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Abstract. We derive new comparison theorems and oscillation criteria for neutral dif-
ferential equations of third order with negative term. We show that one can deduce
oscillation criteria for the equation with negative term from those for the equation with
positive term. We give some examples and show applications to equation with sym-
metric operator.
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1 Introduction

Functional and neutral differential equations play an important role in many applications and
have a long and rich history with a substantial contribution of Hungarian mathematicians,
among them Tibor Krisztin who focused among others on asymptotic properties of delay and
neutral functional differential equations of first order and applications, see e.g. [11] and [12].

Recently, much attention has been devoted to the oscillation of the neutral differential
equation with a positive term(

1
p(t)

(
1

r(t)
[
x(t) + a(t)x

(
γ(t)

)]′)′)′
+ q(t) f

(
x
(
δ(t)

))
= 0, (E+)

see e.g. [1, 2, 7–9, 15] and references given there.
The aim of this paper is to consider the third-order neutral differential equation with

negative term (
1

r(t)

(
1

p(t)
[
z(t) + a(t)z

(
γ(t)

)]′)′)′ − q(t) f
(
z
(
δ(t)

))
= 0 (E−)
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where t ≥ t0. Moreover, we will consider the linear version of this equation(
1

r(t)

(
1

p(t)
[
z(t) + a(t)z

(
γ(t)

)]′)′)′ − q(t)z
(
δ(t)

)
= 0. (L−)

Observe that differential operators in both equations, i.e. in equations (E+) and (E−), are
mutually adjoint and therefore functions in operators are interchanged.

We will always assume that

(i) p, r, q, a, γ, δ ∈ C[t0, ∞), p(t), r(t), q(t), γ(t), δ(t) are positive for t ≥ t0,

(ii)
∫ ∞

t0
p(t)dt =

∫ ∞
t0

r(t)dt = ∞,

(iii) γ(t) ≤ t, limt→∞ γ(t) = ∞,

(iv) limt→∞ δ(t) = ∞,

(v) 0 ≤ a(t) ≤ a0 < 1 for t ≥ t0,

(vi) f ∈ C(R, R), f is odd, f (v)v > 0 for v 6= 0.

It will be convenient to set for each solution z(t) of (E−)

v(t) = z(t) + a(t)z
(
γ(t)

)
. (1.1)

If v is a function defined by (1.1), then functions

v[0] = v, v[1] =
1

p(t)
v′, v[2] =

1
r(t)

(
1

p(t)
v′
)′

=
1

r(t)
(
v[1]
)′.

are called quasiderivatives of v.
A solution z of (E−) is said to be proper if it exists on the interval [t0, ∞) and satisfies the

condition
sup{|z(s)| : t ≤ s < ∞} > 0 for any t ≥ t0.

A proper solution is called oscillatory or nonoscillatory according to whether it does or does not
have arbitrarily large zeros.

Definition 1.1. Equation (E−) is said to have property B if any proper solution z of (E−) is
either oscillatory or satisfies

lim
t→∞

∣∣z(t)∣∣∫ t
t0

p(s)
∫ s

t0
r(u)du ds

= ∞. (1.2)

Later we show that (1.2) is equivalent to limt→∞
∣∣v[2](t)∣∣ = ∞ (see Lemma 3.6). Hence, in

case a(t) ≡ 0 this yields the original definition of property B introduced by I. Kiguradze for
ordinary differential equations (see [10]).

To simplify notation, we set

LA3 (·) =
d
dt

1
r(t)

d
dt

1
p(t)

d
dt

(·), L3(·) =
d
dt

1
p(t)

d
dt

1
r(t)

d
dt

(·).
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2 Preliminaries: linear ODE and FDE

First, consider the special case of (L−), where a(t) ≡ 0 and δ(t) = t, i.e. the third-order linear
differential equation (

1
r(t)

(
1

p(t)
z′(t)

)′)′
− q(t)z(t) = 0. (2.1)

For completeness, we summarize basic results concerning the oscillatory behaviour of (2.1),
which we will need in our later consideration.

It is a well-known fact (see for instance [10]) that all nonoscillatory solutions x of (2.1) can
be divided into the two classes:

M1 =
{

z solution of (2.1), ∃ Tz : z(t)z[1](t) > 0, z(t)z[2](t) < 0 for t ≥ Tz

}
M3 =

{
z solution of (2.1), ∃ Tz : z(t)z[1](t) > 0, z(t)z[2](t) > 0 for t ≥ Tz

}
.

Definition 2.1. Equation (2.1) is said to have property B if any proper solution z of (2.1) is
either oscillatory or satisfies ∣∣z[i](t)∣∣ ↑ ∞ as t→ ∞, i = 0, 1, 2.

Equation (2.1) is said to have weak property B if any proper solution x of (2.1) is either
oscillatory or belongs toM3.

Equation (2.1) is said to be oscillatory if it has at least one oscillatory solution, otherwise it
is said to be nonoscillatory.

Theorem A ([6, Theorem 6]). If∫ ∞

t0

q(t)
∫ t

t0

r(s)
∫ s

t0

p(v)dv ds dt < ∞, (2.2)

then (2.1) is nonoscillatory.

Theorem B ([3, Lemma 2.2]). Equation (2.1) has weak property B if and only if it is oscillatory.

Theorem C ([3, Theorem 2.2]). Equation (2.1) has property B if and only if it is oscillatory and∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v)dv ds dt = ∞. (2.3)

Proposition 2.2. The classM3 6= ∅ for (2.1). If (2.2) holds, thenM1 6= ∅ for (2.1).

Proof. The first part follows from [14, Lemma 2]. The second part follows from Theorems A
and B.

Proposition 2.3. Every solution z of (2.1) from classM3 satisfies

|z[2](t)| < ∞

if and only if ∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v)dv ds dt < ∞.

Proof. It follows from the proof of Theorem 1 in [4].
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Proposition 2.4 ([5, Theorem 7]). Consider equation (2.1), where p(t) = r(t) for large t. Then (2.1)
has property B if and only if it has weak property B.

Now consider the linear functional differential equation(
1

r(t)

(
1

p(t)
z′(t)

)′)′
− q(t)z

(
δ(t)

)
= 0. (2.4)

The classification of nonoscillatory solutions of (2.4) and definitions of property B and weak
property B are the same as for equation (2.1).

One of our main tools will be the comparison method for third-order linear functional
differential equations

LA3 y(t)− q1(t)y
(
δ1(t)

)
= 0 (2.5)

and
LA3 z(t)− q2(t)z

(
δ2(t)

)
= 0 (2.6)

where q1(t) ≥ q2(t) > 0 and limt→∞ δ1(t) = limt→∞ δ2(t) = ∞.

Proposition 2.5. Assume

δ1(t) ≥ δ2(t) and q1(t) ≥ q2(t) for t ≥ t1.

a) If there exists a solution y ∈ M1 of (2.5), then there exists a solution z ∈ M1 of (2.6).

b) If there exists a solution y ∈ M3 of (2.5) such that |y[2](t)| < ∞, then there exists a solution
z ∈ M3 of (2.6) such that |z[2](t)| < ∞.

Proof. It follows from [13, Theorem 2-ii)] and its proof.

Proposition 2.6. If δ(t) ≤ t and

∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v)dv ds dt < ∞, (2.7)

then equation (2.4) has a solution x ∈ M3 such that limt→∞ |z[2](t)| < ∞.

Proof. By Propositions 2.2 and 2.3, equation (2.1) has a solution z in the class M3 such that
limt→∞ |z[2](t)| < ∞. Now the conclusion follows from Proposition 2.5 b).

The following theorem extends Proposition 2.4 to functional differential equations. This
result is interesting in the light of results from the book [17], where various criteria for weak
property B are given.

Theorem 2.7. Assume that p(t) = r(t), δ(t) ≤ t and

lim inf
t→∞

∫ δ(t)
t0

p(s)
∫ s

t0
p(u)du ds∫ t

t0
p(s)

∫ s
t0

p(u)du ds
> 0. (2.8)

Then (2.4) has property B if and only if it has weak property B.
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Proof. “=⇒”: It is immediate.
“⇐=”: Assume by contradiction that there exists a solution z ∈ M3 of (2.4) such that

limt→∞ z[2](t) = c > 0, i.e. there exists ε > 0 such that

c− ε ≤ z[2](t) ≤ c.

Integrating this inequality twice from t0 to t we obtain

(c− ε)
∫ t

t0

p(s)
∫ s

t0

p(u)du ds ≤ z(t) ≤ c
∫ t

t0

p(s)
∫ s

t0

p(u)du ds.

Therefore using (2.8) we get

1 ≥
z
(
δ(t)

)
z(t)

≥
(c− ε)

∫ δ(t)
t0

p(s)
∫ s

t0
p(u)du ds

c
∫ t

t0
p(s)

∫ s
t0

p(u)du ds
> 0. (2.9)

Consider the linear equation(
1

p(t)

(
1

p(t)
y′(t)

)′)′
− q(t)

z(δ(t))
z(t)

y(t) = 0. (2.10)

Then y = z is a solution of (2.10). By Theorem C, we get∫ ∞

t0

q(t)
z(δ(t))

z(t)

∫ t

t0

p(s)
∫ s

t0

p(v)dv ds dt < ∞.

In view of (2.9), we get ∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

p(v)dv ds dt < ∞.

By Theorem A, the linear equation(
1

p(t)

(
1

p(t)
x′(t)

)′)′
− q(t)x(t) = 0

is nonoscillatory and it has a solution x ∈ M1 by Proposition 2.2.
Consider the delayed equation(

1
p(t)

(
1

p(t)
z′(t)

)′)′
− q(t)

x(t)
x(δ(t))

z
(
δ(t)

)
= 0. (2.11)

Then z = x is a solution of (2.11). Since x is increasing and δ(t) ≤ t, we have

x(t)
x(δ(t))

≥ 1 for large t.

By the comparison theorem for the functional differential equations (Proposition 2.5), equation
(2.4) has a solution x ∈ M1, a contradiction.

Example 2.8. Consider the equation

z′′′ − q(t)z(kt) = 0 (2.12)

where 0 < k < 1. A quick computation shows that condition (2.8) holds and therefore (2.12)
has property B if and only if it has weak property B.
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We finish this part by recalling a result concerning equivalence between property B and
property A. Consider the equation

L3x(t) + q(t)x(t) = 0. (2.13)

The equation (2.13) is said to have property A if any proper solution x of (2.13) is either
oscillatory or satisfies

∣∣x[i](t)∣∣ ↓ 0 as t→ ∞, i = 0, 1, 2.

Theorem D ([4, Theorem 1]). Equation (2.13) has property A if and only if equation (2.1) has
property B.

3 Basic properties of neutral equations

In this section we establish some auxiliary results concerning the properties of solutions of
neutral equation (E−).

Lemma 3.1. Let z be a nonoscillatory solution of (E−) and let v be defined by (1.1). Then v, v[1], v[2]

are monotone for large t.

Proof. The proof is similar to the proof of Lemma 1 in [8] and therefore it is omitted.

Again, as in the case of ordinary (functional) differential equations, we can divide all
solutions of (E−) into two classes.

Lemma 3.2. Let z be a nonoscillatory solution of (E−) and let v be defined by (1.1). Then there are
only two possible classes of solutions

M1 =
{

z solution, ∃ Tz : v(t)v[1](t) > 0, v(t)v[2](t) < 0 for t ≥ Tz

}
,

M3 =
{

z solution, ∃ Tz : v(t)v[1](t) > 0, v(t)v[2](t) > 0 for t ≥ Tz

}
.

Proof. Without loss of generality we may assume that there exists t1 such that z
(
γ(t)

)
> 0,

z
(
δ(t)

)
> 0, z(t) > 0 for t ≥ t1. Then v(t) ≥ z(t) > 0 and from (E−)(

v[2](t)
)′
= q(t) f

(
z
(
δ(t)

))
> 0.

Therefore v[2] is increasing and there exists t2 ≥ t1 such that there are two possibilities. Either
v[2](t) > 0 or v[2](t) < 0 for t ≥ t2.

Assume that v[2](t) > 0 for t ≥ t2. Then there exists an M > 0 such that

v[2](t) ≥ M > 0.

Integrating from t2 to t we get

v[1](t)− v[1](t2) ≥ M
∫ t

t2

r(s)ds,

v[1](t) ≥ v[1](t2) + M
∫ t

t2

r(s)ds.

Letting t → ∞ and using the fact that
∫ ∞

t0
r(t)dt = ∞, we get v[1](t) → ∞, i.e. v[1](t) > 0

eventually, i.e. z is from the classM3.
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Now assume that v[2](t) < 0 for t ≥ t2. Therefore v[1] is decreasing and there exists t3 ≥ t2

such that there are two possibilities, either v[1](t) > 0 or v[1](t) < 0 for t ≥ t3. Assume that
v[1](t) < 0. Then there exists a constant N > 0 such that

v[1](t) ≤ −N < 0.

Integrating this inequality from t3 to t we have

v(t) ≤ v(t2)− N
∫ t

t3

p(s)ds.

Letting t → ∞ and using the fact that
∫ ∞

t0
p(t)dt = ∞ we get v(t) → −∞, i.e. v(t) < 0

eventually, a contradiction. Hence v[1](t) > 0 and z is from the classM1.

Lemma 3.3. Every solution z of (E−) satisfies

(1− a0)|v(t)| ≤ |z(t)| ≤ |v(t)| (3.1)

for t ≥ T, where v is defined by (1.1).

Proof. The proof is similar to the proof of Lemma 2 in [8] and therefore it is omitted.

First, we prove a lemma which helps with characterizing solutions from the classM1.

Lemma 3.4. Assume that z is a solution of (E−) from the classM1. Then

lim
t→∞

v[2](t) = 0.

Proof. Let z ∈ M1. Without loss of generality we may assume that z is eventually positive, i.e.
there exists T ≥ t0 such that v(t) > 0, v[1](t) > 0, v[2](t) < 0 for t ≥ T.

Assume by contradiction that

lim
t→∞

(
− v[2](t)

)
= l > 0.

Then we have (
v[1](t)

)′ ≤ −lr(t)

and by integrating from T to t we get

v[1](t) ≤ v[1](T)− l
∫ t

T
r(s)ds.

Letting t→ ∞ we get a contradiction.

The following lemmas summarize results concerning solutions from the classM3.

Lemma 3.5. Let z be an eventually positive solution of (E−) from the classM3, then

lim
t→∞

∣∣v[i](t)∣∣ = ∞, i = 0, 1.

Moreover, if f is increasing, f (uv) ≥ f (u) f (v) for all positive u, v and∫ ∞

t0

q(s) f
(∫ δ(s)

t0

p(u)
∫ u

t0

r(w)dw du
)

ds = ∞ (3.2)

holds, then
lim
t→∞

∣∣v[2](t)∣∣ = ∞.
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Proof. Set y = v[1] and x = v[2]. Then z is a solution of (E−) if and only if
(
v, y, x

)
is a solution

of the system
v′(t) = p(t)y(t)

y′(t) = r(t)x(t)

x′(t) = q(t) f
(
z
(
δ(t)

))
.

(3.3)

Let z ∈ M3. Then the vector
(
v, y, x

)
is a solution of system (3.3) such that

sgn z(t) = sgn v(t) = sgn y(t) = sgn x(t) for large t.

We show that
lim
t→∞

v(t) = lim
t→∞

y(t) = lim
t→∞

x(t) = ∞.

There exists T ≥ t0 such that v(t) > 0, y(t) > 0, x(t) > 0 for t ≥ T. As y is eventually
increasing, there exists T1 ≥ T and K > 0 such that

v′(t) = p(t)y(t) ≥ p(t)K for t ≥ T1.

Integrating in [T1, t] we get

v(t) ≥ K
∫ t

T1

p(s)ds.

Using the assumption
∫ ∞

t0
p(t)dt = ∞ we get limt→∞ v(t) = ∞.

Since x(t) is eventually increasing, there exists T2 ≥ T1 and L > 0 such that

y′(t) = r(t)x(t) ≥ r(t)L for t ≥ T2

and integrating in [T2, t] we obtain

y(t) ≥ L
∫ t

T2

r(s)ds. (3.4)

Using the assumption
∫ ∞

t0
r(t)dt = ∞ we get limt→∞ y(t) = ∞, which completes the proof of

the first part of the assertion.
Now integrating the first equation of (3.3) and using (3.4) we obtain

v
(
δ(t)

)
≥
∫ δ(t)

T1

p(s)y(s)ds ≥ L
∫ δ(t)

T1

p(s)
∫ s

T1

r(u)du ds.

From here and (3.1)

z
(
δ(t)

)
≥ L

1− a0

∫ δ(t)

T1

p(s)
∫ s

T1

r(u)du ds. (3.5)

Using the third equation of (3.3) and (3.5), there exists T2 ≥ T1 such that

x′(t) = q(t) f
(
z
(
δ(t)

))
≥ q(t) f

(
L

1− a0

∫ δ(t)

T1

p(s)
∫ s

T1

r(u)du ds
)

.

Using the fact that f (uv) ≥ f (u) f (v) and integrating the last inequality from T2 to t we have

x(t) ≥ f
(

L
1− a0

) ∫ t

T2

q(s) f
(∫ δ(s)

T2

p(u)
∫ u

T1

r(w)dw du
)

ds

and taking into account that (3.2) holds, we get limt→∞ x(t) = ∞, which completes the proof.
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Lemma 3.6. Let z be a nonoscillatory solution of (E−) from the classM3. Then

lim
t→∞

∣∣v[2](t)∣∣ = ∞

if and only if

lim
t→∞

∣∣z(t)∣∣∫ t
t0

p(s)
∫ s

t0
r(u)du ds

= ∞. (3.6)

Proof. Without loss of generality, we may assume that there exists t1 ≥ t0 such that z(t) > 0,
v[1](t) > 0 and v[2](t) > 0 for t ≥ t1.
”⇒”: Observe that since

∫ t
t0

r(s)ds is increasing function, there exists t2 ≥ t1 such that for
T ≥ t2 we have ∫ T

t2

p(t)
∫ t

t2

r(s)ds dt ≥
∫ T

t2

p(t)
∫ t2+1

t2

r(s)ds dt ≥ K
∫ T

t2

p(t)dt,

i.e. the fact that
∫ ∞

t0
p(t)dt = ∞ implies

∫ ∞
t0

p(t)
∫ t

t0
r(s)ds dt = ∞. This justifies the following

computations.
Using (3.1), Lemma 3.5 and the L’Hospital rule we get

lim
t→∞

z(t)∫ t
t0

p(s)
∫ s

t0
r(u)du ds

≥ (1− a0) lim
t→∞

v(t)∫ t
t0

p(s)
∫ s

t0
r(u)du ds

= (1− a0) lim
t→∞

v′(t)

p(t)
∫ t

t0
r(s)ds

= (1− a0) lim
t→∞

v[1](t)∫ t
t0

r(s)ds

= (1− a0) lim
t→∞

(
v[1](t)

)′
r

= (1− a0) lim
t→∞

v[2](t) = ∞,

which proves the first part of the assertion.
”⇐”: Suppose there exists a positive constant L such that v[2](∞) < L, i.e. as v[2] is increasing
v[2](t) < L for t0 ≤ t ≤ ∞.

Integrating this inequality twice from t1 to t we obtain

v(t) < v(t1) + v[1](t1)
∫ t

t1

p(s)ds + L
∫ t

t1

p(s)
∫ s

t1

r(u)du ds,

which implies

v(t)∫ t
t1

p(s)
∫ s

t1
r(u)du ds

<
v(t1)∫ t

t1
p(s)

∫ s
t1

r(u)du ds
+

v[1](t1)
∫ t

t1
p(s)ds∫ t

t1
p(s)

∫ s
t1

r(u)du ds
+ L.

Obviously, using L’Hospital’s rule we get

lim
t→∞

∫ t
t1

p(s)ds∫ t
t1

p(s)
∫ s

t1
r(u)du ds

=
1∫ t

t1
r(s)ds

= 0

and so

lim
t→∞

v(t)∫ t
t1

p(s)
∫ s

t1
r(u)du ds

< ∞.

Since v(t) ≥ z(t), we get a contradiction with (3.6).
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For equation (L−) we have the following characterization of solutions from the classM3.

Lemma 3.7. Let z be a nonoscillatory solution of (L−) from the classM3. Then the following asser-
tions are equivalent:

i) ∫ ∞

t0

q(s)
∫ δ(s)

t0

p(u)
∫ u

t0

r(w)dw du ds = ∞,

ii)
lim

∣∣v[i](t)∣∣ = ∞, for i = 0, 1, 2,

iii)

lim
t→∞

∣∣z(t)∣∣∫ t
t0

p(s)
∫ s

t0
r(u)du ds

= ∞.

Proof. “i) =⇒ ii)“ It follows from Lemma 3.5.
“ii) =⇒ i)“ Without loss of generality, we may assume that there exists t1 ≥ t0 such that

z
(
δ(t)

)
> 0, v[1](t) > 0 and v[2](t) > 0 for t ≥ t1. Assume by contradiction that∫ ∞

t0

q(s)
∫ δ(s)

t0

p(u)
∫ u

t0

r(w)dw du ds < ∞. (3.7)

We can choose T ≥ t1 such that∫ t

T
q(s)

∫ δ(s)

T
p(u)

∫ u

T
r(w)dw du ds < 1

for every t ≥ T. Integrating equation (L−) from T to t and using Lemma 3.3 we get

v[2](t) = v[2](T) +
∫ t

T
q(s)z

(
δ(s)

)
ds ≤ v[2](T) +

∫ t

T
q(s)v

(
δ(s)

)
ds. (3.8)

We can express v and v[1] as follows:

v(t) = v(T) +
∫ t

T
v′(s)ds = v(T) +

∫ t

T
p(s)v[1](s)ds, (3.9)

v[1](t) = v[1](T) +
∫ t

T
r(s)v[2](s)ds. (3.10)

Using (3.10) in (3.9) and setting t = δ(t) we obtain

v
(
δ(t)

)
= v(T) + v[1](T)

∫ δ(t)

T
p(s)ds +

∫ δ(t)

T
p(s)

∫ s

T
r(u)v[2]u du ds. (3.11)

Substituting (3.11) in (3.8) gives

v[2](t) ≤ v[2](T) + v(T)
∫ t

T
q(s)ds + v[1](T)

∫ t

T
q(s)

∫ δ(s)

T
p(u)du ds

+
∫ t

T
q(s)

∫ δ(s)

T
p(u)

∫ u

T
r(w)v[2](w)dw du ds.

Since v[2] is increasing, it follows that

v[2](t) ≤
v[2](T) + v(T)

∫ t
T q(s)ds + v[1](T)

∫ t
T q(s)

∫ δ(s)
T p(u)du ds

1−
∫ t

T q(s)
∫ δ(s)

T p(u)
∫ u

T r(w)dw du ds
.

Moreover, (3.7) implies that
∫ ∞

T q(s)ds < ∞ and
∫ ∞

T q(s)
∫ δ(s)

T p(u)du dt < ∞, thus v[2](t) < ∞.
“ii)⇐⇒ iii)“ It follows from Lemma 3.6.
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4 Comparison theorems for the superlinear case

We state separately comparison theorems for neutral linear equation (L−) with the advanced
argument δ(t) ≥ t and with delay argument δ(t) ≤ t. Similarly, we state comparison theorems
for neutral nonlinear equation (E−). In this section we assume that

lim sup
|u|→∞

u
f (u)

< ∞. (4.1)

In particular, if f (u) = uλsgn u, then (4.1) is satisfied for λ ≥ 1.

Theorem 4.1. Assume that δ(t) ≥ t. If the linear ordinary differential equation

LA3 y(t)− (1− a0)q(t) y(t) = 0 (4.2)

has property B, then equation (L−) has also property B.

Proof. Let (4.2) have property B and without loss of generality let z be a solution of (L−) such
that z(t) > 0 for t ≥ t1, t1 ≥ t0 and v(t) be defined by (1.1). Then v is nondecreasing and so
v(t) ≤ v

(
δ(t)

)
. Using Lemma 3.3 we get the following estimate

1− a0 ≤
z
(
δ(t)

)
v
(
δ(t)

) ≤ z
(
δ(t)

)
v(t)

. (4.3)

Assume by contradiction that z ∈ M1 and consider the equation

LA3 y(t)− q(t)
z
(
δ(t)

)
v(t)

y(t) = 0. (4.4)

This equation has a solution y = v satisfying y(t) > 0, y[1](t) > 0, y[2](t) < 0 for large t, i.e. y
is a solution of (4.4) from the classM1. Since (4.3) holds, equation (4.4) is a majorant of (4.2)
and by Proposition 2.5a),M1 6= ∅ for (4.2), a contradiction.

Now assume that z ∈ M3 and assume by contradiction that limt→∞ v[2](t) < ∞. Consider
the equation

LA3 y(t)− q(t)
z
(
δ(t)

)
v(t)

y(t) = 0. (4.5)

This equation has a solution y = v satisfying y(t) > 0, y[1](t) > 0, y[2](t) > 0 for large t,
i.e. y is a solution of (4.5) from the class M3 such that limt→∞ y[2](t) < ∞. Since (4.3) holds,
equation (4.5) is a majorant of (4.2) and by Proposition 2.5b) there exists a solution y ∈ M3 of
(4.2) such that z[2](t) < ∞, a contradiction.

We extend the previous theorem for nonlinear equation (E−).

Theorem 4.2. Assume that (4.1) holds and δ(t) ≥ t. If for every K > 0 the linear ordinary differential
equation

LA3 y(t)− Kq(t)y(t) = 0 (4.6)

has property B, then equation (E−) has also property B.
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Proof. Let (4.6) have property B for every K > 0 and let v(t) be defined by (1.1). Without loss
of generality, we may assume that there exists t1 ≥ t0 such that z is a solution of (E−) and
z
(
δ(t)

)
> 0 for t ≥ t1.

Observe that if 0 < z(t) < ∞, then f being continuous, we can assume that there exists
c > 0 such that

f
(
z
(
δ(t)

))
z
(
δ(t)

) ≥ c

for large t and if z(t)→ ∞ then (4.1) gives

lim inf
t→∞

f
(
z
(
δ(t)

))
z
(
δ(t)

) > 0.

From here and (4.3)

f
(
z
(
δ(t)

))
v(t)

=
f
(
z
(
δ(t)

))
z
(
δ(t)

) z
(
δ(t)

)
v(t)

≥ c1(1− a0).

Now we proceed similarly to the proof of the previous theorem. Consider the linear equation

LA3 y(t)− q(t)
f
(
z
(
δ(t)

))
v(t)

y(t) = 0. (4.7)

Taking K ≥ c1(1− a0), we get that equation (4.7) is a majorant of (4.6) for this choice.
Now assume by contradiction, that (E−) has a solution z ∈ M1. Therefore, equation (4.7)

has a solution y = v from the class M1. Using Proposition 2.5 a) we get that there exists a
solution z ∈ M1 of (4.6), a contradiction.

Now assume by contradiction that equation (E−) has a solution z from the classM3 such
that limt→∞ v[2](t) < ∞. Then equation (4.7) has a solution y = v from the classM3 such that
limt→∞ y[2](t) < ∞. Using Proposition 2.5 b) we get a contradiction.

Now we prove similar theorems for equations with delay, the main difference is in the fact
that now we compare equations (L−) and (E−) with delay differential equations.

Theorem 4.3. Assume that δ(t) ≤ t. If the linear delay equation

LA3 y(t)− (1− a0)q(t) y
(
δ(t)

)
= 0 (4.8)

has property B, then equation (L−) has also property B.

Proof. Let (4.8) have property B and without loss of generality let z be a solution of (L−) such
that z

(
δ(t)

)
> 0 for t ≥ t1, t1 ≥ t0 and v(t) be defined by (1.1). Using Lemma 3.3 we get the

following estimate
z
(
δ(t)

)
v
(
δ(t)

) ≥ 1− a0. (4.9)

Assume by contradiction that z ∈ M1 and consider the delay equation

LA3 y(t)− q(t)
z
(
δ(t)

)
v
(
δ(t)

)y
(
δ(t)

)
= 0. (4.10)

This equation has a solution y = v satisfying y(t) > 0, y[1](t) > 0, y[2](t) < 0 for large t, i.e.
y is a solution of (4.10) from the class M1. Since (4.9) holds, equation (4.10) is a majorant of
(4.8) and by Proposition 2.5 a),M1 6= ∅ for (4.8), a contradiction.
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Now assume that z ∈ M3 and assume by contradiction that limt→∞ v[2](t) < ∞. Consider
the equation

LA3 y(t)− q(t)
z
(
δ(t)

)
v(t)

y(t) = 0. (4.11)

This equation has a solution y = v satisfying y(t) > 0, y[1](t) > 0, y[2](t) > 0 for large t, i.e. y
is a solution of (4.11) from the class M3 and moreover limt→∞ y[2](t) < ∞. Since (4.9) holds,
equation (4.11) is a majorant of (4.8) and by Proposition 2.5 b) there exists a solution y ∈ M3

of (4.8) such that z[2](t) < ∞, a contradiction.

Theorem 4.4. Assume that (4.1) holds and δ(t) ≤ t. If for every K > 0 the linear delay equation

LA3 y(t)− Kq(t)y
(
δ(t)

)
= 0 (4.12)

has property B, then equation (E−) has also property B.

Proof. Let (4.12) have property B for every K > 0 and let v(t) be defined by (1.1). Without loss
of generality we may assume that there exists t1 ≥ t0 such that z is a solution of (E−) such
that z

(
δ(t)

)
> 0 for t ≥ t1..

We proceed similarly to proof of Theorem 4.2. If 0 < z(t) < ∞, then f being continuous,
we can assume that there exists c > 0 such that

f
(
z
(
δ(t)

))
z
(
δ(t)

) ≥ c

for large t. If z(t)→ ∞, then (4.1) gives

lim inf
t→∞

f
(
z
(
δ(t)

))
z
(
δ(t)

) > 0.

From here and (4.9) we obtain

f
(
z
(
δ(t)

))
v
(
δ(t)

) =
f
(
z
(
δ(t)

))
z
(
δ(t)

) z
(
δ(t)

)
v
(
δ(t)

) ≥ c1(1− a0).

Now we proceed similarly to the proof of the previous theorem. Consider the linear delay
equation

LA3 y(t)− q(t)
f
(
z
(
δ(t)

))
v
(
δ(t)

) y
(
δ(t)

)
= 0. (4.13)

Taking K ≥ c1(1− a0), we get that equation (4.13) is a majorant of (4.12) for this choice.
Now assume by contradiction, that (E−) has a solution z ∈ M1. Therefore, equation (4.13)

has a solution y = v from the class M1. Using Proposition 2.5 a) we get that there exists a
solution z ∈ M1 of (4.12), a contradiction.

Now assume by contradiction that equation (E−) has a solution z from the classM3 such
that limt→∞ v[2](t) < ∞. Then equation (4.13) has a solution y = v from the class M3 such
that limt→∞ y[2](t) < ∞. Using Proposition 2.5 b) we get a contradiction.

Remark 4.5. There exists various criteria for equation (2.13) to have property A. Using The-
orem D and our comparison theorems for neutral equations we can derive new oscillation
criteria for equations (E−) and (L−), moreover we can derive new criteria even in the case
where g(t) = t. To ilustrate this see Examples 6.1 and 6.2 below.
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Corollary 4.6. Assume that δ(t) < t and there exists function τ(t) such that (5.3) holds.
Moreover, assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

∫ δ(s)

t0

r(u)
∫ u

t0

p(w)dw du ds >
1

(1− a0)
. (4.14)

ThenM1 = ∅ for (L−).
If in addition (3.2) holds, then (L−) has property B.

Proof. Applying [16, Theorem 3.5] to equation (4.8) and using Theorem 4.3 we get the conclu-
sion.

5 Oscillation criteria for the sublinear case

In this section we additionally assume that f is increasing, f (uv) ≥ f (u) f (v) and

lim
u→0

u
f (u)

= 0. (5.1)

In particular, if f (u) = uλsgn u, then (5.1) is satisfied for 0 < λ < 1. Therefore, we refer to
this case as to the “sublinear“ case.

Theorem 5.1. Assume that (5.1) holds, δ(t) is nondecreasing, δ(t) < t and there exists function τ(t)
such that

τ(t) ∈ C
(
[t0, ∞), R

)
, τ(t) > t, δ

(
τ(t)

)
≤ t. (5.2)

Moreover, assume that

lim sup
t→∞

∫ τ(t)

t
q(s) f

(∫ δ(s)

t0

r(u)
∫ u

t0

p(w)dw du
)

ds > 0. (5.3)

ThenM1 = ∅ for (E−).
If in addition (3.2) holds, then (E−) has property B.

Proof. Let z ∈ M1. Without loss of generality we can assume that z is an eventually positive
solution, i.e. there exists t1 ≥ t0 such that z(t) > 0, v[1](t) > 0 and v[2](t) < 0 for t ≥ t1. Let t2

be such that δ(t) ≥ t1 for t ≥ t2. Because(
v[2](t)

)′
= q(t) f

(
z
(
δ(t)

))
> 0

for t ≥ t2, v[2] is a negative increasing function. Therefore we have

0 ≤ −v[2](t) < ∞.

Integrating equation (E−) from t to ∞ we get

v[2](∞)− v[2](t) =
∫ ∞

t
q(s) f

(
z
(
δ(s)

))
ds.

Using the fact that 0 ≤ −v[2](t) < ∞ and Lemma 3.3 we obtain the inequality

−v[2](t) =
∫ ∞

t
q(s) f

(
z
(
δ(s)

))
ds ≥ f (1− a0)

∫ ∞

t
q(s) f

(
v
(
δ(s)

))
ds ≥

≥ f (1− a0)
∫ τ(t)

t
q(s) f

(
v
(
δ(s)

))
ds. (5.4)
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Integrating the identity −v[2] = −v[2] twice, for the first time from t to ∞ and for the second
time from t1 to t, we obtain

v(t) ≥
∫ t

t1

p(s)
∫ ∞

s
r(u)

(
− v[2](u)

)
du ds.

By changing the order of integration we get

v(t) ≥
∫ t

t1

r(s)
(
− v[2](s)

) ∫ s

t1

p(u)du ds

for t ≥ t1 and therefore for t ≥ t2 we have

v
(
δ(t)

)
≥
∫ δ(t)

t1

r(s)
(
− v[2](s)

) ∫ s

t1

p(u)du ds.

Substituting the last inequality into (5.4) we get

−v[2](t) ≥ f (1− a0)
∫ τ(t)

t
q(s) f

(∫ δ(t)

t1

r(u)
(
− v[2](u)

) ∫ u

t1

p(w)dw du
)

ds.

Considering the facts that −v[2](t) is decreasing and −v[2]
(
δ(t)

)
is nonincreasing and using

the assumption (vii) we get

−v[2](t) ≥ f (1− a0) f
(
−v[2]

(
δ
(
τ(t)

))) ∫ τ(t)

t
q(s) f

(∫ δ(t)

t1

r(u)
∫ u

t1

p(w)dw du
)

ds.

Since −v[2](t) is positive, decreasing and δ(t) < t we have

1 ≥ −v[2](t)
−v[2]

(
δ
(
τ(t)

))
≥

f (1− a0) f
(
−v[2]

(
δ
(
τ(t)

))) ∫ τ(t)
t q(s) f

(∫ δ(t)
t1

r(u)
∫ u

t1
p(w)dw du

)
ds

−v[2]
(
δ
(
τ(t)

)) .

By Lemma 3.4, we have limt→∞ v[2](t) = 0, and using (5.1) and (5.3) we get a contradiction,
i.e. M1 = ∅. The rest of the assertion now follows from Lemma 3.5.

6 Applications and examples

The following examples illustrate our comparison theorems.

Example 6.1. Consider the linear neutral equation(
z(t) + a(t)z

(
γ(t)

))′′′ − k
t3 z
(
δ(t)

)
= 0

where δ(t) ≥ t. We show that this equation has property B for

k >
2

3(1− a0)
√

3
.

Indeed, consider the corresponding linear ordinary differential equation

y′′′(t)− (1− a0)
k
t3 y(t) = 0. (6.1)
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Using the result of [8, Example 6.1] we get that equation

y′′′(t) + (1− a0)
k
t3 y(t) = 0

has property A if

(1− a0)k >
2

3
√

3
(6.2)

and using Theorem D we get that (6.1) has property B if (6.2) is satisfied. Applying Theo-
rem 4.1 we obtain the assertion.

Example 6.2. Consider the neutral equation(
t
(

z(t) + a0z
(

t
2

))′′)′
− k

t2 z(t) = 0

where a0 ∈ [0, 1). We show that this equation has property B for every k > 0.
Consider the corresponding linear equation(

ty′′(t)
)′ − k

(1− a0)t3 y(t) = 0. (6.3)

Applying [8, Corollary 6.3] to equation(
tx′(t)

)′′
+

k
(1− a0)t3 x = 0 (6.4)

we obtain that (6.4) has property A for every k > 0 and using Theorem D we get that (6.3) has
property A for every k > 0. Now Theorem 4.1 gives the assertion.

Example 6.3. Consider the equation(
z(t) + a(t)z

(
γ(t)

))′′′ − 1
t2

∣∣z(δ(t))∣∣λsgn
(
z
(
δ(t)

))
= 0, t ≥ 1

where λ ≥ 1 and δ(t) ≤ t. We show that this equation has property B.
Consider the corresponding delay differential equation

y′′′(t)− K
t2 y
(
δ(t)

)
= 0, (6.5)

where K > 0. Obviously ∫ ∞

1

K
t2 dt < ∞ and

∫ ∞

1

K
t

dt = ∞,

thus using [18, Theorem 3.3] we have that (6.5) has property B for every K > 0. Now Theo-
rem 4.4 yields the assertion.

We close with the following application to neutral equations with symmetric operator(
1

p(t)

(
1

p(t)
[
x(t) + a(t)z

(
γ(t)

)]′)′)′
+ q(t)x

(
δ(t)

)
= 0 (S, δ, a)

and (
1

p(t)

(
1

p(t)
[
z(t) + a(t)z

(
γ(t)

)]′)′)′ − q(t)z
(
δ(t)

)
= 0. (SA, δ, a)

Following result extends [16, Corollary 4.2] to neutral equations with the delay argument.
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Corollary 6.4. Assume that δ(t) is nondecreasing, δ(t) < t and there exists function τ(t) such that
(5.3) holds.

Moreover, assume that

lim sup
t→∞

∫ τ(t)

t
q(s)

∫ δ(s)

a
p(u)

∫ u

a
p(v)dv du ds >

1
1− a0

. (6.6)

Then equation (S, δ, a) has property A and equation (SA, δ, a) has property B.

Proof. Using [16, Lemma 3.4] and its proof we get that (6.6) implies that (3.2) hold and∫ ∞

t0

q(t)
∫ t

t0

p(s)
∫ s

t0

r(v)dv ds dt = ∞.

Now Corollary 4.6 and [7, Theorem 1] give the assertion.

Moreover, we have the following corollary for equations with symmetric operator and
advanced argument.

Corollary 6.5. Assume that δ(t) ≥ t and∫ ∞

t0

q(t)
∫ t

t0

p(s)ds dt = ∞. (6.7)

Then equation (S, δ, a) has property A and equation (SA, δ, a) has property B.

Proof. According [6, Theorem 8 and 10] the linear equation(
1

p(t)

(
1

p(t)
x′
)′)′

+ (1− a0)q(t)x(t) = 0 (6.8)

corresponding to (S, δ, a) has an oscillatory solution. By [3, Lemma 2.2] any nonoscillatory
solution satisfies x(t)x′(t) < 0 for large t. This property is called weak property A (see e.g. [3]).
From here and the proof of [4, Theorem 1] we get that linear equation(

1
p(t)

(
1

p(t)
z′
)′)′

− (1− a0)q(t)z(t) = 0 (6.9)

corresponding to (SA, δ, a) has weak property B. Using [5, Theorem 7] we get that equation
(6.8) has property A and equation (6.9) has property B. Now the conclusion follows from
Theorems [8, Theorem 5.1] and 4.1.
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