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1 Introduction

We consider the higher-order nonlinear differential system

u™ (t) + Xb(t) f(v(t)) =0, t € (0,T),
v () 4+ pe(t)g(u(t)) =0, t € (0,T), n> 2,

(5)

with the m-point boundary conditions

u(0) = 1(0) = -+ = u"A(0) = 0, u(T) = 3 asul)
(BC) m—2
v(0) =0'(0) = --- = 02(0) = 0, v(T) = Z av(&), m >3,

where 0 < & <+ <& o <T,a; >0, 1=1m— 2.
In this paper we shall investigate the existence of positive solutions with respect

to a cone of (S), (BC), where A\, u > 0. The existence of positive solutions for ()

m—2
with n = 2 and the boundary conditions fu(0) — yu/(0) = 0, w(7T) = Z a;u(&;) + bo,
i=1
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m—2

Bu(0) —0'(0) =0, v(T) = Z a;v(&;) + by has been investigated in [19] for by = 0 and in
i=1

[18] for by > 0 and A = p = 1. The corresponding discrete case, namely the system with

second-order differences

AUy + Mo f(v,) =0, n=1,N—1
AQUnfl =+ ,ucng<un> = 07 n = 17N - 17
m—2

with the m+1-point boundary conditions Sug—yAug = 0, uy = Z a;ug,, Bug—yAvy = 0,

i=1
m—2

Uy = Z a;ve;, m > 3 has been studied in [17]. We also mention the paper [15] where the
i=1
authors investigated the existence of positive solutions to the n-th order m-point boundary

value problem u™(t) + f(t,u,u’) = 0, t € (0,1), u(0) = v'(0) = --- = u"2(0) =

m—2
0, u(l) =Y ku(&).

Due toZ:alpplications in different areas of applied mathematics and physics, the ex-
istence of positive solutions of multi-point boundary value problems for second-order or
higher-order differential or difference equations has been the subject of investigations by
many authors (see [1]-[14], [16], [20]-]25]).

In Section 2, we shall present several auxiliary results which investigate a boundary
value problem for a n-th order equation (the problem (1), (2) below), some of them from
the paper [15]. In Section 3, we shall give sufficient conditions on A and p such that
positive solutions with respect to a cone for our problem (5), (BC) exist. In Section
4, we shall present an example that illustrates the obtained results. Our main results
(Theorem 2 and Theorem 3) are based on the Guo-Krasnoselskii fixed point theorem,
presented below.

Theorem 1. Let X be a Banach space and let C' C X be a cone in X. Assume y and
Qy are bounded open subsets of X with 0 € Q) C Qy C Qy and let A: C N (Q\ Q) — C
be a completely continuous operator such that, either

i) ||Aull < ||ul|, we CNIN, and ||Aull > ||u||, uwe C NIy, or

i) || Aul|| > JJul|, uwe CNINy, and ||Aul| < ||u|, ve CNONy.

Then A has a fized point in C N (Qy\ ).

EJQTDE, 2010 No. 74, p. 2



2 Auxiliary results

In this section, we shall study the n-th order differential equation with the boundary

conditions
u™(t)+yt)=0, 0<t<T (1)

u(0) =u'(0) = =u""2(0) =0, u(T)= Z_ a;u(&;). (2)

m—2

We denote by d = T""! — Z a; Mt

i=1
Lemma 1. Ifd#0,0< & < - <&no<T andy € C([0,T]), then the solution
of (1), (2) is given by

u(t) = d(:: 1)! /0 (T — )" y(s)ds — dén: 01 2 a; : Z(fz )"y (s) ds .
1 t .
(n_1>|/0(t—5) y(s)ds, 0<t<T

Proof. By (1) and the first relations from (2) we deduce

1 ! » ctt
= — )" . 4
) =~y [ = ) s+ ()
m—2
From the above relation and the condition w(7T Z a;u(&;) we obtain
i=1
1 g crt =R S
- T — n—1 d e\l d
o L @ e s [ Gt as
cg!
- 1)!}
or
m—2 T m—2 &
C (T"‘1 - aZSZ"l) = / (T —s)"ty(s)ds = ) az/ (& —s)" y(s) ds,
1=1 0 i=1 0
and so
1 (7
C:E/O(T_S) ds——ZaZ/ y(s)ds.
Therefore from (4) and the above expression for C' we obtain the relation (3). O

Lemma 2. Ifd #0,0 < & < --- < &no < T then the Green’s function for the

EJQTDE, 2010 No. 74, p. 3



boundary value problem (1), (2) is given by

( B m—2 ]

tn—l 1
- T — n—1 _ (& — n—1| _ . n—1
d(n — 1)' _( S) z’:JZJrl a (g S) ] (n o 1)‘( S) 9
Zf gj §S<€j+17 s <t,
tn—l i ) m—2 1_
g |(T—9)" — ai(&—9)"" |,
G(t’ 3) — d(n — 1)' i i:jZJrl ]
Zf §j§8<€j+17 Szta jZO,m—3,
tnfl 1
(T — n—1 ‘- n—1 . . < <T <
d(,;bn_ll)!< s) (n—l)!< §)", if e <s<T, s<t,
7<T - S>n717 if éma<s<T, s>t, (fo = 0)
[ d(n—1)!

Proof. Using the relation (3) we obtain
+n 1

£]+1 3
u(t) = n_l,Z/ —s"1<>ds—mz oo [ 6= ot ds

n—1 M2 e n—1 & m—2
“ g T~ gy [ JADSEICER IO

m=2 g 53“ —~
T, T n_uZ/ e

= [ =) s

where we denoted £, =0 and &, =T

Therefore, we obtain

T

By (5) we have u(t) = G(t, s)y(s) ds, where G is of the form given in the statement
0
of this lemma. O
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Lemma 3. Ifa; >0 foralli =1,m—2,0< & < - <& <T,d>0 and
y € C([0,T)), y(t) > 0 for all t € [0,T], then the unique solution u of problem (1), (2)
satisfies u(t) > 0 for all t € [0,T).
Proof. We first show that «(7") > 0. Indeed we have
-1 -1

m /0 (T — S)H_ly(S) ds — m
“Gm ), -

n—1 __ T n-l 2 .
= G, T b e S [ b

m—2

&i
S [ 6= yis)ds

i=1

u(T) =

& m—2
= =T { o [T = s T - ) ) d

£ ag / (T = 57"y (s) ds} >0,
i=1 &

because for s € [0,&] we have & 1T — s)" 1 =T Y& — s)" ! = (T — &s)"F — (6T —
Ts)" 1> 0.

Using a result from [6] (see also Theorem 1.1 from [15]), we deduce that u(t) > 0 for
all ¢ € [0, 7. O

Lemma 4. ([15]) If d > 0, a; > 0 foralli =1,m—2,0< & < -+ < & < T,
then G(t,s) >0 for all t, s € [0,T].

Remark 1. Under the assumptions of Lemma 3, by using Lemma 4 and the expres-

sion of u(t / G(t, s)y(s) ds, we can also deduce that u(t) > 0 for all ¢ € [0,T].

Lemma 5. Ifa,>0forallz—1m 2, 0 < <o << T, d >0,
y € C([0,T]), y(t) >0 for all t € [0,T], then the solution of problem (1), (2) satisfies

u(t) < %/{) (T — )" 'y(s)ds, Vte[0,T], .
" - o
) > /&H(T— S ly(s)ds, Vi =T,m =3,
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Proof. By (3) we have

) € iy [Ty s < s [ sty as
for all t € [0, 7.

Then
we) = [ G iz [ G o= 25 [0 e tyeas
! 0 ! “ Jen s ! din—1)! Je |
forall j =1,m — 2. O

From the proof of Lemma 2.2 in [15] we obtain the following result.
Lemma 6. We assume that 0 < & < -+ < &p o < T, a; >0 foralli =1,m — 2,
d>0 andy € C(0,T)), y(t) >0 for all t € [0,T]. Then the solution of problem (1), (2)
te inf t) > h
satisfies te[gm . u(t) > v||lu||, where

m—2,

T — am—2€m—2 Tn—l

alfnfl n—12 m—2
1 m— . 2 :
=1

m— T — m— m— n =
min{a el & 2)’a 2§m2}, if Zai<1,
i=1

and ||ul| = sup |u(t)].
t€[0,T
Remark 2. From the above expression for v, we see that v < 1.

3 The existence of positive solutions

In this section we shall give sufficient conditions on A and p such that positive solutions
with respect to a cone for problem (5), (BC') exist.

We present the assumptions that we shall use in the sequel.
m—2

H)0<& <o <noa<T a;>0, i=Tm—2d=T"1-> ag " >0
i=1
(H2) The functions b, ¢ : [0,7] — [0,00) are continuous and each does not vanish

identically on any subinterval of [0, 7.
(H3) The functions f, ¢ : [0,00) — [0, 00) are continuous and the limits
@) 90 () o(@)

fo= lim —=, ¢ y foo = lim ——=, go = lim
r—0+t X r—0+t T r—o0 I r—00 I

exist and are positive numbers.

Using the Green’s function given in Lemma 2, a pair (u(t),v(t)), t € [0,T] is a
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solution of the eigenvalue problem (5), (BC) if and only if

/ G(t,s)b ( / G(s,1)e(r)g(u(T)) dT) ds, 0<t<T,
v(t) = /G(ts)()(())ds 0<t<T.

0
We consider the Banach space X = C([0,7T]) with supremum norm || - || and define
the cone C' C X by
C={ueX, u(t)>0, Vte[0,T] and te[giil_f%ﬂu(t) > v|lu|l},
where v is defined in Lemma 6.

For our first result we define the positive numbers L; and L, by

7257?1112 g n—1
L; = max { (m /§m2<T —5)"7b(s) fo ds) ,

(% /5:_2(T —8)""'¢(8)goo dS) 1} )

-1

L, = min { (h / (T s ds) |

Tn—l T .
(i [, =0 ws)
Theorem 2. Assume that (H1)-(H3) hold and Ly < Ly. Then for each A\ and u

satisfying A, p € (L1, Lo), there exist a positive solution with respect to a cone, (u(t),v(t)),
t € [0,T], of problem (S), (BC).
Proof. Let A\, u € (L, L) and we choose a positive number € such that ¢ < fu,

-1

€ < oo .

max { (% /:_2(T — )" 'b(s)(foo — €) ds) ,

max (A, ;) < min { <d(:n7_11)| /OT(T —8)"1b(s)(fo + €) ds) B ,

(o | @ =y e 215 }

We now define Tthe operator A : C' T—> X, by
A(u)(t) = )\/ G(t,s)b(s)f (,u/ (S,T)C(T)g(u(T))dT) ds, 0<t<T, ueC.

By Lemma 6, we have A(C) C C. By using the Arzela-Ascoli theorem we deduce

and

that the operator A is completely continuous (compact and continuous). By definitions

of fo and gy there exists K; > 0 such that
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flz) < (fo+e)xr and g(x) <(go+e)r, 0 <z < K;.

Using (H3) we have f(0) = ¢g(0) = 0 and the above inequalities are also valid for x = 0.
T

Let w € C with ||ul| = K. Because v(t) = u/ G(t,s)c(s)g(u(s))ds, t € [0,T]
0
satisfies the problem (1), (2) with y(t) = uc(t)g(u(t)), t € [0,T], then by (6) and the
above property of g, we deduce for ¢t € [0, T

T Tn—1 T ;)

vg)f " / Gt )els)gluls)) ds < g [ (7 = o els)g(u(s)) ds
< g [T+ puls)ds
< i [ =)k 2l ds <l = K

By using once again Lemma 5 (relations (6)) and the properties of the function f,
we have

A(u)(t) = )\/0 G(t,s)b(s)f (,u/o G(S,T)C(T)g(u(T))dT) ds
< [ ([ et nengtutmyar ) ds
< [ ([ Gt nenatu(r) ar) s
< %/0 (T — 5y 'b(5)(fo + £) Ky ds < Ky = Jul,0 <t < T.

Then ||A(u)|| < [Jul|, for all u € C with ||u|| = K;. If we denote by ©Q; = {u €
C, ||lu|]| < K1}, then we obtain || A(u)|| < [Ju]| for all u € C'N ;.
Next, by the definitions of f., and g, there exists Ky > 0 such that
f@) = (fo =€)z and g(7) > (9o — )z, T > K.
We consider now K, = max {2K;, K»/7}. For u € C with |lu|| = K5, we obtain by using
Lemma 6, that
u(t) >  inf T]u(s) > Y|ul| = yKy > Ko, Vit € [Ena, T).

o Se[ m—2,
Then, by using (6), Lemma 6, and the above relations, we obtain for ¢ > ¢, o
T

o(t) = p / G(t, s)e()g(u(s)) ds > Ao = 70(Em_s)
— u / G(Ems, 5)c(5)g(u(s)) ds

S [T "1
> g = et b

Ene [T 1
> % /§m2 (T — 8)""¢(8)(goo — €)u(s) ds

2 n—1 T
> e [0y el = Dl ds 2 ] = Ko
and
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=y ) %” — oy ia(s)f (u / " G )elr)g(u(r) df) s

Em—2
Ao 1 -
> g | =9 (o[ G ety ar) as
Nocs [T -
> G [, (T e = s
VA, (T - )
= m/g (T — )" "b(s)(foo — €) Knds > Ky = [|ul].

ThereforemtA(u)H > A(u)(En_2) > |ull, for all u € C with |Ju|| = K3. We denote by
Qo ={u e C, |Jul| < K2}. Then ||A(u)| > ||u||, for all u € C' N OSy.

We now apply Theorem 1 i) and we deduce that A has a fixed point u € C N (s \
T

2;). This element together with v(t) = u/ G(t, s)c(s)g(u(s))ds, t €]0,T] represent a
0
positive solution of (.5), (BC') with respect to cone C, for the given A\ and pu. O

Remark 3. The condition L; < Lo from Theorem 2 is equivalent to

d(n—1)! (min { / T s (s) s, / o el ds}) 71

—1
725&72 gm—Q gm—Q

< % <max{ /0 T(T — )" 1p(s) fy ds, /0 T(T — 5)"le(s)go ds})

or

max {/OT(T —5)"1b(s) fo ds, /OT(T —5)""te(s)go ds} Y2ent
- - < -—m2
min {/ (T — 5)"7'b(5) foo ds,/ (T — 5)"c(5)gos ds} g

gm—Q gm—Q

-1

In what follows we shall present another existence result for (S), (BC). Let us

consider positive numbers
~1

n—1 T
Ly = max { (% /g GER N ds) |

(% /g:_Q(T — 8)"e(s)go ds) 1},

1

L4 = min { <d(f£"7_11)‘ /OT(T S b(s) fo ds)_ |

Tn—l T .
s T — s)"™
(d(n— 1)!/0 ( $)"e(S) goo ds)
Theorem 3. Assume the assumptions (H1)-(HS3) hold and L3 < Ly. Then for each

X and p satisfying A\, p € (Ls, Ly), there exists a positive solution with respect to a cone,
(u(t),v(t), t €10,T], of (5), (BC).
Proof. Let A and p with A\, u € (Ls, Ly). We select a positive number ¢ such that

—1
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e < fo, € < go and
—1

max { (ﬁ /g :2<T — ) b(s) (fo ) ds) |

(s [ -y em o d)} < min(, )

Em—2
and
Tn—l -1

max(\, 1) < min { (m /OT(T — )" b(s)(fo +€) ds) ,

(d(:ni_ll)! /OT(T —5)"e(5)(goo + €) ds) h

We also consider the operator A defined in the proof of Theorem 2. From the defini-
tions of f, and gy, we deduce that there exists K5 > 0 such that
f(x) > (fo—¢e)r and g(x) > (go—&)x, 0 <z < Kj.
Using the properties of f and g the above inequalities are also valid for z = 0.
In addition, because g is a continuous function with gy > 0, then g(0) = 0 and there
exists K3 € (0, K3) such that

g(x) < s

%/{) (T — 5)"e(s)ds

For u € C with |lu|| = K3, by (6) and the above inequality, we deduce that for all
te 0,77

o(t) = p / G(t, s)e(s)gu(s)) ds < % / (T — 51" e(s)g(u(s)) ds

<o [ =)

, D<o < K.

ds = Kj.
MTn—l 3

m/() (T — )" e(r) dr

By using (6), Lemma 6 and the properties of f, g we then obtain

-1
Em—2

A Eo) 2 [ qeme sy (i [ G ettt ar ) as

> i / - - (i [ Gmeatuin) ) as
> % [ @ ore-nlvi as
> i /6:_2@— ) o — <)ol ds
> (G [ -yt i)
. (% / :_2<T - teslg(u(s)) ds
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(%/< ps ()90—5)())

1yEm /T -
S T — — > ||ul].
(4 6M( " 1e(s) (g0 — ) ds ) [l >
Hence, ||[A(u)|| > A(u)(&n-2) > ||lu|l, for v € C with ||u|| = K3. We denote by

Q3 ={u € C, ||u|]| < K3}, and then we have || A(u)|| > ||u|| for all u € C' N 0Q3.
We now consider the functions f*, g* : [0, 00) — [0, 00) defined by f*(z) = sup f(y),

0<y<z
g*(x) = sup ¢g(y). By (H2) we obtain for f* and g¢g* the relations lim (@) = foos
0<y<z z—oo I
lim M = (oo

Tr—00

We also have f(z) < f*(z), g(x) < g*(z), for all z > 0. Then there exists K4 > 0 such
that

() € (foo +6)1, g° () < (goo + &), for all z > K.
Let K4 > max{2K3, K;}. Then for u with ||u|| = K, we obtain

Au)(t) < ﬁ /0 (T — sy "b(s)Af (1 /0 G(s,f)c(f)g(u(f))m) s

< ol [ omwor (u [ Gt ar) as

(
< d(};;! /OZ(T — s)"ib(s)f* <d§§;1}| /OZ(T - r)"ic(f)g(u(T)) dT) ds
< @ /O T(T— 5)"b(s) <W /0 T(T (g () dT) o
o) / o (w [ o s i
d(n - 1)! /0 (T = b f (h /0 (T = 7" e(7) (g0 + ) K dT) s
d(AnT:l)v /OT(T—S)" 'b(s) [ (Kq) ds
= % /OT(T — 8" (8) (foo + &) Kads < Ky = ||ul.

So || A(w)|| < |lu||, for all uw € C with ||u]] = K4. If we denote by Q4 = {u € C, |jul| <
K4}, then we obtain || A(u)| < |Jul|, for all u € C' N 0Sy.

By Theorem 1 ii) we deduce that A has a fixed point u € CN(Q4\Q3), which together
T

with v(t) = u/ G(t,s)c(s)g(u(s)) ds, t € [0,T] give us a positive solution of (S), (BC')

0
with respect to cone C, for the chosen values A and pu. O
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Remark 4. The condition L3 < L4 is equivalent to

e T s /§:2<T —8>“C<S>g0ds})_l

m—2
-1

<0 ([N =y, [ (-9 etsigeas})

: max {/OT(T — 5)"" () foo ds, /OT(T —5)"'e(5) goo ds} et
T T S o1
min {/5m_2(T — 5)"1b(s) fo ds, /gm_Q(T —5)"te(s)go ds} g

4 An example

As in Example 4.1 in [12], let us consider the functions
f(ZL‘) = p2| Sin$| +p1x671/x7 S [07 00)7
g([L‘) = q2| Sin$| + qlxeil/xa S [07 00)7
with p1, pa2, q1, g2 > 0.
We have lim 1~ = D2, lm J(@) =p, lim 9(=) = @, lim 9(x) =q.
rz—0t T T— x z—0t r—oo
Let T =1, n =3, m = 4 b(t) = bot, c(t) = cot, t € [0,1], with by, ¢¢ > 0 and

gl 37 52 al_l Ao = %

We COHSldGI‘ the third-order differential system

(50 { W (t) + Abot [p2| sinv(t)] + pyv(t)e —1/v(t)} =0, te(0,1)

v"(t) + peot [gof sinu(t)| + qlu(t)[e /0] =0, t € (0,1),

with the boundary conditions

(BCh)

2 3
We also have d = 1—2&15 = - > 0, ZCL@ > 1 and ~y —mln{alfpfz} )

The condition Ly < Ly or the equlvalent form glven in Remark 3 is

1 1
max {/ (1 — 5)*byspo ds,/ (1 —5)%cosqs ds}
: : 4

! ! 729
min {/ (1 — 5)%byspr ds,/ (1 —s)%cosq ds}
2/3 2/3

max{bopa, Coq2} 4
min{bop1, coq1} ~ 6561

or
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Therefore if the above condition is verified, then by Theorem 2 we deduce that for

all numbers A\, p € (Ly, Ly) the problem (Sy), (BCy) has positive solutions.

Acknowledgment. The author would like to thank the referee for the careful read-

ing of the manuscript and for his comments which led to this revised version.

References

[1] D.R. Anderson, Solutions to second-order three-point problems on time scales, J.
Difference Equ. Appl., 8, (2002), 673-688.

[2] D.R. Anderson, Twin n-point boundary value problems, Appl. Math. Lett., 17,
(2004), 1053-1059.

[3] R. Avery, Three positive solutions of a discrete second order conjugate problem,
PanAmer. Math. J., 8, (1998), 79-96.

[4] A. Boucherif, Second-order boundary value problems with integral boundary condi-

tions, Nonlinear Anal., Theory Methods Appl., 70, (2009), 364-371.

[5] W. Cheung, J. Ren, Positive solutions for discrete three-point boundary value prob-
lems, Aust. J. Math. Anal. Appl., 1, (2004), 1-7.

(6] P.W. Eloe, J. Henderson, Positive solutions for (n — 1,1) conjugate boundary value
problems, Nonlinear Anal., 28, (10), (1997), 1669-1680.

[7] J.R. Graef, J. Henderson, B. Yang, Positive solutions of a nonlinear higher order
boundary-value problem, FElectron. J. Differ. Equ., 2007 (45), (2007), 1-10.

[8] Y. Guo, W. Shan, W. Ge, Positive solutions for second order m-point boundary value

problems, J. Comput. Appl. Math., 151, (2003), 415-424.

[9] J. Henderson, S. K. Ntouyas, Positive solutions for systems of nth order three-point
nonlocal boundary value problems, Electron. J. Qual. Theory Differ. Equ., (2007),
(18), (2007), 1-12.

[10] J. Henderson, S.K. Ntouyas, Positive solutions for systems of nonlinear boundary

value problems, Nonlinear Stud., 15, (2008), 51-60.

[11] J. Henderson, S.K. Ntouyas, Positive solutions for systems of three-point nonlinear
boundary value problems, Aust. J. Math. Anal. Appl., 5, (2008), (1), 1-9.

EJQTDE, 2010 No. 74, p. 13



[12] J. Henderson, S.K. Ntouyas, I.LK. Purnaras, Positive solutions for systems of three-
point nonlinear discrete boundary value problems, Neural Parallel Sci. Comput., 16,
(2008), 209-224.

[13] J. Henderson, S.K. Ntouyas, [.K. Purnaras, Positive solutions for systems of nonlinear
discrete boundary value problems, J. Difference Equ. Appl., 15 (10), (2009), 895-912.

[14] V. Il'in, E. Moiseev, Nonlocal boundary value problems of the first kind for a Sturm-
Liouville operator in its differential and finite difference aspects, Differ. Equ., 23,

(1987), 803-810.

[15] Y. Ji, Y. Guo, C. Yu, Positive solutions to (n—1,n) m-point boundary value problems
with dependence on the first order derivative, Appl. Math. Mech., Engl. Ed. 30 (4),
(2009), 527-536.

[16] W.T. Li, H.R. Sun, Positive solutions for second-order m-point boundary value prob-

lems on times scales, Acta Math. Sin., Engl. Ser., 22, No.6 (2006), 1797-1804.

[17] R. Luca, Positive solutions for m+1-point discrete boundary value problems, Libertas

Math., XXIX, (2009), 65-82.
[18] R. Luca, On a class of m-point boundary value problems, Math. Bohemica, in press.

[19] R. Luca, Positive solutions for a second-order m-point boundary value problems,

Dyn. Contin. Discrete Impuls. Syst., in press.

[20] R. Ma, Positive solutions for second order three-point boundary value problems,
Appl. Math. Lett., 14, (2001), 1-5.

[21] R. Ma, Y. Raffoul, Positive solutions of three-point nonlinear discrete second order
boundary value problem, J. Difference Fqu. Appl., 10, (2004), 129-138.

[22] S.K. Ntouyas, Nonlocal initial and boundary value problems: a survey, Handbook
of differential equations: Ordinary differential equations, Vol.II, 461-557, Elsevier,
Amsterdam, 2005.

[23] R. Song, H. Lu, Positive solutions for singular nonlinear beam equation, Electron. J.

Differ. Equ., (2007), (03), (2007), 1-9.

[24] H.R. Sun, W.T. Li, Existence of positive solutions for nonlinear three-point boundary

value problems on time scales, J. Math. Anal. Appl., 299, (2004), 508-524.

EJQTDE, 2010 No. 74, p. 14



[25] W. Ge, C. Xue, Some fixed point theorems and existence of positive solutions of two-
point boundary-value problems, Nonlinear Anal., Theory Methods Appl., 70, (2009),
16-31.

(Received September 5, 2010)

EJQTDE, 2010 No. 74, p. 15



