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1 Introduction, notation

Let J = [0,T] be a compact interval, n € N. For a € R", a = (ay,...,a,),
we set |a| = max{|ai|,...,|a,|}. For any z : J — R" (n > 2) we write z(t) =
(z1(), ..., xn(t) and [Pz(t)dt = ([P ar(t)dt,. .., [Pa,(t)dt) for 0 <a<b< T,

From now on, C°(J;R), C°(J;R"™), C*(J;R"™), C°(J;R™) x R" x R", Ly(J;R)
and L;(J; R™) denote the Banach spaces with the norms ||z||o = max{|z(¢)| : t €
T}, Nzl = max{lzyllo - lzallo}, 1ol = max{llz], |11}, Gz, a,b)]l = o] +
jal + o, l2llg, = Jo' ()] dt and |z, = max{[|z1]|3,, ..., [wall2, }, respectively.
K(J % [0,00);[0,00)) denotes the set of all functions w : J x [0,00) — [0, 00)

which are integrable on J in the first variable, nondecreasing on [0,00) in the
T

1
second variable and lim — [ w(t, ) dt = 0.

0= 0 Jo

*This work was supported by grant no. 201/98/0318 of the Grant Agency of Czech Republic
and by the Council of Czech Government J14/98:153100011
TThis paper is in final form and no version of it will be submitted for publication elsewhere

EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 28, p. 1



Denote by Ay the set of all functionals o : C°(J;R) — R which are
a) continuous, Im(«)=R, and
b) increasing (i.e. z,y € C°(J;R), z(t) < y(t) for t € J = a(x) < a(y)).

Here Im(«) stands for the range of a.. If k£ is an increasing homeomorphism on R
and 0 < a < b < T, then the following functionals

max{k(z(t)): a <t <b}, min{k(z(t)): a <t < b}, /abk(:c(t)) dt

belong to the set Ay. Next examples of functionals belonging to the set Ay can
be found for example in [2], [3].
Let A= Ay X ... x Ag. For each x € C°(J;R"), z(t) = (21(¢), ..., 2,(t)) and
—_—

weA ©=(p1,...,0n), we define p(z) by

p(a) = (er(21), s onln)). (1)

Let L : CY(J;R") — C°%J;R™), F : CY(J;R") — Li(J;R") be continuous
operators, L = (L1, ..., Ly,), F' = (F,..., F,). Consider the functional boundary
value problem (BVP for short)

('(t) + L(z)(1))" = F(x)(t), (2)

p(z)=A, @) =B. (3)

Here %w € A: Y = ((plv'-wgon)v w = (wlw"uwn) and AaB € Rn7 A =
(A1,....A), B=(Bi,...,By).

A function z € C'(J;R") is said to be a solution of BVP (2), (3) if the vector
function 2’(t)+ L(z)(t) is absolutely continuous on J, (2) is satisfied for a.e. t € J
and x satisfies the boundary conditions (3).

The aim of this paper is to state sufficient conditions for the existence results
of BVP (2),(3). These results are proved by the Leray-Schauder degree and the
Borsuk theorem for a-condensing operators (see e.g. [1]). In our case a-condensing
operators have the form U + V', where U is a compact operator and V' is a strict
contraction. We recall that this paper is a continuation of the previous paper by
the author [3], where the scalar BVP

(@'(t) + L (2') (1) = Fa(x)(D),

p1(r) =0, (') =0
was considered. Here L; : C°(J;R) — C°(J;R), F; : CY(J;R) — L;(J;R) are
continuous operators and ¢y, € Ay satisty ¢1(0) =0 = 1;(0).

We assume throughout the paper that the continuous operators L and F' in
(2) satisfy the following assumptions:
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(Hy) There exists k € [0, i), = max{1, T}, such that
IL(2) = Ly)|| < kllz =yl for 2,y € CH(J;R"),

(H3) There exists w € K(J x [0,00);[0,00)) such that
[E(2) ()] < w(t, [|l2]l1)
for a.e. t € J and each x € C1(J;R").
Remark 1. If assumption (H;) is satisfied then
IL@)]| < kllzlls + L) for z € CH(J;R™).
Example 1. Let w € C°(J x R" x R" x R” x R";R"), x,¢ € C°(J; J) and
lw(t, 71, ur,v1, 21) — w(t, o, s, Vg, 22)|

< kmax{|r; — ro|, |us — ual, |v1 — val, |21 — 22|}

for t € J and r;, u;, v, z; € R™ (i = 1,2), where k € [0, i) Then the Nemytskii
operator L : C'(J;R") — C°(J; R"),

L(z)(t) = w(t, x(t), z(x (1)), 2'(t), 2'(4(1)))
satisfies assumption (H;).

Example 2. Let f: J x R" x R" — R" satisfy the Carathéodory conditions on
J x R" x R" and
|f(t, u,v)| < w(t, max{|ul, [v]})

for a.e. t € J and each u,v € R", where w € K(J x [0,00);[0,00)). Then the
Nemytskii operator F : C*(J;R") — Ly(J;R"),

F(z)(t) = f(t, x(t), 2'(t))
satisfies assumption (Hs).

The existence results for BVP (2), (3) are given in Sec. 3. Here the optimality

of our assumptions (H;) and (H,) is studied as well. We shall show that & € [0, 1)

can not be replaced be the weaker assumption k € [0, 3] in (H;) provided 7' <'1

(see Example 4), and if k& > i in (Hy) then there exists unsolvable BVP of

the type (2),(3) provided 7" > 1 (see Example 5). Example 6 shows that the
T

1
condition Qlim — | w(t, 0) dt = 0 which appears for w in (H3) can not be replaced
T

1
by limsup — [ w(t, o) dt < oc.
o—oo 0 J0
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2 Auxiliary results

For each o € Ay, we define the function p, € C°(R;R) by

Pale) = ale). !

Then p,, is increasing on R and maps R onto itself. Hence there exists the inverse
function p;!: R — R to pg.

From now on, m,c € R is defined for each v € A, v = (71,...,7,) and
CeR" C=(Cy,...,Ch), by

mye = max{|p;(Ci)| : i =1,...,n}. (4)

Lemma 1. Let v € A, A € R" and let y(z) = A for some x € C°(J;R"™). Then
there exists € € R™ such that

(@1(&0), -, 2a(8n)) = (3, (A1), -, 25, (An))-

Proof. Fix j € {1,...,n}. If x;(t) > p;jl(Aj) (resp. z;(t) < ( A;)) on J,
then ~;(z;) > 7J<pﬂ71<A ) = Aj (resp. ;(x;) < 7](177 (45)) = ) contrary to
7;(A;) = A;. Hence there exists {; € R such that z;(§;) = p, 1(4;). O

Define the operators
II:C°%J;R™) x R" — CY(J;R™), P:C°%J;R") x R" — C°(J;R"),
Q: C°(J;R") x R" — Ly(J;R")
by the formulas

(x,a)(t) = /Ot x(s)ds + a, (5)

Pz, a)(t) = L(II(x, a))(t) (6)
and

Q(z, a)(t) = F(Il(z, a))(t). (7)

Here L and F' are the operators in (2).
Consider BVP

o(t) = a+ A= Pe.b)(0) + [ Qla,b)(s) ds), (8)onan)
gp(/ot:p(s) ds + b) = A, (9)p
Y(z) =B (10)

"'We identify the set of all constant scalar functions on J with R.
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depending on the parameters A, a, b, (A, a,b) € [0,1] x R" x R". Here p,¢ € A

and A, B € R".

We say that z € C°(J;R") is a solution of BVP (8)xap), (9)s, (10) for some
(A, a,b) € [0,1] x R™ x R™ if (8)(xa) is satisfied for ¢t € J and z(t) satisfies the

boundary conditions (9),, (10).

Lemma 2. (A priori bounds). Let assumptions (Hy) and (Hs) be satisfied. Let
x(t) be a solution of BVP (8)(xap), (9)s, (10) for some (X, a,b) € [0,1] x R" x R".

Then
|lz|| < S, Ja| < (1 —=Fkw)S, b < mea + ST,

where S is a positive constant such that

ok 2/1L(0 1T
myp + 2kmya + 2||L(0)|| +_/ w(t,mpa + pu) dt <1 —2kp
U u Jo

oru € [S,00) and mya, myp are given by (4).
® (4

Proof. By Lemma 1 (cf. (9), and (10)), there exist &, v € R" such that
/Ogi zi(s)ds +b; = p;il(Ai), xi(v;) = inI(Bi), i=1,...,n.
Then (cf. (8)(rap))
Pl (B) = ai+ M=Rla.)) + [ Qu(x.b)(s) ds).

and consequently (for i =1,...,n)

i) = P (B) + A(Pe. b)) — Pia, 0(6) + [ t Qil,b)(s) ds).

Hence (cf. (4), (Hy), (Hy) and Remark 1)
|z:(0)] < myp + 2k|[T1(z, )1 + 2[[ L) + /OTW(IZ [Tz, b)[]1) dt

fort € Jandi=1,...,n. Since (cf. (5) and (12))
I, b)|| = H(/Ot;m(s) ds—i—bl,...,/ot:cn(s) ds +5,)|
_ H(/fx1<s)ds+p¢j<A1>,...,/

t

Ta(s)ds + p,l(An))]|

n

= max{” /; x;(s)ds + P;}(Ai)

S i=1,...,n} <mga+ T,

(11)

(13)

(15)
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we have
[Tz, b)[l1 < max{my,a + T|z|, ||z[|} < mea + pllzf]. (16)

Then (cf. (14)-(16))

T
]| < myp + 2k(mea + pllz]]) + 2[|L0)]] +/0 w(t, moa+ plzll)dt. — (17)

Set
_ myB + 2/{7?71@,4 + QHL(O)H i 1

T
— t dt
a(u) - = [t ma + )

for u € (0,00). Then lim, . ¢(u) = 0. Whence there exists S > 0 such that
q(u) <1 —2ku for u > S, and so (cf. (17))

|z|| < S.
Therefore (cf. (12), (13) and (15))

&i
] = [ (40) - /0 1i(s) ds| < mga + ST

al = |l (B) + A (P b)) — [ Qie.b)(s) ds)|
< g+ BTGB+ I2O) + [ w(r, TG )] de

< myp + k(mea + pS) + || L(0)[| + /OTw(t, Mypa + pS) dt
< kuS+(1—2kp)S = (1—ku)S
for2=1,...,n, and consequently
la] < (1 —Fku)S, [b] < mypa+ ST. O

Lemma 3. Let assumption (Hs) be satisfied, p,p € A, A,B € R" and S > 0 be
a constant such that (11) is satisfied for u > S. Set

Q= {(x,a, b): (z,a,b) € C°(J;R") x R" x R",

(18)
|zl < S, la] < S, [b] < mga+ ST}
and let T : Q — C°(J;R™) x R" x R" be given by
t
[(z,a,b) = (a, a+ 90(/ x(s)ds + b) — A, b+ (x) — B). (19)
0
Then
D(I —T,Q,0) # 0, (20)

where “D” denotes the Leray-Schauder degree and I is the identity operator on
C°(J;R") x R" x R".
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Proof. Let U : [0,1] x Q — C°(J;R") x R" x R,

0

U\ zx,a,b) = (a,a+90(/0tx(s)ds+b)—(l—A)cp(—/tx(s)ds—b)—/\A,

b+ (x) — (1 — Ny(—=z) — AB).
By the theory of homotopy and the Borsuk antipodal theorem, to prove (20) it
is sufficient to show that
() U(0,-) is an odd operator,
(77) U is a compact operator, and
(777) U\, z,a,b) # (x,a,b) for (X, x,a,b) € [0,1] x 0.

Since

U, —z,—a,—b) = <—a,—a+<p(—/0tx(s)ds—b)—gp(/ot:c(s)ds—l—b),

—b+¢(—x) — w(x)> = -U(0,z,a,b)

for (z,a,b) € Q, U is an odd operator.

The compactness of U follows from the properties of , 1 and applying the
Bolzano-Weierstrass theorem.

Assume that U(\g, xg, ag, bo) = (g, ag, bo) for some (g, xq, ag, by) € [0, 1] x99,
ap = (ao1,---,a0m), bo = (bot, - .., bon). Then

zo(t) = ap, t€J, (21)
w(aot + bo) = (1 — No)p(—aot — by) + AoA, (22)
(ag) = (1 = Ao)th(—ao) + Ao B, (23)

and consequently (cf. (22) and (23))
pi(aoit +boi) = (1 — Ao)wi(—aoit — boi) + AoAs, (24)

Yi(ao:) = (1 — Xo)i(—aoi) + Ao B; (25)

fori=1,...,n. Fixi e {l,...,n}. If ap; > 0 then ¥;(—ap;) < 1;(ag;), and so (cf.
(25)) 2/)2(0,02‘) S (1 — )\0)’1/12‘(&02‘) -+ )\()BZ Therefore

Aoti(aoi) < AoBi. (26)
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For A\ = 0 we obtain (cf. (25)) ©;(ag;) = 1:(—ag;), a contradiction. Let Ay € (0, 1].
Then (cf. (26)) ¥i(ag;) < B; and

0<ay < p;}(BZ) < mMyB- (27)
If ag; < 0 then wi(am) < wi(—am) and (Cf (25)) @Di(am) > (1 — Ao)wi(aoz‘) + /\03@

Hence
Aoi(aoi) > AoBi. (28)

For A\g = 0 we obtain (cf. (25)) v;(ag;) = ¥i(—ag;), which is impossible. Let
Ao € (0,1]. Then (cf. (28))

0> ag > p;zl(Bz) > —MyB. (29)
From (27) and (29) we deduce
|a01~| S myB-. (30)

Assume that agit + by; > 0 for t € J. Then ¢;(—ag;t — bo;) < @i(agit + bo;),
and so (cf. (24)) Ao # 0 and @;(ag;it + bo;) < (1 — Xg)wi(agit + bo;) + Ao A;. Hence

wiagit + by;) < A;.

If a,ol't —+ bOi > p;ll(Al) for t € J then Az Z gpi(amt + bOz) > Soz(p;ll(Az)) = Ai7 a
contradiction. Thus there is & € J such that

0 < agi&i + boi < p,, (Ai) < mya. (31)

Let agt + by; < 0 for t € J. Then gpi(amt + bOz) < gpi(—amt — bOz) and (24)
implies that )\0 §£ 0 and QOZ‘(—CLOZ't — b(]z) S AZ If —GOit - b()i > p;zl (Az) forteJ
then A; > ¢;(—ag;it —bo;) > @; (p;i1 (A;)) = A;, a contradiction. Hence there exists

v; € J such that
0 < —agiv; — by < p;}(Ai) < Ma. (32)

We have proved that there exists 7; € J such that (cf. (31) and (32))
|aoiTi + boi| < mga,
and consequently (cf. (30))
1boil < |aoiTi + boi| + |aoiTi] < mpa +Tmyp. (33)
Since (cf. (11)) myp < (1 — kp)S < S, it follows that (cf. (21), (30) and (33))
llzol] < S, a] < S, |b] < mya+ ST,

contrary to (zg, ag, by) € 0S. O
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3 Existence results, examples
The main result of this paper is given in the following theorem.

Theorem 1. Let assumptions (Hy) and (Hs) be satisfied. Then for each ¢, € A
and A, B € R", BVP (2), (3) has a solution.

Proof. Fix p,9 € A and A, B € R". Let S be a positive constant such that
(11) is satisfied for u > S and Q C C°(J;R") x R" x R" be defined by (18). Let
UV :Q— CJ;R") x R" x R",

U(z,a,b) = (a%—/(f@(:c,b)(s)ds, a—i—<p(/0t:c(s)ds+b) — A, b—l—z/J(:c)—B>,

V(w,a,b) = (= P(z,)(1),0,0)
and let W, Z : [0,1] x Q — C°(J;R") x R" x R",

W(A x,a,b) = <a+/\/0tQ(x, b)(s) ds, a+gp(/0tx(s) ds+b) —A, b+¢(m)—B>,

Z(\x,a,b) = AV (x,a,b).

Then W(0,-)+Z(0,-) =T'(-) and W (1,-)+Z(1,-) = U(-)+V (-), where I is defined
by (19). By Lemma 3, D(I — W(0,-) — Z(0,-),,0) # 0, and consequently, by
the theory of homotopy (see e.g. [1]), to show that

D(I—U —V,Q,0) £0 (34)
it suffices to prove:
(1) W is a compact operator,
(1) there exists m € [0, 1) such that
1200 2,a,8) = Z(0 g, ¢, Dl < mll (2, 0,0) — (3, ¢, d)].
for A € [0,1] and (z,a,b), (y,c,d) € Q,
(131) WA, x,a,b) + Z(\, z,a,b) # (z,a,b) for (A, z,a,b) € [0,1] x 0.

_ The continuity of W follows from that of @,  and . We claim that W ([0, 1] x
Q) is a relatively compact subset of the Banach space C°(J;R") x R" x R™.
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Indeed, let {()\;,z;,a;,b;)} C [0,1] X Q, x; = (1, .., 2jn), a; = (a1, .., a5),
bj = (bjh .. -abjn) (] S N) Then (Cf (7), (HQ) and (18))

t T
’ajz‘ + /\/0 Qi(x;,5)(s) ds‘ < al +/0 ‘Qi(xjabj)(s)‘ ds
T T
<S4 [ wlt, MGy, b)) de < S+ [ et e+ b)) de

T
§S+/O w(t,mpa +S(pn+1T))dt,

‘/tt Qul;,by)(s) ds| < \/ (t, mpa + S(u +T))

‘a]’i + Q02</0t ZL‘jZ’(S) ds + bﬂ) — Az

< S+ max{|py, (—meya — 25T, |pe,(mua + 2ST)|} + [A|

and
|bji + (i) — Bil <mya + ST + max{|py,(=95)I, [py,(S)|} + |B|

for t,t1,ts € J, 7 = 1,...,n and j € N. Therefore there exists a convergent
subsequence of {W(\;, z;,a;,b;)} by the Arzela-Ascoli theorem and the Bolzano-
Weierstrass theorem. Hence W is a compact operator.

Let (\,2,a,b),(\,y,c,d) €[0,1] x Q. Then (cf. (H;) and (6))
1Z(A,z,a,0) = Z(A y, ¢, d)||« < [Pz, b) — P(y,d)|| = | L(I(z,b)) — L(Il(y, d))|
< k|(z,b) — H(y, d)|[, = k max{||II(z,b) — Ly, d)||, [lx — yl[}
< kmax{[lz —y[|T" + [b—d|, |lz -y}

< ku(llz = yll + 16 = df) < kpll(z, a, ) = (y, ¢, d)]]..

Hence (i7) holds with m = ku < 5.
Suppose (ii7) was false. Then we could find (g, xg, ag, bg) € [0, 1] x 9 such
that
W(/\(), Zo, Ao, bo) + Z(/\(), Zo, Ao, bo) = (ZL‘Q, agp, bo)

Then

7o(t) = ag + Ao (—P (0, bo)(£) + /Ot Qo bo)(s)ds) fort e J,
/Ot.l’(] d5+b0 A, w(xo) :B,
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and consequently x(t) is a solution of BVP (8)(x,a0,0): (9)s,» (10). By Lemma 2,
|zol| < S, ]ao] < (1—kpw)S < Sand |by| < muya+ST, contrary to (xg, ag, by) € €.

We have proved (34). Therefore there exists a fixed point of the operator
U+ 1V, say (u,a,b). It follows that

u(t) = a — Plu,b)(t) + /OtQ(u, b)(s)ds forte . (35)

@(/Otu(s) ds—i—b) =A, ¢(u)=B. (36)

Set a(t) = [ “u(s)ds+b, t € J. Then (cf. (5)-(7), (35) and (36))

Y = a— L)) + /OtF(x)(s) ds fort € J.

p(z)=A, () =B,
and we see that x(t) is a solution of BVP (2),(3). O

Example 3. Let w;; € C°(J;R), oy, Bi,vi,0; € C°(J; J) for j = 1,2,...,9 and
i =1,2. Define L; : C*(J;R?) — C°(J;R) (i = 1,2) by

Li(z)(t) = wu(t)z1(t) + wa(t)wa(t) + wai(t) w1 (i(t)) + wai(t)r2(Bi(t))
+ wsi(t)x (8) + wei(t) vy (1) + wri (£) 2 (3 (t)) + wss (£)25(0:(t)) 4 woi(t).

Let F; : C*(J;R?) — Li(J;R) (i = 1,2) be continuous operators such that
[Ex(2) ()] < w(t, [lz]lh)
for a.e. t € J and each z € C'(J;R?), where @ € K(J x [0,00); [0, 00)).
Consider BVP
(@1(8) + La(2) (1)) = Fi(2)(1),
(25(t) + La(2)(2))" = Fa(2)(t),

p1(21) = A1, @a(22) = Ay, i () = By, ha(ay) = Bs. (38)
By Theorem 1, for each ¢;,1; € Ay and A;, B; € R (i = 1,2), BVP (37), (38) has
8

(37)

1
a solution provided Y |Jwjillo < 5 fori=1,2.
j=1 K

Next Example 4 shows that for 7" < 1 the condition k € [0,3) in (H;) is
optimal and can not be replaced by k € [0, %] In the case of T' > 1 we will show
(see Example 5) that for each k > 3= in (H) there exists an unsolvable BVP of

the type (2), (3) satistfying (Ha).
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Example 4. Let T' < 1. Consider BVP

(@1(t) + a(t)(1(T)
(@5 () + () (21 (T)

+ o+
SRS
NS NS
S5 =
S~— S~—
S~— S~—
~ =<
[

. (39)
1,

e1(x1) = Ay, min{z|(t):t € J} =0,
wa(x2) = Ay, min{ah(t):t € J} =0,
where a € C°(J;R), [lallo = 1, a(0) = 1, a(T) = —1, @1, 02 € Ag and Ay, A, €
R.
Let L; : CY(J;R?) — C°J;R), Li(x)(t) = a(t)(@(T) + 24(T)) (i = 1,2).
Then

(40)

1Li(x) = Li()llo < lello(|2(T) = w1 (T)] + [25(T) — y2(T)])

1 1
(21 = w1llo + |22 = wallo) < Sl = ¥'ll < 5llz =yl

p-l>l>—‘

and so || L(z) — L(y)|| < 3|z — yl|s for z,y € C*(J;R?) where L = (Ly, Ly). BVP
(39), (40) satisfies (Hs) with w(t, 0) = 1 but in (H;) we have k = § (= i)

Assume that u(t) = (ui(t), us(t)) is a solution of BVP (39), (40). Then u} =
ub. Indeed, since (u}(t) —uh(t)) = 0 for t € J there exists ¢ € R such that v} (t) =
ub(t) +con J. From min{u(t) : t € J} = min{u}(¢) : t € J} = 0 we deduce that
uy(v) =0, uy(7) = 0 for some v,7 € J, and so 0 = u}(v) = uh(v)+c>c. lfc <0
then 0 < ) (7) = ¢, a contradiction. Hence ¢ = 0 and then

(uy(t) + 2a(t)uy(T)) =1 forte J

Using the equality u}(v) = 0 we have

ui(t) =2(a(v) — at)u)(T) +t—v forte J (41)
If v = 0 then (cf. (41) with ¢t = T') w{(T) = «{(T) + T, which is impossible.
Assume v € (0, 7). Then (cf. (41) with ¢ = 0)
/! 1 !/
uy(0) = 2(&(1/) - Z)ul(T) —v<—v

contrary to u(t) > 0 for t € J. It follows that BVP (39), (40) is unsolvable.

Example 5. Let 7' > 1 and € > 1. Consider BVP

(21(t) + () (21(T) + 25(T)))" = 1, (42)
(@5(8) + a(t)(21(T) + 22(T))) = 1,
min{x;(t): t € J} =0, min{zi(t):t € J} =0, i=1,2, (43)
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where a € CO(J;R), lallo = 57 fo a(s)ds = =%, a(0) = 75, ao(T) = — 57 and
aft) < f=for t € J.

Lot Ly : CHJR) — CO(JR), (La)(t) = at)(@y(T) + a5(T)) (i = 1,2)
Then

[Li(z) = Li(y)llo < llello(lz1(T) = 52 (T)| + \xz(T) —42(T)])

- e =yl

21 = yallo + [J22 = w2llo) <

= 4T< = 2T” vl = o7

and so ||Lz — Ly|| < &||x — y|x for z,y € C*(J;R?) where L = (Ly, L,). Hence
BVP (42), (43) satisfies (H3) with w(t, o) = 1 but in (H,;) we have k = 3= (> i)
Assume that u(t) = (u1(t), us(t)) is a solution of BVP (42),(43). Applying

the same procedure as in Example 4, it is obvious that u; = uy. Hence
(uy(t) + 2a(t)uy (T)) =1 fort € J,

and since min{u,(¢) : t € J} = 0 and min{w)(¢) : t € J} = 0 we have u;(t) > 0,
u)(t) > 0 on J and u)(v) = 0 for some v € J. Therefore

uy(t) = 2(a(v) — a(®)u (T) +t —v fort e J (44)

Assume v = 0. Then

u(t) = 2(% —at))ur(T) +t > t,

and so wuq(t) is increasing on J and min{u,(t) : ¢ € J} = 0 implies u;(0) = 0.

Hence 9

uy(t) —2(— —/Otoz(s)ds)ul(T)+% forte J

and

which is impossible.
Let v € (0,7]. Then (cf. (44))

i (0) = 2(a(v) = o )w(T) —v < —v,

contrary to min{u)(t) : t € J} = 0. We have proved that BVP (42), (43) is
unsolvable.

The following example demonstrates that the condition h im. / (t,0)d

T
in (Hz) can not be replaced by lim sup ; w(t, o) dt < oo.

00—
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Example 6. Consider BVP
i 2 i
21(t) =1+ g llzll, 22(t) = 1+ /=], (45)

min{x(t): t € J} =0, ¢1(x2) = A, min{x|(t) : t € J} =0, @a(x}) = B, (46)

where @1, 02 € Ag and A, B € R. Assume that BVP (45), (46) is solvable and
let u(t) = (u1(t), ua(t)) be its solution. Then uf(f) > 1 on J and the equality
min{u}(t) : t € J} = 0 implies u}(0) = 0. Hence

2
zmw:@+?ﬂwgtmme¢ (47)

and consequently u,(t) is increasing on J. From min{u,(t) : t € J} = 0 we deduce

that u;(0) = 0 and then (cf. (47))

1 2
w (t) = 5(1 + ﬁ||u||1)752 for t € J.

Therefore

T2 T2
|ullo = 5 + [Jully > 5 + [|u1]fo-

which is impossible. Hence BVP (45), (46) is unsolvable.
We note that for (45) the inequality |F'(x)(t)| < w(t, ||z|/1) in (H2) is optimal

2
with respect to the function w for w(t, o) =1+ max{

T2 \/E} and we see that
li L (t,0)dt 2
im - [ w =—.
e— 0 Jo 0 T
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