < ¢" and = € B,, where B, is a bounded set of C([0,T],R). For
each h € Q(x), we obtain
[A(t") = h(£)]
(" =) ! MM T + (1 — At /T (T — 5)12
= ds + f(s)ds
[ s MR [ e
_ 1" 4 qg—1
pa[MT 4 (1 = A)t"] _/ (' —s)" F(s)ds
(A2 = 1) (A — 1) 0 F(Q)
q—2

Do[MT + (1= M)t] [T (T =) p2[MT + (1 = A)t']
)\2—1)()\1 TR AT O rvey pveay

’/ —5)0! q)(t/_s)ql]f(s)ds ) /t/t”(t";(%f(s)ds’

+‘ Eiz__Ai;Ei__t{; (A2/0 %f(s)ds+u2) ‘

Obviously the right hand side of the above inequality tends to zero independently of
x € Byast’' —t' — 0. As Q satisfies the above three assumptions, therefore it follows
by the Ascoli-Arzeld theorem that 2 : C([0,T],R) — P(C([0,T],R)) is completely
continuous.

In our next step, we show that ) has a closed graph. Let z, — z,, h, € Q(z,) and
h, — hs. Then we need to show that h, € Q(x,). Associated with h,, € Q(z,), there
exists f, € Sp,, such that for each ¢ € [0, 7],

IA

ho(t) = /O%f( \ds — A1_1)/0 £.(s)ds
)\2[>\1T+ (]_ A )t] (T S)q 2
e Dv 1) / Mg 1) "o
ppMT + (1= M)
Ce—DM -1 (A —1)
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Thus we have to show that there exists f. € S, such that for each ¢ € [0, 77,

ha(t) = /0 Mf*(s)ds—()\fi - /0 =9 s

I'(q) I'(q)
Xo[MT + (1 — )] (T — s)172
e, T o
ppMT + (1= )]
Q=DM —=1) (M —1)
Let us consider the continuous linear operator © : L'([0,T],R) — C([0,T],R) given
by
[Tt = syt s M\ (T —s)r! \ds
e = [ e o | S
Ao [)\1T + (1 — )\1)75] (T — S)qi2
Co DOv -1 Jy D1 "
pelMT + (1= )]
Q=DM =1 (M —1)

Observe that

172 (2) h(t)||

= | / S)q ~ [u(s))ds
()\1—1)/ (TP(Z;(I 1(fn< ) — fi(s))ds

M[MT + (1= X))t T (T — 5)972
T =D — 1) /0 m(f"@ - f*(S))dSH — 0 as n — oo.

Thus, it follows by Lemma 2.1 that © o Sg is a closed graph operator. Further, we
have h,(t) € ©(SFy, ). Since x, — x., therefore, we have

B bt —s)it A\ T (T — s)a71
ha(t) = / Ff(a)s = / s

Xo[MT + (1 — )] (T s)q_2

e 10— 1) / (g 1) s
(1)
1)

po[MT + (1 — X\ t] 151
)

(A2 —1)(A\ —1

for some f, € Spg,.
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Finally, we discuss a priori bounds on solutions. Let = be a solution of (1.1). Then
there exists f € L'([0,T],R) with f € Sk, such that, for ¢ € [0,T], we have

o0 - f Mf(s)ds—(Al_l) / (T‘S)q*1f<s>ds

['(q) ['(q)
MMT + (1 =) [T (
Ce—Du—1) Jo rq—1 s
+M2[>\1T + (1= M)t G}

Q=DM —=1) (M —1)

In view of (H,), for each t € [0, 7], we obtain

o0 = 1o (L e + e el [ pls)ds

|2 (1 + )| T |1
(A2 = 1)(M = 1) A —1]

Consequently, by virtue of (3.1), we have

ol
(el ol + e =

In view of (Hj), there exists M such that ||zl # M. Let us set

U={zeC(0,T],R): |z < M+ 1}.

Note that the operator Q : U — P(C([0,T],R)) is upper semicontinuous and com-
pletely continuous. From the choice of U, there is no x € U such that x € p€(z) for
some p € (0,1). Consequently, by the nonlinear alternative of Leray-Schauder type
28], we deduce that  has a fixed point x € U which is a solution of the problem (1.1).
This completes the proof. O

As a next result, we study the case when F' is not necessarily convex valued. Our
strategy to deal with this problems is based on the nonlinear alternative of Leray
Schauder type together with the selection theorem of Bressan and Colombo [26] for
lower semi-continuous maps with decomposable values.

Theorem 3.2. Assume that (Hs), (H3) and the following conditions hold:
(Hy) F:]0,7T] xR — P(R) is a nonempty compact-valued multivalued map such that

(a) (t,x) — F(t,x) is L ® B measurable,

(b)  — F(t,z) is lower semicontinuous for each t € [0, T;
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(Hs) for each o > 0, there exists ¢, € L'([0,T],RT) such that

|F(t,z)|| = sup{ly| : y € F(t,z)} < p,(t) for all ||z]|. < o and for a.e.t € [0,T].
Then the boundary value problem (1.1) has at least one solution on [0, 7.

Proof. It follows from (H4) and (Hj) that F is of Ls.c. type. Then from Lemma
2.1, there exists a continuous function f : C([0,T],R) — L'([0, 7], R) such that f(z) €
F(x) for all z € C([0,T],R).

Consider the problem

‘Dix(t) = f(x(t), t€[0,T], T>0, 1<q<2,
ZL‘(O) = )\1[L‘(T) + u1, ZL‘I(O) = )\Ql‘/(T) + U, )\1 7é ]_, )\2 7é 1,
Observe that if x € C?([0,T1]) is a solution of (3.2), then z is a solution to the

problem (1.1). In order to transform the problem (3.2) into a fixed point problem, we
define the operator €2 as

(3.2)

() = [ st - 2 [T faoas

)\2[)\1T + (1 — )\1 t] T (T — S)q_2
I, Ty e
[LQ[)\lT + 1-— )\1 t] M1

(M —1)

It can easily be shown that € is continuous and completely continuous. The remaining
part of the proof is similar to that of Theorem 3.1. So we omit it. This completes the
proof. O

Now we prove the existence of solutions for the problem (1.1) with a nonconvex
valued right hand side by applying a fixed point theorem for multivalued map due to
Covitz and Nadler [27].

Theorem 3.3. Assume that the following conditions hold:

(Hg) F:[0,T] x R — P.,(R) is such that F(.,x) : [0,7] — P.,(R) is measurable for
each x € R;

(Hy) Hy(F(t,x),F(t,z)) < m(t)|x — Z| for almost all ¢ € [0,7] and z,Z € R with
m € LY([0,T],RT) and d(0, F(t,0)) < m(t) for almost all ¢ € [0, T].

Then the boundary value problem (1.1) has at least one solution on [0, 7] if

Tl M el A)(g— 1)
o R e Do) <
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Proof. Observe that the set Sp, is nonempty for each z € C([0,7],R) by the
assumption (Hg), so F' has a measurable selection (see Theorem II1.6 [28]). Now
we show that the operator () satisfies the assumptions of Lemma 2.2. To show that
Q(z) € Py((C[0,T),R)) for each z € C([0,T],R), let {u,}n>0 € Q(x) be such that
Up, — u (n — 00) in C([0,T],R). Then u € C([0,T],R) and there exists v,, € Sg, such
that, for each ¢ € [0, T7,

- E(t— g)! T
u(t) = /0 W vp(s)ds — )\1 — 1) /0 vn(s)ds
)\2[)\1T —+ (1 )\ )t] (T S)q 2
o —DOu—1) / - "
poMT + (1 — A )t] R
Me—DA—1)  (M—1)

As F has compact values, we pass onto a subsequence to obtain that v, converges to
vin LY([0,T],R). Thus, v € Sk, and for each t € [0, 77,

w) =) = [ - 2 IS s

MMT + (1 =)t [T (T —5)772
Ae=DM—1) Jo Tlg—1)

( )

( )

,ug[)\lT+ 1-— )\1 t] _ M1
Coe—DMm -1  (n—1)

Hence, u € Q(z).
Next we show that there exists v < 1 such that
Hy(z), Q7)) < yllz — 2| for each z,z € C([0,T],R).

Let z,z € C([0,T],R) and hy € Q(x). Then there exists v;(t) € F(t,z(t)) such that,
for each t € [0, 7],

Pt —s)1! A1 (T —s)r!
hi(t) = /o 711((1) v1(s)ds — ) /0 ) v1(s)ds

Ma[MT + (1= X)t] [T(T — )12
(A —1)(A — 1) /0 T(q—1) v1(s)ds
+M2[)\1T +A=M) m
(A2 =1)(M1 —1) (A1 —1)

By (H7), we have
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So, there exists w € F(t, z(
lo1(t) — w| < m(t)|x(t) — z(t)], te][0,T].
Define U : [0, T] — P(R) by

Ut) = {w e R : fun(t) — wl < m(b)]a(t) — 2(0)]}.

Since the multivalued operator V (¢) N F'(¢,Z(t)) is measurable (Proposition I111.4 [29]),
there exists a function vy(¢) which is a measurable selection for V. So vy(t) € F(t, z(t))
and for each t € [0, T, we have |vy(t) — va(t)] < m(t)|z(t) — z(t)].

t)) such that

For each t € [0, T, let us define

ho(t) = /O%UQ(s)ds— )\1_1 /0 va(s)ds

MolaT + (1= M)l gy
(A2 = 1)(A1 — /o [(g—1) va{s)ds

( 1)

( 1)
po[MT + (1= )t] L1
Q=DM —1)  (—1)

Thus,
ha(t) = ha(t)]
/'“ - 01 (5) — va(5)]ds

)\1—1 ’/ _Sq 1\U1(S)—vz(s)|ds

+) )\2—1 )\1—1 ‘/T| = ZA;{T)G_M) ”lvl(S)—vz(s)lds

< m/‘ m(s)|x — E|ds,
0
where v is given by (3.1). Hence,

T mll (1 Al [+ A)(g — 1)|>le
I'(q) A =1 (A = 1) (A = 1))
Analogously, interchanging the roles of z and T, we obtain
Hq((x), (7)) < Yz -7
T! A A1+ X)(g—1

— 7| 0o-

[A1(t) = ha(t)][oe <

<

I'(q) Ar=1] [(Ae = 1) (A = 1)
Since 2 is a contraction, it follows by Lemma 2.2 that €2 has a fixed point x which
is a solution of (1.1). This completes the proof. O

EJQTDE, 2010 No. 71, p. 13



4

Discussion

In this paper, we have presented some existence results for fractional differential in-
clusions of order ¢ € (1,2] involving convex and non-convex multivalued maps with
non-separated boundary conditions. Our results give rise to various interesting situa-
tions. Some of them are listed below:

(i)

(iii)

The results for an anti-periodic boundary value problem of fractional differential

inclusions of order ¢ € (1, 2] follow as a special case by taking Ay = —1 = Ay, 3 =
0 = p9 in the results of this paper. In this case, the operator Q(z) takes the form
bt —s)at
() = {h e O(0.T).R) : h(t :/ E= ) rgyds
0 I'(g)
1 /T (T — )91 1 T - s5)12
- = 7fsds+—T—2t/ ————f(s)ds, feS@},

2Jo Tl (8)ds + 4 ) o Tlg—1) () :

and the condition (H3) becomes
4MT (q)

1
G+l (M)l

while the condition ensuring the existence of at least one solution of the problem
(1.1) in Theorem (3.3) reduces to

TT(5 + q)|m|| 11 _
4I(q)

For ¢ = 2, we obtain new results for second order differential inclusions with
non-separated boundary conditions. In this case, the Green’s function G(t, s) is

1.

-1 (AQ*l)(T*S)‘i’)\Q [)\1T+(17)\1)t]
(M-1D(A2—-1) ’

0<t<s<T,
G(t,s) =

A=) (A2—=1)(t=5)=A1 A2 =1)(T—s)+X2[M T+(1-A1)¢]
: ) (;1721)@271) == = 0<s<t<T,

which takes the following form for the second order anti-periodic boundary value
problem (A} = —1 = \y):

1(=T—2t+2s), 0<t<s<T,
G(t,s) =
1(=T+2t—2s), 0<s<t<T.

The results for an initial value problem of differential inclusions of fractional order
q € (1,2] can be obtained by taking \; = 0 = A\, in the present results with the
operator {)(z) taking the form

t (t o S)q—l

Q) = {h e C(0.T.R) : hit) = /0 .

F(s)ds+ ot + p, f € S}
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