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SECOND-ORDER DIFFERENTIAL INCLUSIONS WITH
ALMOST CONVEX RIGHT-HAND SIDES

D. AFFANE AND D. AZZAM-LAOUIR

ABSTRACT. We study the existence of solutions of a boundary second
order differential inclusion under conditions that are strictly weaker than
the usual assumption of convexity on the values of the right-hand side.

1. INTRODUCTION

The existence of solutions for second order differential inclusions of the
form w(t) € F(t,u(t),a(t))(t € [0,1]) with boundary conditions, where F' :
[0,1] x E x E = E is a convex compact multifunction, Lebesgue-measurable
on [0, 1], upper semicontinuous on F x E and integrably compact in finite
and infinite dimensional spaces has been studied by many authors see for
example [1],[7]. Our aim in this article is to provide an existence result
for the differential inclusion with two-point boundary conditions in a finite
dimensional space F of the form

i(t) € F(u(t),u(t)), ae. te€a,b], (0<a<b<+00)
(rr){ S
u(a) = u(b) = vy,
where F': Ex E = E is an upper semicontinuous multifunction with almost
convex values, i.e., the convexity is replaced by a strictly weaker condition.

For the first order differential inclusions with almost convex values we
refer the reader to [5].

After some preliminaries, we present a result which is the existence of
W%’l([a, b])-solutions of (Pr) where F' is a convex valued multifunction.
Using this convexified problem we show that the differential inclusion (Pp)
has solutions if the values of F' are almost convex. As an example of the
almost convexity of the values of the right-hand side, notice that, if F'(¢, x,y)
is a convex set not containing the origin then the boundary of F(z,y),
OF(z,y), is almost convex.

2. NOTATION AND PRELIMINARIES

Throughout, (E, ||.||) is a real separable Banach space and E’ is its topo-
logical dual, B is the closed unit ball of E and o(E, E’) the weak topology
on E. We denote by L ([a, b]) the space of all Lebesgue-Bochner integrable
E valued mappings defined on [a, b].
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Let Cg([a, b]) be the Banach space of all continuous mappings u : [a, b] —
E endowed with the sup-norm, and Ck([a,b]) be the Banach space of all
continuous mappings u : [a,b] — FE with continuous derivative, equipped
with the norm

[uller = max{ max [[u(#)[], bmaXllU( -
tefab] telab

Recall that a mapping v : [a,b] — E is said to be scalarly derivable when
there exists some mapping v : [a,b] — E (called the weak derivative of v)
such that, for every 2’ € E’, the scalar function {2/, v(-)) is derivable and its
derivative is equal to (z/,0(-)). The weak derivative ¥ of ¥ when it exists is
the weak second derivative.

By W%’l([a, b]) we denote the space of all continuous mappings in Cg([a, b])
such that their first derivatives are continuous and their second weak deriva-
tives belong to LL.([a,d]).

For a subset A C E, co(A) denotes its convex hull and co(A) its closed
convex hull.

Let X be a vector space, a set K C X is called almost convex if for every
¢ € co(K) there exist A7 and Ao, 0 < Ay < 1 < A9, such that \§ € K,
A€ e K.

Note that every convex set is almost convex.

3. THE MAIN RESULT

We begin with a lemma which summarizes some properties of some Green
type function. It will after be used in the study of our boundary value
problems (see [1], [7] and [3]).

Lemma 3.1. Let E be a separable Banach space, vg € E and G : [a,b] x
[a,b] = R (0 <a < b<oo) be the function defined by
1
——(b-1t)(s—a) if a<s<t<b,
G(t,s) =
—E(t—a)(b—s) if a<t<s<b

Then the following assertions hold.
(1) Ifu e W% 1([(1 b)) with u(a) = u(b) = vy, then

u(t)—vo—l——/ G(t,s)i(s)ds, Vt € [a,b].

(2) G(.,s) is derivable on [a,b] for every s € [a,b], except on the diagonal,
and its derivative is given by

oG l(S—UL) if a<s<t<b
- (t,s) = b1
ot _E(b_s) if a<t<s<b.
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(3) G(.,.) and %(,) satisfy

swp Gt <t s | Cs) <. (3.1)
t,s€a,b] t,s€[a,b|,t#s ot
(4) For f € LL([a,b]) and for the mapping uys : [a,b] — E defined by
b
up(t) =wvo + %/ G(t,s)f(s)ds, Vte [a,b (3.2)

one has ug(a) = ug(b) = vo.
Furthermore, the mapping uy is derivable, and its derivative 1y satisfies

i h) —u b b oG
g D= g - s @)

for all t € [a,b]. Consequently, iy is a continuous mapping from [a,b] into
the space E.

(5) The mapping 1y is scalarly derivable, that is, there exists a mapping
iy : [a,b] — E such that, for every «' € E', the scalar function (x',us(.)) is

d
derivable, with E@l’ﬁf(t» = (', 1is(t)), furthermore
iy = f a.e.ona,b]. (3.4)

Let us mention a useful consequence of Lemma 3.1.

Proposition 3.2. Let E be a separable Banach space and let f : [a,b] — E
be a continuous mapping (respectively a mapping in Li([a,b])). Then the

mapping ,
b
up(t) =vo + E/ G(t,s)f(s)ds, Vt € [a,b]

is the unique C2%([a,b])-solution (respectively W%l([a, b])-solution) to the
differential equation

{ a(t) = f(t), Vtela,bl,
u(a) = u(b) = vg.

The following is an existence result for a second order differential inclusion

with boundary conditions and a convex valued right hand side. It will be
used in the proof of our main theorem.

Proposition 3.3. Let E be a finite dimensional space, F' : E x E =3 E
be a convex compact valued multifunction, upper semicontinuous on E X
E. Suppose that there is a nonnegative function m € L ([a,b]) such that
F(z,y) C m(t)Bg for all x,y € [a,b]. Let vg € E. Then the W%’l([a, b])-
solutions set of the problem
P ){ i(t) € F(u(t),u(t)), ae. t€ [a,b],
" u(a) = u(b) = v,
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is nonempty and compact in CL([a,b]).
Proof. Step 1. Let

S ={f € Lp([a,d]) : [f(®)] < m(t),ae.t€ [a,b]}
and

X ={uyr:[a,b] = E: up(t) —v0+—/Gt5 s)ds,Vt € [a,b], f € S}.

Obviously S and X are convex. Let us prove that Sis a o(LL([a,b]), LY ([a, b]))-
compact subset of L ([a,b]). Indeed, let (f,,) be a sequence of S. It is clear
that (fy) is bounded in LY ([a, b]), taking a subsequence if necessary, we may
conclude that (f,) weakly* or o(L¥([a,b]), L% ([a,b]))-converges to some
mapping f € LY ([a,b]) C Li([a,b]). Consequently, for all y(-) € Li([a,b])

we have

Tim (£, 50) = (FC) ()
Let 2(-) € LY([a,b]) € LL([a,b]), then

Jim (fu(-), 2()) = (F(), 2())-
This shows that (f,) weakly or o(L}([a,b]), L5 ([a,b]))-converges to f(-)
and that ||f(¢)|| < m(t) a.e on [a, b] since S is convex and strongly closed in
L% ([a,b]) and hence it is weakly closed in LL([a, ]).

Now, let us prove that X is compact in CL([a,b]) equipped with the norm
|| - HCI For any uy € X and all t,7 € [a,b] we have

\wﬂw—uﬂﬂnsb_a/WGts G(r. )7 (3)]ds

IN

b a/a G(t,s) — G(7, 5)|m(s)ds

and by the relation (3.3) in Lemma 3.1

iy (t) = ap(r)l] < o— / e (T s)IlIf (s)llds

/r ) m(s)ds.

Since m € L ([a,b]) and the function G is umformly continuous we get the

equicontinuity of the sets X and {uy : uy € X}. On the other hand, for any
uy € X and for all ¢ € [a,b] we have by the relations (3.1), (3.2) and (3.3)

b2

[y @I < Twoll + 7=

b—a

b
d |t < ——
(g and [lig ()] < - lml

that is, the sets X(¢) and {us(t) : uy € X} are relatively compact in the

finite dimensional space E. Hence, we conclude that X is relatively compact
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in (CL([a,b]), |- /lc1). We claim that X is closed in (CL([a,d]), |- [lc1). Fix
any sequence (uy, ) of X converging to u € Ck([a,b]). Then, for each n € N

Ufn()—vo+—/ G(t,s)fn(s)ds, ¥Vt € [a,b]

and f, € S. Since S is o(LL([a,b]), L% ([a, b]))—compact by extracting a
subsequence if necessary we may conclude that (f,) o(LL([a,0]), LY ([a, b]))-
converges to f € S. Putting for all ¢ € [a, b]

b
ug(t) =vo + %/ G(t,s)f(s)ds
we obtain for all z(-) € L% ([a,b]) and for all ¢ € [a, b]

Hence
b b

fim [ (G 5)fals).2(s)ds = T [ {u(s), Gt )2(s))ds

n—oo n—oo

¢ b
— [ U669

b
= /(G(t,s)f(s),z(s))ds.

X[a,p] (+)€j, where x[q 5 (-) stands for the characteristic
;) a basis of E, we obtain

In particular, for z(-) =
function of [a, b] and (e
b

b
lim <G(t7 S)fn(s)7 Xla,b] (8)€j>d8 = / <G(t7 S)f(s)7 Xla,b] (S)€j>d$7

—
n—oo a

or equivalently

—
n—oo a

b
( lim G(t,s)fn(s)ds,ej) / G(t,s)f(s)ds,e;),
which entails

, b [° b
lim (vg + m/a G(t,s)fn(s)ds) = vo + 5

n—oo

b
/ G(t,s)f(s)ds = uy(t).

—a a

Consequently, the sequence (uy, ) converges to us in Cg([a,b]). By the same
arguments, we prove that the sequence (uy,) with

i 0= [ X o(oyas, e e

converges to 1y in Cg([a,b]). That is, (uy,) converges to us in Ck([a,b]).
This shows that X is compact in (Ck([a, b)), - |lc1)-
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Step 2. Observe that a mapping u : [a,b] — E is a W' ([a, b])-solution
of (Pr) iff there exists uy € X and f(t) € F(uy(t),us(t)) for a.e t € [a,b].

For any Lebesgue-measurable mappings v,w : [a,b] — E, there is a
Lesbegue-measurable selection s € S such that s(t) € F(v(t),w(t)) a.e.
Indeed, there exist sequences (v,) and (w,) of simple E-valued functions
such that (v,) converges pointwise to v and (w,) converges pointwise to
w for E endowed by the strong topology. Notice that the multifunctions
F(vn(.),w,(.)) are Lebesgue-measurable. Let s, be a Lesbegue-measurable
selection of F(v,(.),wn(.)). As s,(t) € F(va(t),w,(t)) € m(t)Bg for all
t € [a,b] and S is (L ([a, b]), LY ([a, b]))-compact in L ([a, b]), by Eberlein-
Smulian theorem, we may extract from (s,) a subsequence (s/,) which con-
verges o (L ([a, b)), L ([a,b])) to some mapping s € S. Here we may invoke
the fact that S is a weakly compact metrizable set in the separable Banach
space L ([a,b]). Now, application of the Mazur’s trick to (s},) provides a
sequence (z,) with 2z, € co{sl, : m > n} such that (z,) converges almost
every where to s. Then, for almost every t € [a, b]

s(t) € ﬂ {zn(t) : n >k}

k>0
c (e@lsn(t): n>k}.
k>0
As s/ (t) € F(vn(t), wn(t)), we obtain
s(t) € (el Flualt),wa(t))
k>0 n>k
— @o(limsup Fun(t), wn (),

n—oo

using the pointwise convergence of (v, (-)) and (w,(-)) to v(:) and (w(-))
respectively, the upper semicontinuity of F’ and the compactness of its values
we get
s(t) € co(F(v(t), w(t))) = F(uv(t), w(t))
since F'(v(t),w(t)) is a closed convex set.
Step 3. Let us consider the multifunction ® : S = S defined by

(f)={g €S+ glt) € Flug(t). (1)) a.et € [a,b]}

where uy € X. In view of Step 2, ®(f) is a nonempty set. These considera-
tions lead us to the application of the Kakutani-ky Fan fixed point theorem
to the multifunction ®(.). It is clear that ®(f) is a convex weakly compact
subset of S. We need to check that ® is upper semicontinuous on the con-
vex weakly compact metrizable set S. Equivalently, we need to prove that
the graph of @ is sequentially weakly compact in S x S. Let (f,,g,) be a

sequence in the graph of ®. (f,) C S. By extracting a subsequence we may
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suppose that (f,,) o(LL([a,b]), LY ([a,b])) converges to f € S. It follows that
the sequences (uy, ) and (i, ) converge pointwise to uy and 1y respectively.
On the other hand, g, € ®(f,) C S. We may suppose that (g,) converges
weakly to some element g € S. As g,(t) € F(uy,(t),uy,(t)) a.e., by repeat-
ing the arguments given in Step 2, we obtain that g(t) € F(uy(t),1us(t)) a.e.
This shows that the graph of ® is weakly compact in the weakly compact
set S x S. Hence ® admits a fixed point, that is, there exists f € S such that
f e ®(f) and so f(t) € F(us(t),us(t)) for almost every t € [a,b]. Equiv-
alently (see Lemma 3.1) iif(t) € F(ug(t),us(t)) for almost evert ¢ € [a,b]
with uf(a) = 4s(b) = vp, what in turn, means that the mapping us is a
W%’l([a, b])-solution of the problem (Pr). Compactness of the solutions set
follows easily from the compactness in Ck([a,b]) of X given in Step 1, and
the preceding arguments. |

Now, we present an existence result of solutions to the problem (Pp) if
we suppose on F' a linear growth condition.

Theoreme 3.4. Let E be a finite dimensional space and F : E X E =3 E
be a convexr compact valued multifunction, upper semicontinuous on E X E.
Suppose that there is two nonnegative functions p and q in Lk ([a,b]) with

b—a _
lp+aliLy < —5— such that F(z,y) C (p(8)]lz]+bg(t)[yl)Bp for allt € [a, b]

and for all (z,y) € E X E. Let vy € E. Then the W%l([a, b])-solutions set
of the problem (Pr) is nonempty and compact in CL([a,b)).

For the proof of our Theorem we need the following Lemma.

Lemma 3.5. Let E be a finite dimensional space. Suppose that the hypothe-
ses of Theorem 3.4 are satisfied. If u is a solution in W%’l([a, b)) of the
problem (Pr), then for all t € [a,b] we have

where

Proof. Suppose that u : [a,b] — E is a W%l([a, b])-solution of (Pp).
Then, there exists a measurable mapping f : [a,b] — E such that f(t) €
F(ugs(t),7s(t)) for almost every t € [a,b] and

b b
u(t) = us(t) = vo+ 7— / G(t,s)f(s)ds Vt € [a, b)].
.
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Consequently, for all ¢ € [a, b]
\mmu—Wm+———/"Gts )ds]
<ol + 52 [ 16,176 )las
qw%—/ ()]l + ba(s)(s)]))ds
<HmH+———/ lullcy +a(s)lullcy ds

[ 006) + e,

and hence,
b2
lu@) < llvoll + 7=

—p+ally ullcy,-
In the same way we have

b
—a

il = 52 [ 22155 wu_g——/’\ (t,9)l1(5)]ds

b b . b
sb_al<M$mwm+w«$mwwm8sg;;w+qhwwm?
and hence
. b2 b2
()] < >l +ally ey < llooll+ > lIp + gy Julcy.

These last inequalities show that

b2
lulley, < llvoll + 5=

|lp + gl ullcy

or
2

(A= r—lp+alc)lulcy, < lvoll,
equivalently
[[voll
HuHClE < 5 = Q.
1= r—lp+alu

By the definition of HuHC}E we conclude that for all ¢ € [a, D]

[u@®)]| <o and [Ja@)]| <
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Proof of Theorem 3.4. Let us consider the mapping ¢, : £ — E defined
by

A I

or(x) = { B o] > s,

and consider the multifunction Fy : £ X E = E defined by

Fo(z,y) = F(pa(@), 02 (y))-
Then Fj inherits the hypotheses on F', and furthermore, for all (z,y) € ExXE

Fo(z,y) = Flealz),02(y))
C (pM)[|a (@)l + ba(t) |02 (y)[)Bre

C (p(t)a + b%Q(t)O‘)EE = a(p(t) + q(t))Bp = 3(t)Bp-

Consequently, Fy satisfies all the hypotheses of Proposition 3.3. Hence, we
conclude the existence of a W%’l([a, b])-solution of the problem (Pg,).
Now, let us prove that u is a solution of (Pp,) if and only if u is a solution
of (Pr).

If u is a solution of (Pg,), there exists a measurable mapping fp such that
u=1uy, and fo(t) € Fo(u(t),u(t)), a.e., with for almost every t € [a, b]

[fo@)I < B(t) = alp(t) + q(t))-

Using this inequality and the fact that for all ¢ € [a, ]

b b oG
<>—v0+—/ G(t, ) fols)ds, and a(t) = —— [ ZZ(t,5) fo(s)ds
we obtain
bZ
Ju(t)]] < flvoll 1 = llvoll + p——allp +alls
b? l|lvo | l|lvo |
= lvol| + ( ) lp+qllp: = =a,
b—a’1— = |lp+qlps o=+l
and
b b [|vol|
@Il < 7=—lBllLy = g=allp +alluy = ( ) P+ qllp
b— b—a’1— = lp+q|ps §
b [|vol] b—a, «
< ——
S T ) ) T

These last relations show that po(u(t)) = u(t) and e (u(t)) = u(t), or
t

equivalently Fy(u(t),u(t)) = F(u(t),u(t)). Consequently, u is a solution of

(Pp).
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Suppose now that u is a solution of (Pr). By Lemma 3.5, we have for all
t € [a,b

lu@)]] < a and [la(t)]| <

Salls

Then, F(u(t),u(t)) = Fo(u(t),u(t)), that is, u is a solution of (Pg,). [ |

Now we are able to give our main result.

Theoreme 3.6. Let E be a finite dimensional space and F : Ex E =3 F
be an almost convex compact valued multifunction, upper semicontinuous on
E x E and satisfying the following assumptions:

(1) there is two nonnegative functions p,q € Lk ([a,b]), satisfying

22 such that F(z,y) © (p(t)||z]| + ba(®)|ly])Be for all

lp+alluy < =5

(x,y) e ExXE,

(2) F(z,8y) CE&F(x,y) for all (z,y) € E x E and for every & > 0.

Let vg € E. Then there is at least a W%’l([a, b])-solution of the problem
(Pr).

For the proof we need the following result.

Theoreme 3.7. Let F': E X E = E be a multifunction upper semicontin-
uous on E x E. Suppose that the assumption (2) in Theorem 3.6 is also
satisfied. Let vg € E and let x : [a,b] — E, be a solution of the problem

i(t) € co(F(u(t),u(t))), a.e. t€la,b],
<““”{ u(a) = u(b) = v,

and assume that there are two constants A1 and Ao, satisfying 0 < A\ <1 <
A2, such that for almost every t € |a,b], we have

ME(t) € F(xz(t), () and X (t) € F(z(t), (t)).

Then there exists t = t(T), a nondecreasing absolutely continuous map of
the interval [a,b] onto itself, such that the map (1) = z(t(7)) is a solution
of the problem (Pp). Moreover Z(a) = Z(b) = vy.

Proof. Step 1. Let [, ] (0 < a < f < 400) be an interval, and assume
that there exist two constants A, Ay, with the properties stated above.
Assume that A\; > 0. We claim that there exist two measurable subsets
of o, 8], having characteristic functions &; and X such that X} + Xy =
Ao, and an absolutely continuous function s = s(7) on [a, ], satisfying
s(a) — s(B) = a — B, such that

) 1 1
5(1) = —X1(7) + —Xa(7).
A1 Ao
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Indeed, set

1
— when A\ =X =1
_ 2
7 A2 — otherwise
Ay — A '

With this definition we have that 0 <~ <1 and that both equalities
=9+ 1—=7)=79A+ (1 —7).

In particular, we have

B B
AL (1T—=7)A
1dt = — 4+ ——"dt.
/a /a [>\1 * A2 ]

Applying Liapunov’s theorem on the range of measures, to infer the existence
of two subsets having characteristic functions Xj(.), X2(.) such that &; +
Xy = X[, 5 and with the property that

B B
/ 1dt:/ [)\11X1()+)\i22\,’2(t)]dt.

B
Define $(7) = )%XKT) + %QXQ(T). Then / s(t)dr = 3 — «a.

Step 2. (a) Consider
C={rela,bl: 0€ F(x(r),z(r))}

We have that C'is a closed set. Indeed, let (7,,) be a sequence in C' converging
to 7 € [a,b]. Then, for each n € N,

0 € F(x(m), 2(1)).

Since F' is upper semicontinuous with compact values we have that it’s graph

is closed, and since z(-) and () are continuous we get 0 € F(z(7),2(7)),

that is C is closed.

(b) Consider the case in which C' is empty. In this case, it cannot be that

A1 = 0, and the Step 1 can be applied to the interval [a,b]. Set s(7) = a +
b

/ $(w)dw, s is increasing and we have s(a) = a and s(b) = a+/ $(w)dw =
a+b—a =0, that is s maps [a, b onto itself. Let ¢ : [a,b] — a[a, b] be its
d
inverse, so t(a) = a; t(b) = b, and we have d—s(t( 7)) = $(t(1))t(r) =
T
Then, (1) = m = M (H(T)) + XaXso(t(7)), and (1) = 0. Consider
d . d2
the map Z(7) = z(t(7)). We have d—fU(T) = t(1)&(t(7)), and —Z(1) =
T

2
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then we get

Consequently
d2

_(7) € F(i(r), #(7)).

(c) Now we shall assume that C' is nonempty. Let ¢ = sup{r; 7 € C}, there

is a sequence (7,) in C such that lim 7, = ¢. Since C' is closed we get ¢ € C.
n—oo

The complement of C' is open relative to [a, b], it consists of at most count-
ably many nonoverlapping open intervals |a;, b;[, with the possible exception
of one of the form [a;,, b;,[ with a;, = a and one of the form ]aif, bif] with
aj, = c. For each ¢, apply Step 1 to the interval lai, b;i[ to infer the ex-
istence of K{ and K&, two subsets of ]a;, b;| with characteristic functions
X{(.), X5(.) such that X{ + X = X, p,[, setting

$(r) = 31 + - 3(7)

b;
/ $(w)dw = b; — a;.

1

we obtain

(d) On [a, ] set
s(r )=—Xc Z )+ Xz( );

where the sum is over all intervals contamed in [a, c], i.e., with the exception
of Je,b]. We have that

/ $(wdw=r<c—a

b; T
since Ay > 1 and / $(w)dw = b; — a;. Setting s(1) = a —|—/ $(w)dw, we

obtain that s is an invertible map from [a, ¢] to [a, k + a.
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(e) Define ¢ : [,k + a] — [a,c] to be the inverse of s(.). Extend #(.) as an
absolutely continuous map #(.) on [a, c], setting #(7) = 0 for 7 €]k + a,c].
We claim that the function #(7) = x(£(7)) is a solution to the problem (Pr)
on the interval [a, c]. Moreover, we claim that it satisfies Z(c) = z(c).
Observe that, as in (b), we have that for 7 € [a,x + a, t(r) = t(r) is
invertible, such that £(7) = A Xo(7) + 3, (M A7) + A2 Xa(7)). Since
d? . . . . . .
(1) = (H(n))*E(t(r) + Hr)i(t(r)) = E@7))(E())*,

we get
25(r . . .
T = D) = Daelt(r) + S + D))
€ Flat() (7)) = Fa(r), 7=5(7)
1 - -
C 7))
Consequently

2
%i(ﬂ € F(z(r),z(1)).

In particular, from ¢(k + a) = ¢ and ¢(7) = 0 for all 7 €]k + a, c] we obtain
t(r) =t(k +a) = t(k +a), V1 €]k + a, ]
then
T(k+a) =2(t(k +a)) = 2(t(7)) = 2(7), V7 €]k + a, ]
so, on |k + a, c], T is constant, and since ¢ € C' we have

d? .
ﬁi(ﬂ =0¢€ F(x(c),z(c)) = F(Z(k+a), =

T a)j(n+a)) C F(z(r),z(1)).

This proves the claim.

(f) It is left to define the solution on [¢, b]. On it, Ay > 0 and the construction

of Step 1 and (b) can be repeated to find a solution to problem (Pr) on [c, b].

This completes the proof of the theorem. |
Proof of the Theorem 3.6. In view of Theorem 3.4, and since co(F) :

FE x EF = F is a multifunction with compact values, upper semicontinuous

on F x E and furthermore, for all (z,y) € E x E,

co(F(z,y)) € (p(®)]|z]| + ba(t)llyl)coB ) = (p(t)l|z[| + ba(t)l|y]) B,

we conclude the existence of a W%’l ([a, b])-solution z of the problem (Ppo(f)).-

By the almost convexity of the values of F', there exist two constants A; and
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Ao, satisfying 0 < A; < 1 < Ay, such that, for almost every ¢ € [a,b], we
have

ME(t) € F(xz(t), () and A& (t) € F(x(t), (t)).
Using Theorem 3.7, we conclude the existence of a W%’l([a, b])-solution of
the problem (Pp).
This completes the proof of our main result. |

REFERENCES

[1] D. Azzam-Laouir, C. Castaing and L. Thibault, Three boundary value problems for
second order differential inclusion in Banach spaces, Control and cybernetics, vol. 31
(2002) No.3.

[2] D. Azzam-Laouir and S. Lounis, Nonconvex perturbations of second order maximal
monotone differential inclusions, Topological Methods in Nonlinear Analysis. Volume
35, 2010, 305-317.

[3] S.R. Bernfeld and V. Lakshmikantham, An introduction to nonlinear boundary value
problems, Academic Press, Inc. New York and London, 1974.

[4] A. Cellina and G. Colombo, On a classical problem of the calculus of variations without
convexity assumption, Ann. Inst. H. Poincaré, Anal. Non Linéaire,7 (1990), pp. 97-
106.

[5] A. Cellina and A. Ornelas, Existence of solutions to differential inclusion and optimal
control problems in the autonomous case, Siam J. Control Optim. Vol. 42, (2003) No.
1, pp. 260-265.

[6] A. F. Filippov, On certain questions in the theory of optimal control, Vestnik. Univ.,
Ser. Mat. Mech., 2(1959), pp. 25-32; translated in SIAM J. Control, 1(1962), pp.
76-84.

[7] A. G. Ibrahim and A. M. M. Gomaa, Existence theorems for functional multivalued
three-point boundary value problem of second order, J. Egypt. Math. Soc. 8(2) (2000),
155-168.

(Received December 12, 2010)

D. AFFANE

LABORATOIRE DE MATHEMATIQUES PURES ET APPLIQUEES, UNIVERSITE DE JIJEL, ALGERIE
E-mail address: affanedoria@yahoo.fr

D.L. AZZAM

LABORATOIRE DE MATHEMATIQUES PURES ET APPLIQUEES, UNIVERSITE DE JIJEL, ALGERIE
E-mail address: azzam-d@yahoo.com

EJQTDE, 2011 No. 34, p. 14



