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Abstract

In this paper, we study a nonlinear boundary value system with p-Laplacian operator































(φp1(u
′))′ + a1(t)f(u, v) = 0, 0 < t < 1,

(φp2(v
′))′ + a2(t)g(u, v) = 0, 0 < t < 1,

α1φp1(u(0)) − β1φp1(u
′(0)) = γ1φp1(u(1)) + δ1φp1(u

′(1)) = 0,

α2φp2(v(0)) − β2φp2(v
′(0)) = γ2φp2(v(1)) + δ2φp2(v

′(1)) = 0,

where φpi
(s) = |s|pi−2s, pi > 1, i = 1, 2. We obtain some sufficient conditions for the existence

of two positive solutions or infinitely many positive solutions by using a fixed-point theorem in

cones. Especially, the nonlinear terms f, g are allowed to change sign. The conclusions essentially

extend and improve the known results.
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1 Introduction

In this paper, we study the existence of positive solutions for nonlinear singular boundary

value system with p-Laplacian operator































(φp1(u
′))′ + a1(t)f(u, v) = 0, 0 < t < 1,

(φp2(v
′))′ + a2(t)g(u, v) = 0, 0 < t < 1,

α1φp1(u(0)) − β1φp1(u
′(0)) = γ1φp1(u(1)) + δ1φp1(u

′(1)) = 0,

α2φp2(v(0)) − β2φp2(v
′(0)) = γ2φp2(v(1)) + δ2φp2(v

′(1)) = 0,

(1.1)

where φpi
(s) are p-Laplacian operator; i.e., φpi

(s) = |s|pi−2s, pi > 1, and ai(t) : (0, 1) → [0,+∞),

φqi
= (φpi

)−1,
1

pi
+

1

qi
= 1, αi > 0, βi ≥ 0, γi > 0, δi ≥ 0, i = 1, 2.
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In recent years, because of the wide mathematical and physical background [1, 15], the

existence of positive solutions for nonlinear boundary value problems with p-Laplacian operator

received wide attention. Especially, when p = 2 or φp(u) = u is linear, the existence of positive

solutions for nonlinear singular boundary value problems has been obtained (see [6, 10, 12, 16]);

when p 6= 2 or φp(u) 6= u is nonlinear, papers [7, 11, 13, 14, 17] have obtained many results by

using comparison results or topological degree theory.

In [10], Kaufmann and Kosmatov established the existence of countably many positive solu-

tions for the following two-point boundary value problem






u′′(t) + a(t)f(u(t)) = 0, 0 < t < 1,

u′(0) = 0, u(1) = 0,
(1.2)

where a ∈ Lp[0, 1], p ≥ 1, and a(t) has countably singularities on [0, 1
2).

Very recently, authors [13] studied the boundary value problem






(φp(u
′))′ + a(t)f(u) = 0, 0 < t < 1,

αφp(u(0)) − βφp(u
′(0)) = 0, γφp(u(1)) + δφp(u

′(1)) = 0,
(1.3)

where φp(s) is p-Laplacian operator; i.e., φp(s) = |s|p−2s, p > 1, and a(t) : (0, 1) → [0,+∞),

φq = (φp)
−1,

1

p
+

1

q
= 1, α > 0, β ≥ 0, γ > 0, δ ≥ 0. Using a fixed-point theorem, we

obtained the existence of positive solutions or infinitely many positive solutions for boundary

value problems (1.3).

In [14], authors studied the boundary value system (1.1) by applying the fixed-point theorem

of cone expansion and compression of norm type. We obtained the existence of infinitely many

positive solutions for problems (1.1).

It is well known that the key condition used in the above papers is that the nonlinearity is

nonnegative. If the nonlinearity is negative somewhere, then the solution needs no longer be

concave down. As a result it is difficult to find positive solutions of the p-Laplacian equation

when f changes sign.

In 2003, Agarwal, Lü and O’Regan [2] investigated the singular boundary value problem






(φp(y
′))′ + q(t)f(t, y(t)) = 0, t ∈ (0, 1),

y(0) = y(1) = 0,
(1.4)

by means of the upper and lower solution method, where the nonlinearity f is allowed to change

sign.

In [8], Ji, Feng and Ge studied the existence of multiple positive solutions for the following

boundary value problem











(φp(u
′))′ + a(t)f(t, u(t)) = 0, t ∈ (0, 1),

u(0) =
m
∑

i=1
aiu(ξi), u(1) =

m
∑

i=1
biu(ξi),

(1.5)

where 0 < ξ1 < · · · < ξm < 1, ai, bi ∈ [0,+∞) satisfy 0 <
m−2
∑

i=1
ai,

m−2
∑

i=1
bi < 1. The nonlinearity

f is allowed to change sign.
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In [9], Ji, Tian and Ge researched the existence of positive solutions for the boundary value

problem










(φp(u
′))′ + f(t, u, u′) = 0, t ∈ [0, 1],

u′(0) =
m
∑

i=1
aiu

′(ξi), u(1) =
m
∑

i=1
biu(ξi).

(1.6)

They showed that problem (1.6) has at least one or two positive solutions under some assump-

tions by applying a fixed point theorem. The interesting points are that the nonlinear term f is

involved with the first-order derivative explicitly and f may change sign.

To date no paper has appeared in the literature which discusses the coupled systems with

one-dimensional p-Laplacian when nonlinearity in the differential equations may change sign.

This paper attempts to fill this gap in the literature.

In the rest of the paper, we make the following assumptions:

(H1) f, g ∈ C([0,+∞) × [0,+∞), (−∞,+∞)), αi > 0, βi ≥ 0, γi > 0, δi ≥ 0, (i = 1, 2);

(H2) ai ∈ C[(0, 1), [0,∞)] and

0 <

∫ 1

0
ai(t)dt < ∞, 0 <

∫ 1

0
φqi

(

∫ s

0
ai(r)dr)ds < ∞, i = 1, 2;

(H3) f(0, v) ≥ 0, g(u, 0) ≥ 0, for t ∈ (0, 1) and a1(t)f(0, v), a2(t)g(u, 0) are not identically

zero on any subinterval of (0, 1).

2 Preliminaries and Lemmas

In this section, we give some preliminaries and definitions.

Definition 2.1. Let E be a real Banach space over R . A nonempty closed set P ⊂ E is said

to be a cone provided that

(i) au ∈ P for all u ∈ P and all a ≥ 0 and

(ii) u, −u ∈ P implies u = 0.

The following well-known result of the fixed point index is crucial in our arguments.

Theorem 2.1.[See 3-5] Let X be a real Banach space and K be a cone subset of X. Assume

r > 0 and that T : Kr −→ X be a completely continuous operator such that Tx 6= x for

x ∈ ∂Kr = {x ∈ K : ||x|| = r}. Then the following assertions hold:

(i) If ||Tx|| ≥ ||x||, for x ∈ ∂Kr, then i(T,Kr,K) = 0.

(ii) If ||Tx|| ≤ ||x||, for x ∈ ∂Kr, then i(T,Kr,K) = 1.

Let E = C[0, 1]×C[0, 1], then E is a Banach space with the norm ‖(u, v)‖ = ‖u‖+‖v‖, where

‖u‖ = sup
t∈[0,1]

|u(t)|, ‖v‖ = sup
t∈[0,1]

|v(t)|. For (x, y), (u, v) ∈ E, we note that (x, y) ≤ (u, v) ⇔ x ≤

u, y ≤ v. Let

K = {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0} .

K
′

= {(u, v) ∈ E : u(t) ≥ 0, v(t) ≥ 0, u(t), v(t) are concave on [0,1]} .

Then K,K
′

are cones of E.

Let Kr = {(u, v) ∈ K, ||(u, v)|| < r}, then ∂Kr = {(u, v) ∈ K, ||(u, v)|| = r}, Kr = {(u, v) ∈
K, ||(u, v)|| ≤ r}, u+(t) = max{u(t), 0}.
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Lemma 2.1.[See 13-14] Suppose that condition (H2) holds, then there exists a constant η ∈
(0, 1

2 ) which satisfies 0 <
∫ 1−η
η ai(t)dt < ∞, i = 1, 2. Furthermore, the functions

Ai(t) =

∫ t

η
φqi

(
∫ t

s
ai(r)dr

)

ds +

∫ 1−η

t
φqi

(
∫ s

t
ai(r)dr

)

ds, t ∈ [η, 1 − η], i = 1, 2

are positive and continuous on [η, 1−η], and therefore Ai(t)(i = 1, 2) have minimums on [η, 1−η].

Hence we suppose that there exists L > 0 such that Ai(t) ≥ L, t ∈ [η, 1 − η], i = 1, 2.

Lemma 2.2. Let X = C[0, 1], P = {u ∈ X : u ≥ 0}. Suppose T : X → X is completely

continuous. Define θ : TX → P by

(θy)(t) = max{y(t), 0}, for y ∈ TX.

Then

θ ◦ T : P → P

is also a completely continuous operator.

Proof. The complete continuity of T implies that T is continuous and maps each bounded

subset in X to a relatively compact set. Denote θy by y.

Given a function h ∈ C[0, 1], for each ε > 0 there exists δ > 0 such that

||Th − Tg|| < ε, for g ∈ X, ||g − h|| < δ.

Since
|(θTh)(t) − (θTg)(t)| = |max{(Th)(t), 0} − max{(Tg)(t), 0}|

≤ |(Th)(t) − (Tg)(t)| < ε,

we have

||(θT )h − (θT )g|| < ε, for g ∈ X, ||g − h|| < δ,

and so θT is continuous.

For any arbitrary bounded set D ⊂ X and ∀ε > 0, there are yi(i = 1, 2, · · · ,m) such that

TD ⊂
m
⋃

i=1

B(yi, ε),

where B(yi, ε) = {u ∈ X : ||u − yi|| < ε}. Then, for ∀y ∈ (θ ◦ T )D, there is a y ∈ TD such that

y(t) = max{y(t), 0}. We choose i ∈ {1, 2, · · · ,m} such that ||y − yi|| < ε. The fact

max
t∈[0,1]

|y(t) − yi(t)| ≤ max
t∈[0,1]

|y(t) − yi(t)|,

which implies y ∈ B(yi, ε). Hence (θ◦T )D has a finite ε−net and (θ◦T )D is relatively compact.

Lemma 2.3.[See 11] Let (u, v) ∈ K ′ and η of Lemma 2.1, then

u(t) + v(t) ≥ η‖(u, v)‖, t ∈ [η, 1 − η].

Now we consider the boundary value system (1). Firstly, we define a mapping A : K → E:

A(u, v)(t) = (A1(u, v), A2(u, v))(t),
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given by

A1(u, v)(t) =







































































φq1

(

β1

α1

∫ σ1(u,v)

0
a1(r)f(u(r), v(r))dr

)

+

∫ t

0
φq1

(
∫ σ1(u,v)

s
a1(r)f(u(r), v(r))dr

)

ds, 0 ≤ t ≤ σ1(u,v),

φq1

(

δ1

γ1

∫ 1

σ1(u,v)

a1(r)f(u(r), v(r))dr

)

+

∫ 1

t
φq1

(

∫ s

σ1(u,v)

a1(r)f(u(r), v(r))dr

)

ds, σ1(u,v) ≤ t ≤ 1.

A2(u, v)(t) =







































































φq2

(

β2

α2

∫ σ2(u,v)

0
a2(r)g(u(r), v(r))dr

)

+

∫ t

0
φq2

(
∫ σ2(u,v)

s
a2(r)g(u(r), v(r))dr

)

ds, 0 ≤ t ≤ σ2(u,v),

φq2

(

δ2

γ2

∫ 1

σ2(u,v)

a2(r)g(u(r), v(r))dr

)

+

∫ 1

t
φq2

(

∫ s

σ2(u,v)

a2(r)g(u(r), v(r))dr

)

ds, σ2(u,v) ≤ t ≤ 1.

It is clear that the existence of a positive solution for the boundary value system (1.1) is equiv-

alent to the existence of a nontrivial fixed point of A in K (see for example [14]).

Next, for any (u, v) ∈ K, define

B(u, v)(t) = (B1(u, v)(t), B2(u, v)(t)),

where

B1(u, v)(t) =







































































[

φq1

(

β1

α1

∫ σ1(u,v)

0
a1(r)f(u(r), v(r))dr

)

+

∫ t

0
φq1

(
∫ σ1(u,v)

s
a1(r)f(u(r), v(r))dr

)

ds

]+

, 0 ≤ t ≤ σ1(u,v),

[

φq1

(

δ1

γ1

∫ 1

σ1(u,v)

a1(r)f(u(r), v(r))dr

)

+

∫ 1

t
φq1

(

∫ s

σ1(u,v)

a1(r)f(u(r), v(r))dr

)

ds

]+

, σ1(u,v) ≤ t ≤ 1.
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B2(u, v)(t) =







































































[

φq2

(

β2

α2

∫ σ2(u,v)

0
a2(r)g(u(r), v(r))dr

)

+

∫ t

0
φq2

(
∫ σ2(u,v)

s
a2(r)g(u(r), v(r))dr

)

ds

]+

, 0 ≤ t ≤ σ2(u,v),

[

φq2

(

δ2

γ2

∫ 1

σ2(u,v)

a2(r)g(u(r), v(r))dr

)

+

∫ 1

t
φq2

(

∫ s

σ2(u,v)

a2(r)g(u(r), v(r))dr

)

ds

]+

, σ2(u,v) ≤ t ≤ 1.

For (u, v) ∈ E, define T : E → K by T (u, v) = (u+, v+). By Lemma 2.2, we have B = TA.

Finally, for any (u, v) ∈ K ′, define

F (u, v)(t) = (F1(u, v)(t), F2(u, v)(t)),

given by

F1(u, v)(t) =







































































φq1

(

β1

α1

∫ σ1(u,v)

0
a1(r)f

+(u(r), v(r))dr

)

+

∫ t

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds, 0 ≤ t ≤ σ1(u,v),

φq1

(

δ1

γ1

∫ 1

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

+

∫ 1

t
φq1

(

∫ s

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

ds, σ1(u,v) ≤ t ≤ 1.

F2(u, v)(t) =







































































φq2

(

β2

α2

∫ σ2(u,v)

0
a2(r)g

+(u(r), v(r))dr

)

+

∫ t

0
φq2

(
∫ σ2(u,v)

s
a2(r)g

+(u(r), v(r))dr

)

ds, 0 ≤ t ≤ σ2(u,v),

φq2

(

δ2

γ2

∫ 1

σ2(u,v)

a2(r)g
+(u(r), v(r))dr

)

+

∫ 1

t
φq2

(

∫ s

σ2(u,v)

a2(r)g
+(u(r), v(r))dr

)

ds, σ2(u,v) ≤ t ≤ 1.

With respect to operator F1(u, v), because of

(F1(u, v))′(t) =























φq1

(
∫ σ1(u,v)

t
a1(r)f

+(u(r), v(r))dr

)

≥ 0, 0 ≤ t ≤ σ1(u,v),

−φq1

(

∫ t

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

≤ 0, σ1(u,v) ≤ t ≤ 1.

So the operator F1 is continuous and F1(u, v)′(σ1(u,v)) = 0, and for any (u, v) ∈ K ′, we have

(

φq1(F1(u, v)′)(t)
)′

= −a1(t)f
+(u(t), v(t)), a.e. t ∈ (0, 1),
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and F1(u, v)(σ1(u,v)) = ‖F1(u, v)‖. Therefore we have F1(u, v)(t) is concave function. Sim-

ilarly, we have F2(u, v)(t) is also concave function. Thus F (K ′) ⊂ K ′, and ||F (u, v)|| =

F1(u, v)(σ1(u,v)) + F2(u, v)(σ2(u,v)).

3 The existence of two positive solutions

For convenience, we set

Mi = 2

[

1 + φqi
(
βi

αi
)

]

φqi
(

∫ 1

0
ai(r)dr), 0 < Ni <

L

2
, i = 1, 2.

In this section, we will discuss the existence of two positive solutions.

Theorem 3.1. Suppose that conditions (H1), (H2) and (H3) hold. And assume that there exist

positive numbers a, b, d such that 0 < d
η

< a < ηb < b and f, g satisfy the following conditions

(H4): f(u, v) ≥ 0, g(u, v) ≥ 0, for u + v ∈ [d, b];

(H5): f(u, v) < φp1(
a

M1
), g(u, v) < φp2(

a

M2
), for u + v ∈ [0, a];

(H6): f(u, v) > φp1(
b

N1
), g(u, v) > φp1(

b

N2
), for u + v ∈ [ηb, b].

Then, the boundary value system (1.1) has at least two positive solutions (u1, v1) and (u2, v2)

such that

0 ≤ ||(u1, v1)|| < a < ||(u2, v2)|| < b.

Proof. First of all, from the definitions of B and F , it is clear that B(K) ⊂ K and F (K ′) ⊂ K ′.

Moreover, by (H2) and the continuity of f, g, it is easy to see that A : K → X and F : K ′ → K ′

are completely continuous. Using Lemma 2.2, we have B = TA : K → K and B is completely

continuous.

Now we prove that B has a fixed point (u1, v1) ∈ K with 0 < ||(u1, v1)|| < a. In fact,

∀(u, v) ∈ ∂Ka, then ||(u, v)|| = a and 0 < u(t) + v(t) ≤ a, from (H5) we have

||B1(u, v)|| = maxt∈[0,1]

[

φq1

(

β1

α1

∫ σ1(u,v)

0
a1(r)f(u(r), v(r))dr

)

+

∫ t

0
φq1

(
∫ σ1(u,v)

s
a1(r)f(u(r), v(r))dr

)

ds

]+

≤ maxt∈[0,1] max

{

φq1

(

β1

α1

∫ σ1(u,v)

0
a1(r)f(u(r), v(r))dr

)

+

∫ t

0
φq1

(
∫ σ1(u,v)

s
a1(r)f(u(r), v(r))dr

)

ds, 0

}

<
a

M1

[

1 + φq1(
β1

α1
)

](

φq1(

∫ 1

0
a1(r)dr)ds

)

=
a

2
.

Similarly, we get

||B2(u, v)|| <
a

2
.

Thus,

||B(u, v)|| = ||B1(u, v)|| + ||B2(u, v)|| <
a

2
+

a

2
= a = ||(u, v)||.

It follows from Theorem 2.1 that

i(B,Ka,K) = 1,
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and hence B has a fixed point (u1, v1) ∈ K with 0 < ||(u1, v1)|| ≤ a. Obviously, (u1, v1) is a

solution of boundary value system(1.1) if and only if (u1, v1) is a fixed point of A.

Next, we need to prove that (u1, v1) is a fixed point of A. If not, then A(u1, v1) 6= (u1, v1),

i.e., A1(u1, v1) 6= u1 or A2(u1, v1) 6= v1. Without loss generality, suppose A1(u1, v1) 6= u1, then

there exists t0 ∈ (0, 1) such that u1(t0) 6= A1(u1, v1)(t0). It must be A1(u1, v1)(t0) < 0 =

u1(t0). Let (t1, t2) be the maximal interval and contains t0 such that A1(u1, v1)(t) < 0 for

all t ∈ (t1, t2). Obviously, (t1, t2) 6= [0, 1] by (H3). If t2 < 1, then u1(t) ≡ 0 for t ∈ [t1, t2],

and A1(u1, v1)(t) < 0 for t ∈ (t1, t2), and A1(u1, v1)(t2) = 0. Thus, A1(u1, v1)
′(t2) = 0.

From (H3) we get (φp1(A1(u1, v1)
′)(t))′ = −f(0, v) ≤ 0 for t ∈ [t1, t2], which implies that

A1(u1, v1)
′(t) is decrease on [t1, t2]. So A1(u1, v1)

′(t) ≥ 0 for t ∈ [t1, t2]. Hence A1(u1, v1)(t) < 0

and is bounded away from 0 everywhere in (t1, t2). This forces t1 = 0 and A1(u1, v1)(0) <

0, A1(u1, v1)
′(0) ≥ 0. Thus, φp1(A1(u1, v1)(0)) < 0, φp1(A1(u1, v1)

′(0)) ≥ 0. On the other

hand, by boundary value condition we have φp1(A1(u1, v1)(0)) = β1

α1
φp1(A1(u1, v1)

′(0)) and so

φp1(A1(u1, v1)(0)) ≥ 0 > φp1(A1(u1, v1)(0)), which is impossible. If t1 > 0, similar to the above,

we have 1 ∈ (t1, t2), A1(u1, v1)(t1) = 0 and A1(u1, v1)
′(t) < 0 for t ∈ (t1, t2). Hence A1(u1, v1)(t)

is strictly decreasing on (t1, t2). So we have A1(u1, v1)(1) < 0, A1(u1, v1)
′(1) < 0. Thus,

φp1(A1(u1, v1)(1)) < 0, φp1(A1(u1, v1)
′(1)) < 0. In fact, by boundary value condition we have

φp1(A1(u1, v1)(1)) = − δ1
γ1

φp1(A1(u1, v1)
′(1)) and so φp1(A1(u1, v1)(1)) > 0 > φp1(A1(u1, v1)(1)),

which is a contradiction. In a word, we have u1 = A1(u1, v1). Similarly, we can get v1 =

A2(u1, v1). Therefore, we conclude that (u1, v1) is a fixed point of A, and is also a solution of

boundary value system (1.1) with 0 < ||(u1, v1)|| < a.

Next, we need to show the existence of another fixed point of A. ∀(u, v) ∈ ∂K ′
a, then

||(u, v)|| = a and 0 < u(t) + v(t) ≤ a, from (H5) we have

||F1(u, v)|| = F1(u, v)(σ1(u, v))

≤ φq1

(

β1

α1

∫ 1

0
a1(r)f

+(u(r), v(r))dr

)

+

∫ 1

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

<
a

M1

[

1 + φq1(
β1

α1
)

](

φq1(

∫ 1

0
a1(r)dr)ds

)

=
a

2
.

Similarly, we get

||F2(u, v)|| <
a

2
.

Thus,

||F (u, v)|| = ||F1(u, v)|| + ||F2(u, v)|| <
a

2
+

a

2
= a = ||(u, v)||.

It follows from Theorem 2.1 that

i(F,K ′
a,K

′) = 1.

∀(u, v) ∈ ∂K ′
b, then ||(u, v)|| = b. By Lemma 2.3, we have ηb ≤ u(t) + v(t) ≤ b, for

t ∈ [η, 1 − η]. From (H6), we shall discuss it from three perspectives.
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(i) If σ1(u,v) ∈ [η, 1 − η], by Lemma 2.1, we have

2‖F1(u, v)‖ = 2F1(u, v)(σ1(u,v))

≥
∫ σ1(u,v)

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

+

∫ 1

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

ds

≥ b

N1

(
∫ σ1(u,v)

η
φq1

(
∫ σ1(u,v)

s
a1(r)dr

)

ds

)

+
b

N1

(

∫ 1−η

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)dr

)

ds

)

≥ b

N1
A1(σ1(u,v)) ≥

b

N1
L > 2b.

(ii) If σ1(u,v) ∈ (1 − η, 1], by Lemma 2.1, we have

‖F1(u, v)‖ = F1(u, v)(σ1(u,v))

≥
∫ σ1(u,v)

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

≥
∫ 1−η

η
φq1

(
∫ 1−η

s
a1(r)f

+(u(r), v(r))dr

)

ds

≥ b

N1

∫ 1−η

η
φq1

(
∫ 1−η

s
a1(r)dr

)

ds

=
b

N1
A1(1 − η) ≥ b

N1
L > 2b > b.

(iii) If σ1(u,v) ∈ (0, η), by Lemma 2.1, we have

‖F1(u, v)‖ = F1(u, v)(σ1(u,v))

≥
∫ 1

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

ds

≥
∫ 1−η

η
φq1

(
∫ s

η
a1(r)f

+(u(r), v(r))dr

)

ds

≥ b

N1

∫ 1−η

η
φq1

(
∫ s

η
a1(r)dr

)

ds

=
b

N1
A1(η) ≥ b

N1
L > 2b > b.

So we have

||F1(u, v)|| > b.

Similarly, we get

||F2(u, v)|| > b.
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Thus,

||F (u, v)|| = ||F1(u, v)|| + ||F2(u, v)|| > 2b > b = ||(u, v)||.

It follows from Theorem 2.1 that

i(F,K ′
b,K

′) = 0.

Thus i(F,K ′
b \ K ′

a,K
′) = −1 and F has a fixed point (u2, v2) in K ′

b \ K ′
a.

Finally, we prove that (u2, v2) is also a fixed point of A in K ′
b \K ′

a. We claim that A(u, v) =

F (u, v) for (u, v) ∈ (K ′
b\K ′

a)∩{(u, v) : F (u, v) = (u, v)}. In fact, for (u2, v2) ∈ (K ′
b\K ′

a)∩{(u, v) :

F (u, v) = (u, v)}, it is clear that u2(σ1(u, v)) + v2(σ2(u, v)) = ||(u2, v2)|| > a. Using Lemma 2.3,

we have

min
η≤t≤1−η

(u2(t) + v2(t)) ≥ η(u2(σ1(u, v)) + v2(σ2(u, v))) = η||(u2, v2)|| > ηa > d.

Thus for t ∈ [η, 1 − η], d ≤ u2(t) + v2(t) ≤ b. From (H4), we know that f+(u2, v2) =

f(u2, v2), g
+(u2, v2) = g(u2, v2). This implies that A(u2, v2) = F (u2, v2) for (u2, v2) ∈ (K ′

b \
K ′

a) ∩ {(u, v) : F (u, v) = (u, v)}. Hence (u2, v2) is also a fixed point of A in K ′
b \ K ′

a, which is

also a solution of boundary value system (1.1) with a < ||(u2, v2)|| < b. Therefore, we can know

boundary value system (1.1) has at least two positive solutions (u1, v1) and (u2, v2) such that

0 ≤ ||(u1, v1)|| < a < ||(u2, v2)|| < b.

The proof of Theorem 3.1 is completed.

4 The existence of infinitely many positive solutions

In this section, we will discuss the existence of infinitely many positive solutions. We suppose

that

(H
′

2) There exists a sequence {ti}∞i=1 such that ti+1 < ti, t1 < 1/2, lim
i→∞

ti = t∗ ≥ 0,

lim
t→ti

ai(t) = ∞ (i = 1, 2, · · ·), and

0 <

∫ 1

0
ai(t)dt < ∞, i = 1, 2.

It is easy to check that condition (H
′

2) implies that

0 <

∫ 1

0
φi

(
∫ s

0
ai(r)dr

)

ds < +∞, i = 1, 2.

Theorem 4.1. Suppose that conditions (H1), (H
′

2) and (H3) hold. Let {ηk}∞k=1 be such that

ηk ∈ (tk+1, tk) (k = 1, 2, · · ·), and let {ak}∞k=1, {bk}∞k=1, {dk}∞k=1 be such that

0 <
dk

ηk

< ak < ηkbk < bk, k = 1, 2, · · · .

Furthermore, for each natural number k we assume that f, g satisfy the following conditions

(H7): f(u, v) ≥ 0, g(u, v) ≥ 0, for u + v ∈ [dk, bk];

(H8): f(u, v) < φ1(
ak

M1
), g(u, v) < φ2(

ak

M2
), for u + v ∈ [0, ak];
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(H9): f(u, v) > φ1(
bk

N1
), g(u, v) > φ2(

bk

N2
), for u + v ∈ [ηkbk, bk].

Then, the boundary value system (1.1) has infinitely many solutions (uk, vk) such that ak <

||(uk, vk)|| < bk, k = 1, 2, · · ·.
Proof. Because t∗ < tk+1 < ηk < tk < 1

2 (k = 1, 2, · · ·), for any natural number k and u ∈ K ′,

by Lemma 2.3, we have

u(t) ≥ ηk||u||, t ∈ [ηk, 1 − ηk].

We define two open subset sequences {K ′
ak
}∞k=1 and {K ′

bk
}∞k=1 of K ′ by

K ′
ak

= {u ∈ K ′ : ‖u‖ < ak}, K ′
bk

= {u ∈ K ′ : ‖u‖ < bk}, k = 1, 2, · · · .

For a fixed natural number k and ∀(u, v) ∈ ∂K ′
ak

, then ||(u, v)|| = ak and 0 < u(t) + v(t) ≤ ak,

from (H8) we have

||F1(u, v)|| = F1(u, v)(σ1(u, v))

≤ φq1

(

β1

α1

∫ 1

0
a1(r)f

+(u(r), v(r))dr

)

+

∫ 1

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

<
ak

M1

[

1 + φq1(
β1

α1
)

](

φq1(

∫ 1

0
a1(r)dr)ds

)

=
ak

2
.

Similarly, we get

||F2(u, v)|| <
ak

2
.

Thus,

||F (u, v)|| = ||F1(u, v)|| + ||F2(u, v)|| <
ak

2
+

ak

2
= ak = ||(u, v)||.

It follows from Theorem 2.1 that

i(F,K ′
ak

,K ′) = 1.

∀(u, v) ∈ ∂K ′
bk

, then ||(u, v)|| = bk. Using Lemma 2.3, we have ηkbk ≤ u(t) + v(t) ≤ bk for

t ∈ [ηk, 1−ηk]. Note that [t1, 1− t1] ⊆ [ηk, 1−ηk]. We discuss it from the following three ranges.

(i) If σ1(u,v) ∈ [t1, 1 − t1], by Lemma 2.1 and condition (H9), we have

2‖F1(u, v)‖ = 2F1(u, v)(σ1(u,v))

≥
∫ σ1(u,v)

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

+

∫ 1

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

ds

≥ bk

N1

(
∫ σ1(u,v)

t1

φq1

(
∫ σ1(u,v)

s
a1(r)dr

)

ds

)

+
bk

N1

(

∫ 1−t1

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)dr

)

ds

)

≥ bk

N1
A1(σ1(u,v)) ≥

bk

N1
L > 2bk.

EJQTDE, 2010 No. 79, p. 11



(ii) If σ1(u,v) ∈ (1 − t1, 1], by Lemma 2.1 and condition (H9), we have

‖F1(u, v)‖ = F1(u, v)(σ1(u,v))

≥
∫ σ1(u,v)

0
φq1

(
∫ σ1(u,v)

s
a1(r)f

+(u(r), v(r))dr

)

ds

≥
∫ 1−t1

t1

φq1

(
∫ 1−t1

s
a1(r)f

+(u(r), v(r))dr

)

ds

≥ bk

N1

∫ 1−t1

t1

φq1

(
∫ 1−t1

s
a1(r)dr

)

ds

=
bk

N1
A1(1 − t1) ≥

bk

N1
L > 2bk > bk.

(iii) If σ1(u,v) ∈ (0, t1), by Lemma 2.1 and condition (H9), we have

‖F1(u, v)‖ = F1(u, v)(σ1(u,v))

≥
∫ 1

σ1(u,v)

φq1

(

∫ s

σ1(u,v)

a1(r)f
+(u(r), v(r))dr

)

ds

≥
∫ 1−t1

t1

φq1

(
∫ s

η
a1(r)f

+(u(r), v(r))dr

)

ds

≥ bk

N1

∫ 1−t1

t1

φq1

(
∫ s

t1

a1(r)dr

)

ds

=
bk

N1
A1(t1) ≥

bk

N1
L > 2bk > bk.

So we have

||F1(u, v)|| > bk.

Similarly, we get

||F2(u, v)|| > bk.

Thus,

||F (u, v)|| = ||F1(u, v)|| + ||F2(u, v)|| > bk + bk = 2bk > bk = ||(u, v)||.

It follows from Theorem 2.1 that

i(F,K ′
bk

,K ′) = 0.

Thus i(F,K ′
bk

\ K ′
ak

,K ′) = −1 and F has a fixed point (uk, vk) in K ′
bk

\ K ′
ak

.

Finally, we prove that (uk, vk) is also a fixed point of A in K ′
bk

\ K ′
ak

. We claim that

A(u, v) = F (u, v) for (u, v) ∈ (K ′
bk

\ K ′
ak

) ∩ {(u, v) : F (u, v) = (u, v)}. In fact, for (uk, vk) ∈
(K ′

bk
\K ′

ak
)∩{(u, v) : F (u, v) = (u, v)}, it is clear that uk(σ1(u, v))+vk(σ2(u, v)) = ||(uk, vk)|| >

ak. By Lemma 2.3, we have

min
ηk≤t≤1−ηk

(uk(t) + vk(t)) ≥ ηk(uk(σ1(u, v)) + vk(σ2(u, v))) = ηk||(uk, vk)|| > ηkak > dk.

Thus for t ∈ [ηk, 1 − ηk], dk ≤ uk(t) + vk(t) ≤ bk. From (H7), we know that f+(uk, vk) =

f(uk, vk), g+(uk, vk) = g(uk, vk). This implies that A(uk, vk) = F (uk, vk) for (uk, vk) ∈ (K ′
bk

\
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K ′
ak

) ∩ {(u, v) : F (u, v) = (u, v)}. Hence (uk, vk) is also a fixed point of A in K ′
bk

\ K ′
ak

, which

is also a solution of boundary value system (1.1) with ak < ||(uk, vk)|| < bk. Therefore, by the

arbitrary of k, we can know boundary value system (1.1) has infinitely many solutions (uk, vk)

such that ak < ||(uk, vk)|| < bk k = 1, 2, · · ·. The proof of Theorem 4.1 is completed.

5 Remarks

In the section, we present some remarks as follows.

Remark5.1.[See 11] We can provide an function a(t) satisfying condition (H
′

2). In fact, let

∆ =
√

2

(

π2

3
− 9

4

)

, t0 =
5

16
, tn = t0 −

n−1
∑

i=1

1

(i + 2)4
, n = 1, 2, · · · .

Consider function a(t) : [0, 1] → (0,+∞) given by a(t) =
∞
∑

n=1
an(t), t ∈ [0, 1], where

an(t) =















































1
n(n+1)(tn+1+tn) , 0 ≤ t < tn+1+tn

2 ,

1

∆(tn−t)
1
2
, tn+1+tn

2 ≤ t < tn,

1

∆(t−tn)
1
2
, tn ≤ t ≤ tn−1+tn

2 ,

2
n(n+1)(2−tn−tn−1) ,

tn−1+tn
2 < t ≤ 1.

It is easy to know t1 = 1
4 < 1

2 , tn − tn+1 = 1
(n+2)4

(n = 1, 2, · · ·), and

t∗ = lim
n→∞

tn =
5

16
−

∞
∑

i=1

1

(i + 2)4
=

21

16
− π4

90
>

1

5
,

where
∞
∑

n=1

1
n4 = π4

90 . From
∞
∑

n=1

1
n2 = π2

6 , we have

∞
∑

n=1

∫ 1
0 an(t)dt =

∞
∑

n=1

2
n(n+1) + 1

∆

∞
∑

n=1

[

∫ tn
tn+1+tn

2

1

(tn−t)
1
2
dt +

∫

tn+tn−1
2

tn
1

(t−tn)
1
2
dt

]

= 2 +
√

2
∆

∞
∑

n=1

[

(tn − tn+1)
1
2 + (tn−1 − tn)

1
2

]

= 2 +
√

2
∆

∞
∑

n=1

[

1
(n+2)2 + 1

(n+1)2

]

= 2 +
√

2
∆

∞
∑

n=1

[

(π2

6 − 5
4) + (π2

6 − 1)
]

= 2 +
√

2
∆ [π

2

3 − 9
4 ] = 3.

Hence
∫ 1

0
a(t)dt =

∫ 1

0

∞
∑

n=1

an(t)dt =
∞
∑

n=1

∫ 1

0
an(t)dt < ∞,

which implies that condition (H
′

2) holds.
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2 R. Agarwal, H. Lü, D. O’Regan, Existence theorems for the one-dimensional singular p-

Laplacian equation with sign changing nonlinearities, Appl. Math. Comput. 143 (2003)

15-38.

3 K. Deimling, Nonlinear Functional Analysis. Berlin: Springer-Verlag, 1980.

4 D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cone. Academic Press,

San Diego, 1988.

5 D. Guo, V. Lakshmikantham and X. Liu, Nonlinear Integral Equations in Abstract Spaces.

Kluwer Academic Publishers, 1996.

6 J.A. Gatica, V. Oliker and P. Waltman, Singular boundary value problems for second order

ordinary differential equation, J. Differential Equations 79 (1989) 62-78.

7 X. He, The existence of positive solutions of p-Laplacian equation, Acta. Math. Sinica, 46(4)

(2003) 805-810.

8 D. Ji, M. Feng, W. Ge, Multiple positive solutions for multipoint boundary value problems

with sign changing nonlinearity, Appl. Math. Comput. 196 (2008) 515-520.

9 D. Ji, Y. Tian, W. Ge, Positive solutions for one-dimensional p-Laplacian boundary value

problems with sign changing nonlinearity, Nonlinear Anal. 71 (2009) 5406-5416.

10 E. Kaufmann, N. Kosmatov, A multiplicity results for a boundary value problem with in-

finitely many singularities, J. Math. Anal. Appl. 269 (2002) 444-453.

11 B. Liu, Positive solutions three-points boundary value problems for one-dimensional p-

Laplacian with infinitely many singularities, Appl. Math. Lett. 17 (2004) 655-661.

12 R. Ma, Positive solutions of singular second order boundary value problems. Acta. Math.

Sinica, 41(6) (1998) 1225-1230 (in Chinese).

13 H. Su, Z. Wei, F. Xu, The existence of positive solutions for nonlinear singular boundary

value system with p-Laplacian, Appl. Math. Comput. 181(2) (2006) 826-836.

14 H. Su, Z. Wei, F. Xu, The existence of countably many positive solutions for a system of

nonlinear singular boundary value problems with the p-Laplacian operator, J. Math. Anal.

Appl. 325(1) (2007) 319-332.

15 H. Wang, On the existence of positive solutions for semilinear elliptic equations in the an-

nulus. J. Differential Equations 109 (1994) 1-7.

16 Z. Wei, Positive solutions of singular Dirichlet boundary value problems. Chinese Annals of

Mathematics, 20(A) (1999) 543-552 (in Chinese).

17 F. Wong, The existence of positive solutions for m-Laplacian BVPs, Appl. Math. Lett. 12

(1999) 12-17.

(Received March 11, 2010)

EJQTDE, 2010 No. 79, p. 14


