Boundary value problems for systems of second-order functional differential equations

Svatoslav Staněk*†

Department of Mathematical Analysis, Faculty of Science, Palacký University, Tomkova 40, 779 00 Olomouc, Czech Republic e–mail: stanek@risc.upol.cz

Abstract. Systems of second-order functional differential equations (x'(t)+L(x)(t))' = F(x)(t) together with nonlinear functional boundary conditions are considered. Here $L: C^1([0,T];\mathbb{R}^n) \to C^0([0,T];\mathbb{R}^n)$ and $F: C^1([0,T];\mathbb{R}^n) \to L_1([0,T];\mathbb{R}^n)$ are continuous operators. Existence results are proved by the Leray-Schauder degree and the Borsuk antipodal theorem for α -condensing operators. Examples demonstrate the optimality of conditions.

Key words and phrases. Functional boundary value problem, existence, Leray-Schauder degree, Borsuk theorem, α -condensing operator.

1991 Mathematics Subject Classification. 34K10, 34B15

1 Introduction, notation

Let J = [0,T] be a compact interval, $n \in \mathbb{N}$. For $a \in \mathbb{R}^n$, $a = (a_1, \ldots, a_n)$, we set $|a| = \max\{|a_1|, \ldots, |a_n|\}$. For any $x : J \to \mathbb{R}^n$ $(n \geq 2)$ we write $x(t) = (x_1(t), \ldots, x_n(t))$ and $\int_a^b x(t) dt = (\int_a^b x_1(t) dt, \ldots, \int_a^b x_n(t) dt)$ for $0 \leq a < b \leq T$. From now on, $C^0(J; \mathbb{R})$, $C^0(J; \mathbb{R}^n)$, $C^1(J; \mathbb{R}^n)$, $C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$, $L_1(J; \mathbb{R})$ and $L_1(J; \mathbb{R}^n)$ denote the Banach spaces with the norms $||x||_0 = \max\{|x(t)| : t \in J\}$, $||x|| = \max\{||x_1||_0, \ldots, ||x_n||_0\}$, $||x||_1 = \max\{||x||, ||x'||\}$, $||(x, a, b)||_* = ||x|| + |a| + |b|$, $||x||_{L_1}^0 = \int_0^T |x(t)| dt$ and $||x||_{L_1} = \max\{||x_1||_{L_1}^0, \ldots, ||x_n||_{L_1}^0\}$, respectively. $\mathcal{K}(J \times [0, \infty); [0, \infty))$ denotes the set of all functions $\omega : J \times [0, \infty) \to [0, \infty)$ which are integrable on J in the first variable, nondecreasing on $[0, \infty)$ in the second variable and $\lim_{\varrho \to \infty} \frac{1}{\varrho} \int_0^T \omega(t, \varrho) dt = 0$.

^{*}This work was supported by grant no. 201/98/0318 of the Grant Agency of Czech Republic and by the Council of Czech Government J14/98:153100011

[†]This paper is in final form and no version of it will be submitted for publication elsewhere

Denote by \mathcal{A}_0 the set of all functionals $\alpha: C^0(J; \mathbb{R}) \to \mathbb{R}$ which are

- a) continuous, $\operatorname{Im}(\alpha) = \mathbb{R}$, and
- b) increasing (i.e. $x, y \in C^0(J; \mathbb{R}), x(t) < y(t)$ for $t \in J \Rightarrow \alpha(x) < \alpha(y)$).

Here $\operatorname{Im}(\alpha)$ stands for the range of α . If k is an increasing homeomorphism on \mathbb{R} and $0 \le a < b \le T$, then the following functionals

$$\max\{k(x(t)): a \le t \le b\}, \quad \min\{k(x(t)): a \le t \le b\}, \quad \int_a^b k(x(t)) dt$$

belong to the set A_0 . Next examples of functionals belonging to the set A_0 can be found for example in [2], [3].

Let
$$\mathcal{A} = \underbrace{\mathcal{A}_0 \times \ldots \times \mathcal{A}_0}_{n}$$
. For each $x \in C^0(J; \mathbb{R}^n)$, $x(t) = (x_1(t), \ldots, x_n(t))$ and $\varphi \in \mathcal{A}, \ \varphi = (\varphi_1, \ldots, \varphi_n)$, we define $\varphi(x)$ by

$$\varphi(x) = (\varphi_1(x_1), \dots, \varphi_n(x_n)). \tag{1}$$

Let $L: C^1(J;\mathbb{R}^n) \to C^0(J;\mathbb{R}^n), F: C^1(J;\mathbb{R}^n) \to L_1(J;\mathbb{R}^n)$ be continuous operators, $L = (L_1, \ldots, L_n), F = (F_1, \ldots, F_n)$. Consider the functional boundary value problem (BVP for short)

$$(x'(t) + L(x)(t))' = F(x)(t), (2)$$

$$\varphi(x) = A, \quad \psi(x') = B.$$
 (3)

Here $\varphi, \psi \in \mathcal{A}, \ \varphi = (\varphi_1, \dots, \varphi_n), \ \psi = (\psi_1, \dots, \psi_n) \text{ and } A, B \in \mathbb{R}^n, \ A = (\psi_1, \dots, \psi_n)$ $(A_1,\ldots,A_n), B=(B_1,\ldots,B_n).$

A function $x \in C^1(J; \mathbb{R}^n)$ is said to be a solution of BVP (2), (3) if the vector function x'(t) + L(x)(t) is absolutely continuous on J, (2) is satisfied for a.e. $t \in J$ and x satisfies the boundary conditions (3).

The aim of this paper is to state sufficient conditions for the existence results of BVP (2), (3). These results are proved by the Leray-Schauder degree and the Borsuk theorem for α -condensing operators (see e.g. [1]). In our case α -condensing operators have the form U+V, where U is a compact operator and V is a strict contraction. We recall that this paper is a continuation of the previous paper by the author [3], where the scalar BVP

$$(x'(t) + L_1(x')(t))' = F_1(x)(t),$$

 $\varphi_1(x) = 0, \quad \psi_1(x') = 0$

was considered. Here $L_1:C^0(J;\mathbb{R})\to C^0(J;\mathbb{R}),\ F_1:C^1(J;\mathbb{R})\to L_1(J;\mathbb{R})$ are continuous operators and $\varphi_1, \psi_1 \in \mathcal{A}_0$ satisfy $\varphi_1(0) = 0 = \psi_1(0)$.

We assume throughout the paper that the continuous operators L and F in (2) satisfy the following assumptions:

 (H_1) There exists $k \in [0, \frac{1}{2\mu}), \mu = \max\{1, T\}$, such that

$$||L(x) - L(y)|| \le k||x - y||_1$$
 for $x, y \in C^1(J; \mathbb{R}^n)$,

 (H_2) There exists $\omega \in \mathcal{K}(J \times [0, \infty); [0, \infty))$ such that

$$|F(x)(t)| \le \omega(t, ||x||_1)$$

for a.e. $t \in J$ and each $x \in C^1(J; \mathbb{R}^n)$.

Remark 1. If assumption (H_1) is satisfied then

$$||L(x)|| \le k||x||_1 + ||L(0)||$$
 for $x \in C^1(J; \mathbb{R}^n)$.

Example 1. Let $w \in C^0(J \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n; \mathbb{R}^n)$, $\chi, \phi \in C^0(J; J)$ and

$$|w(t, r_1, u_1, v_1, z_1) - w(t, r_2, u_2, v_2, z_2)|$$

$$\leq k \max\{|r_1 - r_2|, |u_1 - u_2|, |v_1 - v_2|, |z_1 - z_2|\}$$

for $t \in J$ and $r_i, u_i, v_i, z_i \in \mathbb{R}^n$ (i = 1, 2), where $k \in [0, \frac{1}{2\mu})$. Then the Nemytskii operator $L : C^1(J; \mathbb{R}^n) \to C^0(J; \mathbb{R}^n)$,

$$L(x)(t) = w(t,x(t),x(\chi(t)),x'(t),x'(\phi(t)))$$

satisfies assumption (H_1) .

Example 2. Let $f: J \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ satisfy the Carathéodory conditions on $J \times \mathbb{R}^n \times \mathbb{R}^n$ and

$$|f(t, u, v)| \le \omega(t, \max\{|u|, |v|\})$$

for a.e. $t \in J$ and each $u, v \in \mathbb{R}^n$, where $\omega \in \mathcal{K}(J \times [0, \infty); [0, \infty))$. Then the Nemytskii operator $F : C^1(J; \mathbb{R}^n) \to L_1(J; \mathbb{R}^n)$,

$$F(x)(t) = f(t, x(t), x'(t))$$

satisfies assumption (H_2) .

The existence results for BVP (2), (3) are given in Sec. 3. Here the optimality of our assumptions (H_1) and (H_2) is studied as well. We shall show that $k \in [0, \frac{1}{2})$ can not be replaced be the weaker assumption $k \in [0, \frac{1}{2}]$ in (H_1) provided $T \leq 1$ (see Example 4), and if $k > \frac{1}{2\mu}$ in (H_2) then there exists unsolvable BVP of the type (2), (3) provided T > 1 (see Example 5). Example 6 shows that the condition $\lim_{\varrho \to \infty} \frac{1}{\varrho} \int_0^T \omega(t,\varrho) \, dt = 0$ which appears for ω in (H_2) can not be replaced by $\limsup_{\varrho \to \infty} \frac{1}{\varrho} \int_0^T \omega(t,\varrho) \, dt < \infty$.

2 Auxiliary results

For each $\alpha \in \mathcal{A}_0$, we define the function $p_{\alpha} \in C^0(\mathbb{R}; \mathbb{R})$ by

$$p_{\alpha}(c) = \alpha(c)$$
. ¹

Then p_{α} is increasing on \mathbb{R} and maps \mathbb{R} onto itself. Hence there exists the inverse function $p_{\alpha}^{-1}: \mathbb{R} \to \mathbb{R}$ to p_{α} .

From now on, $m_{\gamma C} \in \mathbb{R}$ is defined for each $\gamma \in \mathcal{A}$, $\gamma = (\gamma_1, \ldots, \gamma_n)$ and $C \in \mathbb{R}^n$, $C = (C_1, \ldots, C_n)$, by

$$m_{\gamma C} = \max\{|p_{\gamma_i}^{-1}(C_i)| : i = 1, \dots, n\}.$$
 (4)

Lemma 1. Let $\gamma \in \mathcal{A}$, $A \in \mathbb{R}^n$ and let $\gamma(x) = A$ for some $x \in C^0(J; \mathbb{R}^n)$. Then there exists $\xi \in \mathbb{R}^n$ such that

$$(x_1(\xi_1),\ldots,x_n(\xi_n))=(p_{\gamma_1}^{-1}(A_1),\ldots,p_{\gamma_n}^{-1}(A_n)).$$

Proof. Fix $j \in \{1, ..., n\}$. If $x_j(t) > p_{\gamma_j}^{-1}(A_j)$ (resp. $x_j(t) < p_{\gamma_j}^{-1}(A_j)$) on J, then $\gamma_j(x_j) > \gamma_j(p_{\gamma_j}^{-1}(A_j)) = A_j$ (resp. $\gamma_j(x_j) < \gamma_j(p_{\gamma_j}^{-1}(A_j)) = A_j$), contrary to $\gamma_j(A_j) = A_j$. Hence there exists $\xi_j \in \mathbb{R}$ such that $x_j(\xi_j) = p_{\gamma_j}^{-1}(A_j)$.

Define the operators

$$\Pi: C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \to C^1(J; \mathbb{R}^n), \quad P: C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \to C^0(J; \mathbb{R}^n),$$

$$Q: C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \to L_1(J; \mathbb{R}^n)$$

by the formulas

$$\Pi(x,a)(t) = \int_0^t x(s) \, ds + a,\tag{5}$$

$$P(x,a)(t) = L(\Pi(x,a))(t)$$
(6)

and

$$Q(x,a)(t) = F(\Pi(x,a))(t). \tag{7}$$

Here L and F are the operators in (2).

Consider BVP

$$x(t) = a + \lambda \Big(-P(x,b)(t) + \int_0^t Q(x,b)(s) \, ds \Big), \tag{8}_{(\lambda,a,b)}$$

$$\varphi\left(\int_0^t x(s) \, ds + b\right) = A,\tag{9}_b$$

$$\psi(x) = B \tag{10}$$

¹We identify the set of all constant scalar functions on J with R.

depending on the parameters $\lambda, a, b, (\lambda, a, b) \in [0, 1] \times \mathbb{R}^n \times \mathbb{R}^n$. Here $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^n$.

We say that $x \in C^0(J; \mathbb{R}^n)$ is a solution of BVP $(8)_{(\lambda,a,b)}$, $(9)_b$, (10) for some $(\lambda, a, b) \in [0, 1] \times \mathbb{R}^n \times \mathbb{R}^n$ if $(8)_{(\lambda,a,b)}$ is satisfied for $t \in J$ and x(t) satisfies the boundary conditions $(9)_b$, (10).

Lemma 2. (A priori bounds). Let assumptions (H_1) and (H_2) be satisfied. Let x(t) be a solution of BVP $(8)_{(\lambda,a,b)}$, $(9)_b$, (10) for some $(\lambda,a,b) \in [0,1] \times \mathbb{R}^n \times \mathbb{R}^n$. Then

$$||x|| < S$$
, $|a| < (1 - k\mu)S$, $|b| < m_{\varphi A} + ST$,

where S is a positive constant such that

$$\frac{m_{\psi B} + 2km_{\varphi A} + 2\|L(0)\|}{u} + \frac{1}{u} \int_{0}^{T} \omega(t, m_{\varphi A} + \mu u) \, dt < 1 - 2k\mu \tag{11}$$

for $u \in [S, \infty)$ and $m_{\varphi A}, m_{\psi B}$ are given by (4).

Proof. By Lemma 1 (cf. (9)_b and (10)), there exist $\xi, \nu \in \mathbb{R}^n$ such that

$$\int_0^{\xi_i} x_i(s) \, ds + b_i = p_{\varphi_i}^{-1}(A_i), \quad x_i(\nu_i) = p_{\psi_i}^{-1}(B_i), \quad i = 1, \dots, n.$$
 (12)

Then (cf. $(8)_{(\lambda,a,b)}$)

$$p_{\psi_i}^{-1}(B_i) = a_i + \lambda \Big(-P_i(x,b)(\nu_i) + \int_0^{\nu_i} Q_i(x,b)(s) \, ds \Big), \tag{13}$$

and consequently (for i = 1, ..., n)

$$x_i(t) = p_{\psi_i}^{-1}(B_i) + \lambda \Big(P_i(x, b)(\nu_i) - P_i(x, b)(t) + \int_{\nu_i}^t Q_i(x, b)(s) \, ds \Big).$$

Hence (cf. (4), (H_1) , (H_2) and Remark 1)

$$|x_i(t)| \le m_{\psi B} + 2k \|\Pi(x, b)\|_1 + 2\|L(0)\| + \int_0^T \omega(t, \|\Pi(x, b)\|_1) dt$$
 (14)

for $t \in J$ and i = 1, ..., n. Since (cf. (5) and (12))

$$\|\Pi(x,b)\| = \left\| \left(\int_0^t x_1(s) \, ds + b_1, \dots, \int_0^t x_n(s) \, ds + b_n \right) \right\|$$

$$= \left\| \left(\int_{\xi_1}^t x_1(s) \, ds + p_{\varphi_1}^{-1}(A_1), \dots, \int_{\xi_n}^t x_n(s) \, ds + p_{\varphi_n}^{-1}(A_n) \right) \right\|$$

$$= \max \left\{ \left\| \int_{\xi_i}^t x_i(s) \, ds + p_{\varphi_i}^{-1}(A_i) \right\|_0 : i = 1, \dots, n \right\} \le m_{\varphi_A} + T \|x\|,$$
(15)

we have

$$\|\Pi(x,b)\|_1 \le \max\{m_{\varphi A} + T\|x\|, \|x\|\} \le m_{\varphi A} + \mu\|x\|. \tag{16}$$

Then (cf. (14)-(16))

$$||x|| \le m_{\psi B} + 2k(m_{\varphi A} + \mu||x||) + 2||L(0)|| + \int_0^T \omega(t, m_{\varphi A} + \mu||x||) dt.$$
 (17)

Set

$$q(u) = \frac{m_{\psi B} + 2km_{\varphi A} + 2||L(0)||}{u} + \frac{1}{u} \int_{0}^{T} \omega(t, m_{\varphi A} + \mu u) dt$$

for $u \in (0, \infty)$. Then $\lim_{u\to\infty} q(u) = 0$. Whence there exists S > 0 such that $q(u) < 1 - 2k\mu$ for $u \ge S$, and so (cf. (17))

Therefore (cf. (12), (13) and (15))

$$|b_{i}| = \left| p_{\varphi_{i}}^{-1}(A_{i}) - \int_{0}^{\xi_{i}} x_{i}(s) \, ds \right| < m_{\varphi A} + ST,$$

$$|a_{i}| = \left| p_{\psi_{i}}^{-1}(B_{i}) + \lambda \left(P_{i}(x,b)(\nu_{i}) - \int_{0}^{\nu_{i}} Q_{i}(x,b)(s) \, ds \right) \right|$$

$$\leq m_{\psi B} + k \|\Pi(x,b)\|_{1} + \|L(0)\| + \int_{0}^{T} \omega(t,\|\Pi(x,b)\|_{1}) \, dt$$

$$\leq m_{\psi B} + k (m_{\varphi A} + \mu S) + \|L(0)\| + \int_{0}^{T} \omega(t,m_{\varphi A} + \mu S) \, dt$$

for i = 1, ..., n, and consequently

$$|a| < (1 - k\mu)S, \quad |b| < m_{\omega A} + ST.$$

Lemma 3. Let assumption (H_2) be satisfied, $\varphi, \psi \in \mathcal{A}$, $A, B \in \mathbb{R}^n$ and S > 0 be a constant such that (11) is satisfied for $u \geq S$. Set

 $< k\mu S + (1 - 2k\mu)S = (1 - k\mu)S$

$$\Omega = \{ (x, a, b) : (x, a, b) \in C^{0}(J; \mathbb{R}^{n}) \times \mathbb{R}^{n} \times \mathbb{R}^{n},$$

$$||x|| < S, |a| < S, |b| < m_{\varphi A} + ST \}$$
(18)

and let $\Gamma: \bar{\Omega} \to C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$ be given by

$$\Gamma(x,a,b) = \left(a, a + \varphi\left(\int_0^t x(s) \, ds + b\right) - A, b + \psi(x) - B\right). \tag{19}$$

Then

$$D(I - \Gamma, \Omega, 0) \neq 0, \tag{20}$$

where "D" denotes the Leray-Schauder degree and I is the identity operator on $C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$.

Proof. Let $U:[0,1]\times\bar{\Omega}\to C^0(J;\mathbb{R}^n)\times\mathbb{R}^n\times\mathbb{R}^n$,

$$U(\lambda, x, a, b) = \left(a, a + \varphi\left(\int_0^t x(s) \, ds + b\right) - (1 - \lambda)\varphi\left(-\int_0^t x(s) \, ds - b\right) - \lambda A,$$
$$b + \psi(x) - (1 - \lambda)\psi(-x) - \lambda B\right).$$

By the theory of homotopy and the Borsuk antipodal theorem, to prove (20) it is sufficient to show that

- (j) $U(0,\cdot)$ is an odd operator,
- (jj) U is a compact operator, and
- (jjj) $U(\lambda, x, a, b) \neq (x, a, b)$ for $(\lambda, x, a, b) \in [0, 1] \times \partial \Omega$.

Since

$$U(0, -x, -a, -b) = \left(-a, -a + \varphi\left(-\int_0^t x(s) \, ds - b\right) - \varphi\left(\int_0^t x(s) \, ds + b\right),$$
$$-b + \psi(-x) - \psi(x)\right) = -U(0, x, a, b)$$

for $(x, a, b) \in \bar{\Omega}$, U is an odd operator.

The compactness of U follows from the properties of φ, ψ and applying the Bolzano-Weierstrass theorem.

Assume that $U(\lambda_0, x_0, a_0, b_0) = (x_0, a_0, b_0)$ for some $(\lambda_0, x_0, a_0, b_0) \in [0, 1] \times \partial \Omega$, $a_0 = (a_{01}, \dots, a_{0n}), b_0 = (b_{01}, \dots, b_{0n})$. Then

$$x_0(t) = a_0, \quad t \in J, \tag{21}$$

$$\varphi(a_0t + b_0) = (1 - \lambda_0)\varphi(-a_0t - b_0) + \lambda_0 A, \tag{22}$$

$$\psi(a_0) = (1 - \lambda_0)\psi(-a_0) + \lambda_0 B, \tag{23}$$

and consequently (cf. (22) and (23))

$$\varphi_i(a_{0i}t + b_{0i}) = (1 - \lambda_0)\varphi_i(-a_{0i}t - b_{0i}) + \lambda_0 A_i, \tag{24}$$

$$\psi_i(a_{0i}) = (1 - \lambda_0)\psi_i(-a_{0i}) + \lambda_0 B_i$$
(25)

for i = 1, ..., n. Fix $i \in \{1, ..., n\}$. If $a_{0i} > 0$ then $\psi_i(-a_{0i}) < \psi_i(a_{0i})$, and so (cf. (25)) $\psi_i(a_{0i}) \le (1 - \lambda_0)\psi_i(a_{0i}) + \lambda_0 B_i$. Therefore

$$\lambda_0 \psi_i(a_{0i}) \le \lambda_0 B_i. \tag{26}$$

For $\lambda_0 = 0$ we obtain (cf. (25)) $\psi_i(a_{0i}) = \psi_i(-a_{0i})$, a contradiction. Let $\lambda_0 \in (0, 1]$. Then (cf. (26)) $\psi_i(a_{0i}) \leq B_i$ and

$$0 < a_{0i} \le p_{\psi_i}^{-1}(B_i) \le m_{\psi B}. \tag{27}$$

If $a_{0i} < 0$ then $\psi_i(a_{0i}) < \psi_i(-a_{0i})$ and (cf. (25)) $\psi_i(a_{0i}) \ge (1 - \lambda_0)\psi_i(a_{0i}) + \lambda_0 B_i$. Hence

$$\lambda_0 \psi_i(a_{0i}) \ge \lambda_0 B_i. \tag{28}$$

For $\lambda_0 = 0$ we obtain (cf. (25)) $\psi_i(a_{0i}) = \psi_i(-a_{0i})$, which is impossible. Let $\lambda_0 \in (0, 1]$. Then (cf. (28))

$$0 > a_{0i} \ge p_{\psi_i}^{-1}(B_i) \ge -m_{\psi B}. \tag{29}$$

From (27) and (29) we deduce

$$|a_{0i}| \le m_{\psi B}. \tag{30}$$

Assume that $a_{0i}t + b_{0i} > 0$ for $t \in J$. Then $\varphi_i(-a_{0i}t - b_{0i}) < \varphi_i(a_{0i}t + b_{0i})$, and so (cf. (24)) $\lambda_0 \neq 0$ and $\varphi_i(a_{0i}t + b_{0i}) \leq (1 - \lambda_0)\varphi_i(a_{0i}t + b_{0i}) + \lambda_0 A_i$. Hence

$$\varphi_i(a_{0i}t + b_{0i}) \le A_i.$$

If $a_{0i}t + b_{0i} > p_{\varphi_i}^{-1}(A_i)$ for $t \in J$ then $A_i \ge \varphi_i(a_{0i}t + b_{0i}) > \varphi_i(p_{\varphi_i}^{-1}(A_i)) = A_i$, a contradiction. Thus there is $\xi_i \in J$ such that

$$0 < a_{0i}\xi_i + b_{0i} \le p_{\varphi_i}^{-1}(A_i) \le m_{\varphi A}. \tag{31}$$

Let $a_{0i}t + b_{0i} < 0$ for $t \in J$. Then $\varphi_i(a_{0i}t + b_{0i}) < \varphi_i(-a_{0i}t - b_{0i})$ and (24) implies that $\lambda_0 \neq 0$ and $\varphi_i(-a_{0i}t - b_{0i}) \leq A_i$. If $-a_{0i}t - b_{0i} > p_{\varphi_i}^{-1}(A_i)$ for $t \in J$ then $A_i \geq \varphi_i(-a_{0i}t - b_{0i}) > \varphi_i(p_{\varphi_i}^{-1}(A_i)) = A_i$, a contradiction. Hence there exists $\nu_i \in J$ such that

$$0 < -a_{0i}\nu_i - b_{0i} \le p_{\varphi_i}^{-1}(A_i) \le m_{\varphi A}. \tag{32}$$

We have proved that there exists $\tau_i \in J$ such that (cf. (31) and (32))

$$|a_{0i}\tau_i + b_{0i}| \leq m_{\varphi A}$$

and consequently (cf. (30))

$$|b_{0i}| \le |a_{0i}\tau_i + b_{0i}| + |a_{0i}\tau_i| \le m_{\varphi A} + Tm_{\psi B}. \tag{33}$$

Since (cf. (11)) $m_{\psi B} < (1 - k\mu)S \le S$, it follows that (cf. (21), (30) and (33))

$$||x_0|| < S$$
, $|a| < S$, $|b| < m_{\varphi A} + ST$,

contrary to $(x_0, a_0, b_0) \in \partial \Omega$.

3 Existence results, examples

The main result of this paper is given in the following theorem.

Theorem 1. Let assumptions (H_1) and (H_2) be satisfied. Then for each $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^n$, BVP(2), (3) has a solution.

Proof. Fix $\varphi, \psi \in \mathcal{A}$ and $A, B \in \mathbb{R}^n$. Let S be a positive constant such that (11) is satisfied for $u \geq S$ and $\Omega \subset C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$ be defined by (18). Let $U, V : \bar{\Omega} \to C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$,

$$U(x, a, b) = \left(a + \int_0^t Q(x, b)(s) \, ds, \, a + \varphi\left(\int_0^t x(s) \, ds + b\right) - A, \, b + \psi(x) - B\right),$$

$$V(x, a, b) = (-P(x, b)(t), 0, 0)$$

and let $W, Z : [0,1] \times \bar{\Omega} \to C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$,

$$W(\lambda, x, a, b) = \left(a + \lambda \int_0^t Q(x, b)(s) \, ds, \ a + \varphi\left(\int_0^t x(s) \, ds + b\right) - A, \ b + \psi(x) - B\right),$$

$$Z(\lambda, x, a, b) = \lambda V(x, a, b).$$

Then $W(0,\cdot)+Z(0,\cdot)=\Gamma(\cdot)$ and $W(1,\cdot)+Z(1,\cdot)=U(\cdot)+V(\cdot)$, where Γ is defined by (19). By Lemma 3, $D(I-W(0,\cdot)-Z(0,\cdot),\Omega,0)\neq 0$, and consequently, by the theory of homotopy (see e.g. [1]), to show that

$$D(I - U - V, \Omega, 0) \neq 0 \tag{34}$$

it suffices to prove:

- (i) W is a compact operator,
- (ii) there exists $m \in [0,1)$ such that

$$||Z(\lambda, x, a, b) - Z(\lambda, y, c, d)||_* \le m||(x, a, b) - (y, c, d)||_*$$

for $\lambda \in [0,1]$ and $(x,a,b), (y,c,d) \in \overline{\Omega}$,

(iii)
$$W(\lambda, x, a, b) + Z(\lambda, x, a, b) \neq (x, a, b)$$
 for $(\lambda, x, a, b) \in [0, 1] \times \partial \Omega$.

The continuity of W follows from that of Q, φ and ψ . We claim that $W([0,1] \times \bar{\Omega})$ is a relatively compact subset of the Banach space $C^0(J; \mathbb{R}^n) \times \mathbb{R}^n \times \mathbb{R}^n$.

Indeed, let
$$\{(\lambda_j, x_j, a_j, b_j)\} \subset [0, 1] \times \bar{\Omega}, x_j = (x_{j1}, \dots, x_{jn}), a_j = (a_{j1}, \dots, a_{jn}), b_j = (b_{j1}, \dots, b_{jn}) \ (j \in \mathbb{N}).$$
 Then (cf. (7), (H_2) and (18))

$$\left| a_{ji} + \lambda \int_{0}^{t} Q_{i}(x_{j}, b_{j})(s) ds \right| \leq |a_{ji}| + \int_{0}^{T} \left| Q_{i}(x_{j}, b_{j})(s) \right| ds$$

$$< S + \int_{0}^{T} \omega(t, \|\Pi(x_{j}, b_{j})\|_{1}) dt \leq S + \int_{0}^{T} \omega(t, \mu \|x_{j}\| + |b_{j}|) dt$$

$$\leq S + \int_{0}^{T} \omega(t, m_{\varphi A} + S(\mu + T)) dt,$$

$$\left| \int_{t_{1}}^{t_{2}} Q_{i}(x_{j}, b_{j})(s) ds \right| \leq \left| \int_{t_{1}}^{t_{2}} \omega(t, m_{\varphi A} + S(\mu + T)) dt \right|,$$

$$\left| a_{ji} + \varphi_{i} \left(\int_{0}^{t} x_{ji}(s) ds + b_{ji} \right) - A_{i} \right|$$

$$< S + \max\{ |p_{\varphi_{i}}(-m_{\varphi A} - 2ST)|, |p_{\varphi_{i}}(m_{\varphi A} + 2ST)|\} + |A|$$

and

$$|b_{ji} + \psi_i(x_{ji}) - B_i| < m_{\varphi A} + ST + \max\{|p_{\psi_i}(-S)|, |p_{\psi_i}(S)|\} + |B|$$

for $t, t_1, t_2 \in J$, i = 1, ..., n and $j \in \mathbb{N}$. Therefore there exists a convergent subsequence of $\{W(\lambda_j, x_j, a_j, b_j)\}$ by the Arzelà-Ascoli theorem and the Bolzano-Weierstrass theorem. Hence W is a compact operator.

Let
$$(\lambda, x, a, b), (\lambda, y, c, d) \in [0, 1] \times \overline{\Omega}$$
. Then (cf. (H_1) and (6))

$$\begin{split} \|Z(\lambda,x,a,b) - Z(\lambda,y,c,d)\|_* &\leq \|P(x,b) - P(y,d)\| = \|L(\Pi(x,b)) - L(\Pi(y,d))\| \\ &\leq k \|\Pi(x,b) - \Pi(y,d)\|_1 = k \max\{\|\Pi(x,b) - \Pi(y,d)\|, \|x-y\|\} \\ &\leq k \max\{\|x-y\|T + |b-d|, \|x-y\|\} \\ &\leq k \mu(\|x-y\| + |b-d|) \leq k \mu\|(x,a,b) - (y,c,d)\|_*. \end{split}$$

Hence (ii) holds with $m = k\mu < \frac{1}{2}$.

Suppose (iii) was false. Then we could find $(\lambda_0, x_0, a_0, b_0) \in [0, 1] \times \partial\Omega$ such that

$$W(\lambda_0, x_0, a_0, b_0) + Z(\lambda_0, x_0, a_0, b_0) = (x_0, a_0, b_0).$$

Then

$$x_0(t) = a_0 + \lambda_0 \left(-P(x_0, b_0)(t) + \int_0^t Q(x_0, b_0)(s) \, ds \right) \quad \text{for } t \in J,$$

$$\varphi \left(\int_0^t x_0(s) \, ds + b_0 \right) = A, \quad \psi(x_0) = B,$$

and consequently $x_0(t)$ is a solution of BVP $(8)_{(\lambda_0,a_0,b_0)}$, $(9)_{b_0}$, (10). By Lemma 2, $||x_0|| < S$, $|a_0| < (1-k\mu)S \le S$ and $|b_0| < m_{\varphi A} + ST$, contrary to $(x_0, a_0, b_0) \in \partial \Omega$.

We have proved (34). Therefore there exists a fixed point of the operator U + V, say (u, a, b). It follows that

$$u(t) = a - P(u,b)(t) + \int_0^t Q(u,b)(s) ds \text{ for } t \in J,$$
 (35)

$$\varphi\left(\int_0^t u(s)\,ds + b\right) = A, \quad \psi(u) = B. \tag{36}$$

Set $x(t) = \int_0^t u(s) ds + b$, $t \in J$. Then (cf. (5)-(7), (35) and (36))

$$x'(t) = a - L(x)(t) + \int_0^t F(x)(s) ds \quad \text{for } t \in J,$$

$$\varphi(x) = A, \quad \psi(x') = B,$$

and we see that x(t) is a solution of BVP (2), (3).

Example 3. Let $w_{ji} \in C^0(J; \mathbb{R})$, $\alpha_i, \beta_i, \gamma_i, \delta_i \in C^0(J; J)$ for j = 1, 2, ..., 9 and i = 1, 2. Define $L_i : C^1(J; \mathbb{R}^2) \to C^0(J; \mathbb{R})$ (i = 1, 2) by

$$L_{i}(x)(t) = w_{1i}(t)x_{1}(t) + w_{2i}(t)x_{2}(t) + w_{3i}(t)x_{1}(\alpha_{i}(t)) + w_{4i}(t)x_{2}(\beta_{i}(t)) + w_{5i}(t)x'_{1}(t) + w_{6i}(t)x'_{2}(t) + w_{7i}(t)x'_{1}(\gamma_{i}(t)) + w_{8i}(t)x'_{2}(\delta_{i}(t)) + w_{9i}(t).$$

Let $F_i: C^1(J; \mathbb{R}^2) \to L_1(J; \mathbb{R})$ (i = 1, 2) be continuous operators such that

$$|F_i(x)(t)| \le \widetilde{\omega}(t, ||x||_1)$$

for a.e. $t \in J$ and each $x \in C^1(J; \mathbb{R}^2)$, where $\widetilde{\omega} \in \mathcal{K}(J \times [0, \infty); [0, \infty))$.

Consider BVP

$$(x'_1(t) + L_1(x)(t))' = F_1(x)(t),$$

$$(x'_2(t) + L_2(x)(t))' = F_2(x)(t),$$
(37)

$$\varphi_1(x_1) = A_1, \quad \varphi_2(x_2) = A_2, \quad \psi_1(x_1') = B_1, \quad \psi_2(x_2') = B_2.$$
 (38)

By Theorem 1, for each $\varphi_i, \psi_i \in \mathcal{A}_0$ and $A_i, B_i \in \mathbb{R}$ (i = 1, 2), BVP (37), (38) has a solution provided $\sum_{j=1}^{8} \|w_{ji}\|_0 < \frac{1}{2\mu}$ for i = 1, 2.

Next Example 4 shows that for $T \leq 1$ the condition $k \in [0, \frac{1}{2})$ in (H_1) is optimal and can not be replaced by $k \in [0, \frac{1}{2}]$. In the case of T > 1 we will show (see Example 5) that for each $k > \frac{1}{2T}$ in (H_1) there exists an unsolvable BVP of the type (2), (3) satisfying (H_2) .

Example 4. Let $T \leq 1$. Consider BVP

$$(x'_1(t) + \alpha(t)(x'_1(T) + x'_2(T)))' = 1,$$

$$(x'_2(t) + \alpha(t)(x'_1(T) + x'_2(T)))' = 1,$$
(39)

$$\varphi_1(x_1) = A_1, \min\{x_1'(t) : t \in J\} = 0,
\varphi_2(x_2) = A_2, \min\{x_2'(t) : t \in J\} = 0,$$
(40)

where $\alpha \in C^0(J; \mathbb{R})$, $\|\alpha\|_0 = \frac{1}{4}$, $\alpha(0) = \frac{1}{4}$, $\alpha(T) = -\frac{1}{4}$, $\varphi_1, \varphi_2 \in \mathcal{A}_0$ and $A_1, A_2 \in \mathbb{R}$.

Let $L_i: C^1(J; \mathbb{R}^2) \to C^0(J; \mathbb{R}), L_i(x)(t) = \alpha(t)(x_1'(T) + x_2'(T))$ (i = 1, 2). Then

$$||L_i(x) - L_i(y)||_0 \le ||\alpha||_0 (|x_1'(T) - y_1'(T)| + |x_2'(T) - y_2'(T)|)$$

$$\le \frac{1}{4} (||x_1' - y_1'||_0 + ||x_2' - y_2'||_0) \le \frac{1}{2} ||x' - y'|| \le \frac{1}{2} ||x - y||_1,$$

and so $||L(x) - L(y)|| \le \frac{1}{2} ||x - y||_1$ for $x, y \in C^1(J; \mathbb{R}^2)$ where $L = (L_1, L_2)$. BVP (39), (40) satisfies (H_2) with $\omega(t, \varrho) = 1$ but in (H_1) we have $k = \frac{1}{2} (= \frac{1}{2\mu})$.

Assume that $u(t)=(u_1(t),u_2(t))$ is a solution of BVP (39), (40). Then $u_1'=u_2'$. Indeed, since $(u_1'(t)-u_2'(t))'=0$ for $t\in J$ there exists $c\in\mathbb{R}$ such that $u_1'(t)=u_2'(t)+c$ on J. From $\min\{u_1'(t):t\in J\}=\min\{u_2'(t):t\in J\}=0$ we deduce that $u_1'(\nu)=0, u_2'(\tau)=0$ for some $\nu,\tau\in J$, and so $0=u_1'(\nu)=u_2'(\nu)+c\geq c$. If c<0 then $0\leq u_1'(\tau)=c$, a contradiction. Hence c=0 and then

$$(u_1'(t) + 2\alpha(t)u_1'(T))' = 1$$
 for $t \in J$.

Using the equality $u_1'(\nu) = 0$ we have

$$u_1'(t) = 2(\alpha(\nu) - \alpha(t))u_1'(T) + t - \nu \text{ for } t \in J.$$
 (41)

If $\nu = 0$ then (cf. (41) with t = T) $u_1'(T) = u_1'(T) + T$, which is impossible. Assume $\nu \in (0, T]$. Then (cf. (41) with t = 0)

$$u_1'(0) = 2\left(\alpha(\nu) - \frac{1}{4}\right)u_1'(T) - \nu \le -\nu$$

contrary to $u'_1(t) \geq 0$ for $t \in J$. It follows that BVP (39), (40) is unsolvable.

Example 5. Let T > 1 and $\varepsilon > 1$. Consider BVP

$$(x_1'(t) + \alpha(t)(x_1(T) + x_2(T)))' = 1,$$

$$(x_2'(t) + \alpha(t)(x_1(T) + x_2(T)))' = 1,$$
(42)

$$\min\{x_i(t): t \in J\} = 0, \quad \min\{x_i'(t): t \in J\} = 0, \quad i = 1, 2, \tag{43}$$

where $\alpha \in C^0(J; \mathbb{R})$, $\|\alpha\|_0 = \frac{\varepsilon}{4T}$, $\int_0^T \alpha(s) ds = -\frac{1}{4}$, $\alpha(0) = \frac{1}{4T}$, $\alpha(T) = -\frac{\varepsilon}{4T}$ and $\alpha(t) \leq \frac{1}{4T}$ for $t \in J$.

 $\alpha(t) \leq \frac{1}{4T} \text{ for } t \in J.$ Let $L_i : C^1(J; \mathbb{R}^2) \to C^0(J; \mathbb{R}), (L_i x)(t) = \alpha(t)(x_1(T) + x_2(T)) \ (i = 1, 2).$ Then

$$||L_i(x) - L_i(y)||_0 \le ||\alpha||_0 (|x_1(T) - y_1(T)| + |x_2(T) - y_2(T)|)$$

$$\le \frac{\varepsilon}{4T} (||x_1 - y_1||_0 + ||x_2 - y_2||_0) \le \frac{\varepsilon}{2T} ||x - y|| \le \frac{\varepsilon}{2T} ||x - y||_1,$$

and so $||Lx - Ly|| \le \frac{\varepsilon}{2T} ||x - y||_1$ for $x, y \in C^1(J; \mathbb{R}^2)$ where $L = (L_1, L_2)$. Hence BVP (42), (43) satisfies (H_2) with $\omega(t, \varrho) = 1$ but in (H_1) we have $k = \frac{\varepsilon}{2T}$ $(> \frac{1}{2\mu})$.

Assume that $u(t) = (u_1(t), u_2(t))$ is a solution of BVP (42), (43). Applying the same procedure as in Example 4, it is obvious that $u_1 = u_2$. Hence

$$(u_1'(t) + 2\alpha(t)u_1(T))' = 1$$
 for $t \in J$,

and since $\min\{u_1(t): t \in J\} = 0$ and $\min\{u_1'(t): t \in J\} = 0$ we have $u_1(t) \ge 0$, $u_1'(t) \ge 0$ on J and $u_1'(\nu) = 0$ for some $\nu \in J$. Therefore

$$u_1'(t) = 2(\alpha(\nu) - \alpha(t))u_1(T) + t - \nu \text{ for } t \in J.$$
 (44)

Assume $\nu = 0$. Then

$$u_1'(t) = 2\left(\frac{1}{4T} - \alpha(t)\right)u_1(T) + t \ge t$$

and so $u_1(t)$ is increasing on J and $\min\{u_1(t): t \in J\} = 0$ implies $u_1(0) = 0$. Hence

$$u_1(t) = 2\left(\frac{t}{4T} - \int_0^t \alpha(s) \, ds\right) u_1(T) + \frac{t^2}{2}$$
 for $t \in J$

and

$$u_1(T) = 2\left(\frac{1}{4} - \int_0^T \alpha(s) \, ds\right) u_1(T) + \frac{T^2}{2} = u_1(T) + \frac{T^2}{2},$$

which is impossible.

Let $\nu \in (0, T]$. Then (cf. (44))

$$u_1'(0) = 2(\alpha(\nu) - \frac{1}{4T})u_1(T) - \nu \le -\nu,$$

contrary to $\min\{u'_1(t): t \in J\} = 0$. We have proved that BVP (42), (43) is unsolvable.

The following example demonstrates that the condition $\lim_{\varrho \to \infty} \int_0^T \omega(t,\varrho) dt = 0$ in (H_2) can not be replaced by $\limsup_{\varrho \to \infty} \int_0^T \omega(t,\varrho) dt < \infty$.

Example 6. Consider BVP

$$x_1''(t) = 1 + \frac{2}{T^2} ||x||_1, \quad x_2''(t) = 1 + \sqrt{||x||},$$
 (45)

$$\min\{x_1(t): t \in J\} = 0, \ \varphi_1(x_2) = A, \ \min\{x_1'(t): t \in J\} = 0, \ \varphi_2(x_2') = B, \ (46)$$

where $\varphi_1, \varphi_2 \in \mathcal{A}_0$ and $A, B \in \mathbb{R}$. Assume that BVP (45), (46) is solvable and let $u(t) = (u_1(t), u_2(t))$ be its solution. Then $u_1''(t) \ge 1$ on J and the equality $\min\{u_1'(t): t \in J\} = 0$ implies $u_1'(0) = 0$. Hence

$$u_1'(t) = \left(1 + \frac{2}{T^2} \|u\|_1\right) t \quad \text{for } t \in J,$$
 (47)

and consequently $u_1(t)$ is increasing on J. From $\min\{u_1(t): t \in J\} = 0$ we deduce that $u_1(0) = 0$ and then (cf. (47))

$$u_1(t) = \frac{1}{2} \left(1 + \frac{2}{T^2} ||u||_1 \right) t^2 \text{ for } t \in J.$$

Therefore

$$||u_1||_0 = \frac{T^2}{2} + ||u||_1 \ge \frac{T^2}{2} + ||u_1||_0.$$

which is impossible. Hence BVP (45), (46) is unsolvable.

We note that for (45) the inequality $|F(x)(t)| \leq \omega(t, ||x||_1)$ in (H_2) is optimal with respect to the function ω for $\omega(t, \varrho) = 1 + \max\left\{\frac{2}{T^2}\varrho, \sqrt{\varrho}\right\}$ and we see that $\lim_{\varrho \to \infty} \frac{1}{\varrho} \int_0^T \omega(t, \varrho) dt = \frac{2}{T}$.

Reference

- [1] Deimling K., Nonlinear Functional Analysis. Springer Berlin Heidelberg, 1985.
- [2] Staněk S., Multiple solutions for some functional boundary value problems. Nonlin. Anal. 32(1998), 427–438.
- [3] Staněk S., Functional boundary value problems for second order functional differential equations of the neutral type. Glasnik Matematički (to apear).