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1 Introduction

Differential equations with fractional order have recently proved to be strong
tools in the modelling of many physical phenomena; for a good bibliography
on this topic we refer to [17]. As a consequence there was an intensive
development of the theory of differential equations of fractional order [2,
15, 20]. The study of fractional differential inclusions was initiated by El-
Sayed and Ibrahim [11]. Very recently several qualitative results for fractional
differential inclusions were obtained in [3, 6, 7, 8, 9, 13, 18].

In this paper we study the following problem

−Lx(t) ∈ F (t, x(t)) a.e. [0, 1], (1.1)
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x(0) = x(1) = 0, (1.2)

where L = Dα−aDβ ,Dα is the standard Riemann-Liouville fractional deriva-
tive, α ∈ (1, 2), β ∈ (0, α), a ∈ R and F : I × R → P(R) is a set-valued
map.

The present paper is motivated by a recent paper of Kaufmann and Yao
[14], where it is considered problem (1.1)-(1.2) with F single valued and
several existence results are provided.

The aim of our paper is to extend the study in [14] to the set-valued frame-
work and to present some existence results for problem (1.1)-(1.2). Our re-
sults are essentially based on a nonlinear alternative of Leray-Schauder type,
on Bressan-Colombo selection theorem for lower semicontinuous set-valued
maps with decomposable values and on Covitz and Nadler set-valued con-
traction principle. The methods used are standard, however their exposition
in the framework of problem (1.1)-(1.2) is new. We note that our results
extends the results in the literature obtained in the case a = 0 [18].

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel and in Section 3 we prove our main results.

2 Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space with the corresponding norm |.| and let

I ⊂ R be a compact interval. Denote by L(I) the σ-algebra of all Lebesgue
measurable subsets of I, by P(X) the family of all nonempty subsets of X and
by B(X) the family of all Borel subsets of X. If A ⊂ I then χA : I → {0, 1}
denotes the characteristic function of A. For any subset A ⊂ X we denote
by A the closure of A.

Recall that the Pompeiu-Hausdorff distance of the closed subsets A,B ⊂
X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).
As usual, we denote by C(I,X) the Banach space of all continuous func-

tions x : I → X endowed with the norm |x|C = supt∈I |x(t)| and by L1(I,X)
the Banach space of all (Bochner) integrable functions x : I → X endowed
with the norm |x|1 =

∫

I |x(t)|dt.
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A subset D ⊂ L1(I,X) is said to be decomposable if for any u, v ∈ D and
any subset A ∈ L(I) one has uχA + vχB ∈ D, where B = I\A.

Consider T : X → P(X) a set-valued map. A point x ∈ X is called a
fixed point for T if x ∈ T (x). T is said to be bounded on bounded sets if
T (B) := ∪x∈BT (x) is a bounded subset of X for all bounded sets B in X.
T is said to be compact if T (B) is relatively compact for any bounded sets
B in X. T is said to be totally compact if T (X) is a compact subset of X.
T is said to be upper semicontinuous if for any open set D ⊂ X, the set
{x ∈ X : T (x) ⊂ D} is open in X. T is called completely continuous if it is
upper semicontinuous and totally bounded on X.

It is well known that a compact set-valued map T with nonempty compact
values is upper semicontinuous if and only if T has a closed graph.

We recall the following nonlinear alternative of Leray-Schauder type and
its consequences.

Theorem 2.1. [19] Let D and D be open and closed subsets in a normed
linear space X such that 0 ∈ D and let T : D → P(X) be a completely
continuous set-valued map with compact convex values. Then either

i) the inclusion x ∈ T (x) has a solution, or
ii) there exists x ∈ ∂D (the boundary of D) such that λx ∈ T (x) for some

λ > 1.

Corollary 2.2. Let Br(0) and Br(0) be the open and closed balls in
a normed linear space X centered at the origin and of radius r and let
T : Br(0) → P(X) be a completely continuous set-valued map with com-
pact convex values. Then either

i) the inclusion x ∈ T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and λx ∈ T (x) for some λ > 1.

Corollary 2.3. Let Br(0) and Br(0) be the open and closed balls in
a normed linear space X centered at the origin and of radius r and let T :
Br(0) → X be a completely continuous single valued map with compact convex
values. Then either

i) the equation x = T (x) has a solution, or
ii) there exists x ∈ X with |x| = r and x = λT (x) for some λ < 1.

We recall that a multifunction T : X → P(X) is said to be lower semi-
continuous if for any closed subset C ⊂ X, the subset {s ∈ X : T (s) ⊂ C} is
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closed.
If F : I × R → P(R) is a set-valued map with compact values and

x ∈ C(I,R) we define

SF (x) := {f ∈ L1(I,R) : f(t) ∈ F (t, x(t)) a.e. I}.

We say that F is of lower semicontinuous type if SF (.) is lower semicontinuous
with closed and decomposable values.

Theorem 2.4. [4] Let S be a separable metric space and G : S →
P(L1(I,R)) be a lower semicontinuous set-valued map with closed decom-
posable values.

Then G has a continuous selection (i.e., there exists a continuous mapping
g : S → L1(I,R) such that g(s) ∈ G(s) ∀s ∈ S).

A set-valued map G : I → P(R) with nonempty compact convex values
is said to be measurable if for any x ∈ R the function t → d(x,G(t)) is
measurable.

A set-valued map F : I × R → P(R) is said to be Carathéodory if t →
F (t, x) is measurable for any x ∈ R and x→ F (t, x) is upper semicontinuous
for almost all t ∈ I.

F is said to be L1-Carathéodory if for any l > 0 there exists hl ∈ L1(I,R)
such that sup{|v| : v ∈ F (t, x)} ≤ hl(t) a.e. I, ∀x ∈ Bl(0).

Theorem 2.5. [16] Let X be a Banach space, let F : I×X → P(X) be a
L1-Carathéodory set-valued map with SF 6= ∅ and let Γ : L1(I,X) → C(I,X)
be a linear continuous mapping.

Then the set-valued map Γ ◦ SF : C(I,X) → P(C(I,X)) defined by

(Γ ◦ SF )(x) = Γ(SF (x))

has compact convex values and has a closed graph in C(I,X) × C(I,X).

Note that if dimX <∞, and F is as in Theorem 2.5, then SF (x) 6= ∅ for
any x ∈ C(I,X) (e.g., [16]).

Consider a set valued map T on X with nonempty values in X. T is said
to be a λ-contraction if there exists 0 < λ < 1 such that

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X.
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The set-valued contraction principle [10] states that if X is complete, and
T : X → P(X) is a set valued contraction with nonempty closed values, then
T has a fixed point, i.e. a point z ∈ X such that z ∈ T (z).

Definition 2.6. a) The fractional integral of order α > 0 of a Lebesgue
integrable function f : (0,∞) → R is defined by

Iα
0 f(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ is the
(Euler’s) Gamma function.

b) The fractional derivative of order α > 0 of a continuous function
f : (0,∞) → R is defined by

dαf(t)

dtα
=

1

Γ(n− α)

dn

dtn

∫ t

0
(t− s)−α+n−1f(s)ds,

where n = [α]+1, provided the right-hand side is pointwise defined on (0,∞).

Definition 2.7. A function x ∈ C([0, 1],R) is called a solution of
problem (1.1)-(1.2) if there exists a function v ∈ L1([0, 1],R) with v(t) ∈
F (t, x(t)), a.e. [0, 1] such that −Lx(t) = v(t), a.e. [0, 1] and conditions (1.2)
are satisfied.

In what follows I = [0, 1], α ∈ (1, 2), β ∈ (0, α) and a ∈ R. Next we need
the following technical result proved in [14].

Lemma 2.8. [14] For any f ∈ C(I,R) the unique solution of the bound-
ary value problem

Lx(t) + f(t) = 0 a.e. I,

x(0) = 0, x(1) = 0

is solution of the integral equation

x(t) =
∫ 1

0
G1(t, s)f(s)ds− a

∫ 1

0
G2(t, s)x(s)ds, t ∈ [0, 1],

where

G1(t, s) :=
1

Γ(α)

{

[t(1 − s)]α−1 − (t− s)α−1, if 0 ≤ s < t ≤ 1,
[t(1 − s)]α−1, if 0 ≤ t < s ≤ 1
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and

G2(t, s) :=
1

Γ(α− β)

{

tα−1(1 − s)α−β−1 − (t− s)α−β−1, if 0 ≤ s < t ≤ 1,
tα−1(1 − s)α−β−1, if 0 ≤ t < s ≤ 1.

Note that G1(t, s) > 0 ∀t, s ∈ I (e.g., [1]) and G1(t, s) ≤
2

Γ(α)
, |G2(t, s)| ≤

2
Γ(α−β)

∀t, s ∈ I. Let G0 := max{supt,s∈I G1(t, s), supt,s∈I |G2(t, s)|}.

3 The main results

We are able now to present the existence results for problem (1.1)-(1.2). We
consider first the case when F is convex valued.

Hypothesis 3.1. i) F : I × R → P(R) has nonempty compact convex
values and is Carathéodory.

ii) There exist ϕ ∈ L1(I,R) with ϕ(t) > 0 a.e. I and there exists a
nondecreasing function ψ : [0,∞) → (0,∞) such that

sup{|v| : v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. I, ∀x ∈ R.

Theorem 3.2. Assume that Hypothesis 3.1 is satisfied and there exists
r > 0 such that

r > G0(|ϕ|1ψ(r) + |a|r). (3.1)

Then problem (1.1)-(1.2) has at least one solution x such that |x|C < r.

Proof. Let X = C(I,R) and consider r > 0 as in (3.1). It is obvious that
the existence of solutions to problem (1.1)-(1.2) reduces to the existence of
the solutions of the integral inclusion

x(t) ∈
∫ 1

0
G1(t, s)F (s, x(s))ds− a

∫ 1

0
G2(t, s)x(s)ds, t ∈ I. (3.2)

Consider the set-valued map T : Br(0) → P(C(I,R)) defined by

T (x) := {v ∈ C(I,R) : v(t) :=
∫ 1
0 G1(t, s)f(s)ds

−a
∫ 1
0 G2(t, s)x(s)ds, f ∈ SF (x)}.

(3.3)

We show that T satisfies the hypotheses of Corollary 2.2.
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First, we show that T (x) ⊂ C(I,R) is convex for any x ∈ C(I,R). If
v1, v2 ∈ T (x) then there exist f1, f2 ∈ SF (x) such that for any t ∈ I one has

vi(t) =
∫ 1

0
G1(t, s)fi(s)ds− a

∫ 1

0
G2(t, s)x(s)ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for any t ∈ I we have

(αv1+(1−α)v2)(t) =
∫ 1

0
G1(t, s)[αf1(s)+(1−α)f2(s)]ds−a

∫ 1

0
G2(t, s)x(s)ds.

The values of F are convex, thus SF (x) is a convex set and hence αv1 + (1−
α)v2 ∈ T (x).

Secondly, we show that T is bounded on bounded sets of C(I,R). LetB ⊂
C(I,R) be a bounded set. Then there exist m > 0 such that |x|C ≤ m ∀x ∈
B. If v ∈ T (x) there exists f ∈ SF (x) such that v(t) =

∫ 1
0 G1(t, s)f(s)ds−

a
∫ 1
0 G2(t, s)x(s)ds. One may write for any t ∈ I

|v(t)| ≤
∫ 1
0 |G1(t, s)|.|f(s)|ds+ |a|

∫ 1
0 |G2(t, s)|.|x(s)|ds

≤
∫ 1
0 G1(t, s)ϕ(s)ψ(|x(t)|)ds+ |a|

∫ 1
0 |G2(t, s)|.|x(s)|ds

and therefore

|v|C ≤ G0|ϕ|1ψ(m) + |a|G0m ∀v ∈ T (x),

i.e., T (B) is bounded.
We show next that T maps bounded sets into equi-continuous sets. Let

B ⊂ C(I,R) be a bounded set as before and v ∈ T (x) for some x ∈ B. There
exists f ∈ SF (x) such that v(t) =

∫ 1
0 G1(t, s)f(s)ds − a

∫ 1
0 G2(t, s)x(s)ds.

Then for any t, τ ∈ I we have

|v(t) − v(τ)| ≤ |
∫ 1
0 G1(t, s)f(s)ds−

∫ 1
0 G1(τ, s)f(s)ds|

+|a
∫ 1
0 G2(t, s)x(s)ds− a

∫ 1
0 G2(τ, s)x(s)ds| ≤

∫ 1
0 |G1(t, s) −G1(τ, s)|ϕ(s)ψ(m)ds+ |a|

∫ 1
0 |G2(t, s) −G2(τ, s)|mds.

It follows that |v(t) − v(τ)| → 0 as t → τ . Therefore, T (B) is an equi-
continuous set in C(I,R). We apply now Arzela-Ascoli’s theorem we deduce
that T is completely continuous on C(I,R).

In the next step of the proof we prove that T has a closed graph. Let
xn ∈ C(I,R) be a sequence such that xn → x∗ and vn ∈ T (xn) ∀n ∈ N
such that vn → v∗. We prove that v∗ ∈ T (x∗). Since vn ∈ T (xn), there
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exists fn ∈ SF (xn) such that vn(t) =
∫ 1
0 G1(t, s)fn(s)ds−a

∫ 1
0 G2(t, s)xn(s)ds.

Define Γ : L1(I,R) → C(I,R) by (Γ(f))(t) :=
∫ 1
0 G(t, s)f(s)ds. One has

|vn(t) + a

∫ 1

0
G2(t, s)xn(s)ds− v∗(t) − a

∫ 1

0
G2(t, s)x

∗(s)ds|C

≤ |vn − v∗|C + |a|G0|xn − x|C → 0

as n→ ∞.
We apply Theorem 2.5 to find that Γ ◦ SF has closed graph and from

the definition of Γ we get vn ∈ Γ ◦ SF (xn). Since xn → x∗, vn → v∗ it
follows the existence of f ∗ ∈ SF (x∗) such that v∗(t) + a

∫ 1
0 G2(t, s)x

∗(s)ds =
∫ 1
0 G1(t, s)f

∗(s)ds. Therefore, T is upper semicontinuous and compact on
Br(0).

We apply Corollary 2.2 to deduce that either i) the inclusion x ∈ T (x)
has a solution in Br(0), or ii) there exists x ∈ X with |x|C = r and λx ∈ T (x)
for some λ > 1.

Assume that ii) is true. With the same arguments as in the second step
of our proof we get r = |x|C ≤ G0|ϕ|1ψ(r) + |a|G0r which contradicts (3.1).
Hence only i) is valid and theorem is proved.

We consider now the case when F is not necessarily convex valued. Our
first existence result in this case is based on the Leray-Schauder alternative
for single valued maps and on Bressan Colombo selection theorem.

Hypothesis 3.3. i) F : I × R → P(R) has compact values, F is
L(I)⊗B(R) measurable and x→ F (t, x) is lower semicontinuous for almost
all t ∈ I.

ii) There exist ϕ ∈ L1(I,R) with ϕ(t) > 0 a.e. I and there exists a
nondecreasing function ψ : [0,∞) → (0,∞) such that

sup{|v| : v ∈ F (t, x)} ≤ ϕ(t)ψ(|x|) a.e. I, ∀x ∈ R.

Theorem 3.4. Assume that Hypothesis 3.3 is satisfied and there exists
r > 0 such that condition (3.1) is satisfied.

Then problem (1.1)-(1.2) has at least one solution on I.

Proof. We note first that if Hypothesis 3.3 is satisfied then F is of lower
semicontinuous type (e.g., [12]). Therefore, we apply Theorem 2.4 to deduce
that there exists f : C(I,R) → L1(I,R) such that f(x) ∈ SF (x) ∀x ∈
C(I,R).
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We consider the corresponding problem

x(t) =
∫ 1

0
G1(t, s)f(x(s))ds− a

∫ 1

0
G2(t, s)x(s)ds, t ∈ I (3.4)

in the space X = C(I,R). It is clear that if x ∈ C(I,R) is a solution of the
problem (3.4) then x is a solution to problem (1.1)-(1.2).

Let r > 0 that satisfies condition (3.1) and define the set-valued map
T : Br(0) → P(C(I,R)) by

(T (x))(t) :=
∫ 1

0
G1(t, s)f(x(s))ds− a

∫ 1

0
G2(t, s)x(s)ds.

Obviously, the integral equation (3.4) is equivalent with the operator
equation

x(t) = (T (x))(t), t ∈ I. (3.5)

It remains to show that T satisfies the hypotheses of Corollary 2.3.
We show that T is continuous on Br(0). From Hypotheses 3.3. ii) we

have
|f(x(t))| ≤ ϕ(t)ψ(|x(t)|) a.e. I

for all x ∈ C(I,R). Let xn, x ∈ Br(0) such that xn → x. Then

|f(xn(t))| ≤ ϕ(t)ψ(r) a.e. I.

From Lebesgue’s dominated convergence theorem and the continuity of f we
obtain, for all t ∈ I

limn→∞(T (xn))(t) = limn→∞[
∫ 1
0 G1(t, s)f(xn(s))ds− a

∫ 1
0 G2(t, s)xn(s)ds]

=
∫ 1
0 G1(t, s)f(x(s))ds− a

∫ 1
0 G2(t, s)x(s)ds = (T (x))(t),

i.e., T is continuous on Br(0).
Repeating the arguments in the proof of Theorem 3.2 with corresponding

modifications it follows that T is compact on Br(0). We apply Corollary 2.3
and we find that either i) the equation x = T (x) has a solution in Br(0), or
ii) there exists x ∈ X with |x|C = r and x = λT (x) for some λ < 1.

As in the proof of Theorem 3.2 if the statement ii) holds true, then we ob-
tain a contradiction to (3.1). Thus only the statement i) is true and problem
(1.1) has a solution x ∈ C(I,R) with |x|C < r.
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In order to obtain an existence result for problem (1.1)-(1.2) by using the
set-valued contraction principle we introduce the following hypothesis on F .

Hypothesis 3.5. i) F : I × R → P(R) has nonempty compact values
and, for every x ∈ R, F (., x) is measurable.

ii) There exists L ∈ L1(I,R+) such that for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R

and d(0, F (t, 0)) ≤ L(t) a.e. I.
Denote l := maxt∈I(

∫ 1
0 G1(t, s)L(s)ds+ |a|

∫ 1
0 |G2(t, s)|ds).

Theorem 3.6. Assume that Hypothesis 3.5. is satisfied and l < 1. Then
the problem (1.1)-(1.2) has a solution.

Proof. We transform the problem (1.1)-(1.2) into a fixed point problem.
Consider the set-valued map T : C(I,R) → P(C(I,R)) defined by

T (x) := {v ∈ C(I,R) : v(t) :=
∫ 1
0 G1(t, s)f(s)ds

−a
∫ 1
0 G2(t, s)x(s)ds, f ∈ SF (x)}.

Note that since the set-valued map F (., x(.)) is measurable with the mea-
surable selection theorem (e.g., Theorem III. 6 in [5]) it admits a measurable
selection f : I → R. Moreover, from Hypothesis 3.5

|f(t)| ≤ L(t) + L(t)|x(t)|,

i.e., f ∈ L1(I,R). Therefore, SF,x 6= ∅.
It is clear that the fixed points of T are solutions of problem (1.1)-(1.2).

We shall prove that T fulfills the assumptions of Covitz Nadler contraction
principle.

First, we note that since SF,x 6= ∅, T (x) 6= ∅ for any x ∈ C(I,R).
Secondly, we prove that T (x) is closed for any x ∈ C(I,R). Let {xn}n≥0 ∈

T (x) such that xn → x∗ in C(I,R). Then x∗ ∈ C(I,R) and there exists
fn ∈ SF,x such that

xn(t) =
∫ 1

0
G1(t, s)fn(s)ds− a

∫ 1

0
G2(t, s)x(s)ds.
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Since F has compact values and Hypothesis 3.5 is satisfied we may pass to
a subsequence (if necessary) to get that fn converges to f ∈ L1(I,R) in
L1(I,R). In particular, f ∈ SF,x and for any t ∈ I we have

xn(t) → x∗(t) =
∫ 1

0
G1(t, s)f(s)ds− a

∫ 1

0
G2(t, s)x(s)ds,

i.e., x∗ ∈ T (x) and T (x) is closed.
Finally, we show that T is a contraction on C(I,R). Let x1, x2 ∈ C(I,R)

and v1 ∈ T (x1). Then there exist f1 ∈ SF,x1
such that

v1(t) =
∫ 1

0
G(t, s)f1(s)ds− a

∫ 1

0
G2(t, s)x1(s)ds, t ∈ I.

Consider the set-valued map

H(t) := F (t, x2(t)) ∩ {x ∈ R; |f1(t) − x| ≤ L(t)|x1(t) − x2(t)|}, t ∈ I.

From Hypothesis 3.5 one has

dH(F (t, x1(t)), F (t, x2(t))) ≤ L(t)|x1(t) − x2(t)|,

hence H has nonempty closed values. Moreover, since H is measurable, there
exists f2 a measurable selection of H . It follows that f2 ∈ SF,x2

and for any
t ∈ I

|f1(t) − f2(t)| ≤ L(t)|x1(t) − x2(t)|.

Define

v2(t) =
∫ 1

0
G1(t, s)f2(s)ds− a

∫ 1

0
G2(t, s)x2(s)ds, t ∈ I.

and we have

|v1(t) − v2(t)| ≤
∫ 1
0 |G1(t, s)|.|f1(s) − f2(s)|ds+ |a|

∫ 1
0 |G2(t, s)|.|x1(s) − x2(s)|ds ≤

∫ 1
0 G1(t, s)L(s)|x1(s) − x2(s)|ds+ |a|

∫ 1
0 |G2(t, s)|.|x1(s) − x2(s)|ds ≤

maxt∈I(
∫ 1
0 G1(t, s)L(s)ds+ |a|

∫ 1
0 |G2(t, s)|ds)|x1 − x2|C = l|x1 − x2|C .

So, |v1 − v2|C ≤ l|x1 − x2|C .
From an analogous reasoning by interchanging the roles of x1 and x2 it follows

dH(T (x1), T (x2)) ≤ l|x1 − x2|C.

Therefore, T admits a fixed point which is a solution to problem (1.1)-
(1.2).
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