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Abstract

By using the method of semidiscretization in time also called the

Rothe’s method, we prove the existence, uniqueness of the weak solu-

tion and its continuous dependence upon data, for a hyperbolic integro-

differential equation with initial, Neumann and integral conditions.

1 Introduction

The study of boundary value problems with non-local conditions has known a
great development in the recent years. This is due to the importance of non-
local conditions appearing in the mathematical modeling of various phenomena
of physics, ecology, biology, etc. It is the case when the values of function
on the boundary are related to values inside the domains or when the direct
measurements on the boundary are not possible. Several methods are used to
solve such problems as functional methods, approximation methods, a priori
estimates...

The importance of approximation methods is that they don’t only prove the
existence and uniqueness of the solution but they also allow the construction
of algorithms for numerical solutions. These methods as the Galerkin method
and the method of discretization in time also called Rothe’s method, are very
effective tools in the study of the approximate solution and its convergence
to the solution of problems [1-13]. In general it is difficult to find the exact
solution in such cases, so the approximation methods provide other ways to find
approximate solutions.

∗2000 Mathematics Subject Classification: 34K20, 35k55, 35A35, 65M20.
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lution.
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The objective of this work is to apply Rothe’s method to the study of an
integro-differential equation with integral conditions. Several results have based
on this method in the investigation of different type of equations with integral
conditions like [3-6,9,10,13].

By combining the ideas from [3,9,10], we apply Rothe’s method, to prove
the existence, uniqueness of the weak solution and its continuous dependence
upon data. Using time discretization, the posed problem is approximated by
corresponding elliptic problem by means of which an approximate solution for
the original evolution problem is constructed.

More precisely, we are devoted to prove, in non classical function space, the
weak solvability of non-linear hyperbolic integro-differential equation

τ
∂2υ

∂t2
+ a

∂υ

∂t
− b

∂2υ

∂x2
= f (x, t) +

∫ t

0

a (t − s) k (s, υ (x, s)) ds, (1.1)

for all (x, t) ∈ (0, 1)× I, subject to initial and Neumann conditions

υ (x, 0) = υ0 (x) ,
∂υ

∂t
(x, 0) = υ1 (x) ,

∂υ

∂x
(0, t) = G (t) (1.2)

and integral condition
∫ 1

0

υ (x, t) dx = E (t) . (1.3)

Where f, v1, v0, G, E are given functions and T, τ, a, b are positive constant such
that τ > 0, a ≥ 1 and b > 0.

Equation (1.1) represents the second order telegraph equation with constant
coefficients and models mixture between diffusion and wave propagation by
introducing a term that accounts for effects of finite velocity to standard heat
or mass transport equation. It is also used in signal analysis for transmission
and propagation of electrical signals [14]. Recently, telegraph equation becomes
more suitable than ordinary diffusion equation in modeling the reaction diffusion
for such branches of sciences [15]. Equation (1.1) have been extensively studied
for initial and Dirichlet conditions by numerical methods, but in all these work
it was assumed that the right hand side of (1.1) is function of the form f (x, t) or
f (x, t, u) subject to some conditions, whereas in this work, the second member is

a Volterra operator of the form
∫ t

0
a (t − s) k (s, υ (x, s)) ds. Many mathematical

formulations of physical phenomena contain integro-differential equations, these
equations arise in many fields like fluid dynamics, biological models and chemical
kinetics. Integro-differential equations are usually difficult to solve analytically
so it is required to obtain an efficient approximate solution.

In the present work, which can be viewed as a continuation of [9], the pres-
ence of integral conditions (1.3) is the source of some great complications when
applying the standard Rothe method, and to avoid this difficulties we study the
problem in an appropriate nonclassical function space that is Bouziani space
that we have denoted by B.
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Using the transformation

u (x, t) = υ (x, t) − r (x, t) , (x, t) ∈ (0, 1) × I,

the equivalent problem of (1.1) − (1.3) can be written as:

τ
∂2u

∂t2
+ a

∂u

∂t
− b

∂2u

∂x2
= F (x, t) +

∫ t

0

a (t − s) k (s, u (x, s)) ds (1.4)

u (x, 0) = U0 (x) ,
∂u

∂t
(x, 0) = U1 (x) (1.5)

∂u

∂x
(0, t) = 0 (1.6)

∫ 1

0

u (x, t) dx = 0 (1.7)

where

r (x, t) = G (t)

(

x −
1

2

)

+ E (t) ,

and

F (x, t) = f (x, t) − τ
∂2r

∂t2
− a

∂r

∂t
(1.8)

U0 (x) = υ0 (x, t) − r (x, 0) ,

U1 (x) = υ1 (x, t) −
dr

dt
(x, 0) .

To apply Rothe’s method, we proceed as follows:
We divide the time interval I into n subintervals [tj−1,tj ] , j = 1....n, where

tj = j.h and the length h = T
n
, we denote uj = uj(x) = uj(x, jh) the ap-

proximation of u, then we replace ∂2u
∂t2

and ∂u
∂t

at each point t = tj , j = 1....n,

by the difference quotients respectively δ2uj =
δuj−δuj−1

h
and δuj =

uj−uj−1

h
.

Consequently (1.4) becomes

τδ2uj + aδuj − b
∂2uj

∂x2
= Fj + h

j−1
∑

i=0

ajiki (1.9)

where Fj = F (x, tj) ., aji = a (tj − ti) , and ki = k (ti, ui) .Thereafter, we get a
system of n differential equations in x with the unknown functions uj(x):

−b
∂2uj

∂x2
+

(

τ + ah

h2

)

uj = Fj (1.10j)

∂uj

∂x
(0) = 0,

∫ 1

0

uj (x) dx = 0 (1.11j)
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where

Fj = Fj +

(

2τ + ah

h2

)

uj−1 −
τ

h2
uj−2 + h

j−1
∑

i=0

ajiki (1.12)

u0 (x) = U0 (x) , u−1 (x) = U0 (x) − hU1 (x) .

Using these solutions uj, we construct piecewise linear (Rothe’s) functions de-
fined by

un (x, t) = uj−1 + δuj (t − tj−1) , t ∈ [tj−1, tj ] , j = 1....n.

un (t) =

{

uj, t ∈ [tj−1, tj ] , j = 1....n

U0, t ∈ [−h, 0]

Then we prove that un (x, t) converges in some appropriate sense to the solution
of (1.4).-(1.7)

2 Notation, function spaces and assumptions

Let H = L2 (0, 1) be the usual space of Lebesgue square integrable real func-
tions on (0, 1) whose inner product and norm will be denoted by ( , ) and ‖ .‖
respectively. Let H2 (0, 1) be the real second order Sobolev space on (0, 1) with
the norm ‖ ‖H2(0,1) . Let B (Bouziani space) be the completion of C0 (0, 1), the

space of real continuous functions with compact support in (0, 1) ,whose inner

product and norm are defined respectively by (u, v)B =
∫ 1

0
ℑxu.ℑxvdx, ‖v‖B =

√

(v, v)B, where ℑxu =
∫ x

0
φ (ξ) dξ,∀x ∈ (0, 1) .

C (0, 1) is the set of all continuous functions v : I → X with

‖v‖C(0,1) = max
t∈I

‖v (t)‖X .

C0.1 (0, 1) is the set of all Lipschitz continuous functions v : I → X

C1.1 (0, 1) is the set of all v ∈ C0.1 (0, 1) such that dv
dt

∈ C0.1 (0, 1)

We denote by V the Hilbert space V =
{

φ ∈ L2 (0, 1) ;
∫ 1

0 φ (x) dx = 0
}

.

Now we give the assumptions:
H1) f (t) ∈ H and the condition ‖f (t, w) − f (′, w′)‖B ≤ c0 |t − t′| holds

for some positive constant c0.

H2) U0, U1 ∈ H2 (0, 1) .

H3)
∂U0

∂x
(0) = 0 and

∫ 1

0 U0 (x) dx = 0.

H4) The mapping K : I×B → H is continuous in both variables and satisfies

‖k(t, u)‖B ≤ ‖u(t)‖B

‖k (t, u) − k (t, v)‖ ≤ L(t) ‖u(t) − v(t)‖B

for t ∈ I and all u, v ∈ V,where L ∈ L1(I) is nonnegative.

EJQTDE, 2011 No. 37, p. 4



H5) The function a : I → R is Lipschitz continuous:

|a (t) − a (t′)| ≤ c1 |t − t′| .

Definition 2.1. By a weak solution of problem (1.4)-(1.7) we mean a
function u : I → H such that:

(1) u ∈ C0,1 (I, V )

(2) du
dt

∈ L∞ (I, V ) ∩ C0,1 (I, B) and d2u
dt2

∈ L∞ (I, B) .

(3) u (0) = U0 in V and du
dt

(0) = U1in B.

(4) For all all φ ∈ V and t ∈ I, the identity

τ

(

∂2u

∂t2
, φ

)

B

+ a

(

∂υ

∂t
, φ

)

B

− b (u, φ) = (f, φ)B + (k (t) , φ)B (2.1)

holds.

3 Discretization schemes and a priori estimates

Theorem 3.1. For all n ≥ 1, and for j = 1, ...n , the problem (1.10j)-(1.11j)
possesses a unique solution uj in H2 (0, 1) .

Proof. Similarly as in [1] the Lax Milgram lemma guarantees the existence
and uniqueness of a solution uj ∈ H2 (0, 1) , ∀j = 1....n.

Lemma 3.2. Assume that the assumptions (H1) and (H5) hold. Then there
exists positive constant C such that for all n ≥ n0, the solutions uj of problems
(1.10j)-(1.11j), j = 1....n; satisfy

∥

∥δ2uj

∥

∥

B
+ ‖δuj‖B

+ ‖uj‖ ≤ C (3.1)

Proof. For convenience, we shall denote by c a generic constant, i.e., the
constant kc, ekc, ....etc will be replace by c were k denote a positive constant
independent of j, h and n. Let n ≥ n0, φ ∈ V and x = 1, then integrating by
parts yields

ℑ2
1φ =

∫ 1

0

(1 − ξ) φ (ξ) dξ =

∫ 1

0

φ (ξ) dξ −

∫ 1

0

ξφ (ξ) dξ = 0. (3.2)

Now, multiplying equation (1.9) by ℑ2
xφ for all j = 1, ...n, and integrating over

(0, 1) , we get

τ

∫ 1

0

δ2uj (x)ℑ2
xφdx + a

∫ 1

0

δuj (x)ℑ2
xφdx − b

∫ 1

0

∂2uj

∂x2
(x)ℑ2

xφdx

=

∫ 1

0

(

Fj (x) + h

j−1
∑

i=0

ajiki

)

ℑ2
xφdx, (3.3)

using (3.2) and integrating by parts then (3.3) becomes:
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τ
(

δ2uj , φ
)

B
+ a (δuj, φ)

B
+ b (uj , φ) (3.4j)

=

(

Fj + h

j−1
∑

i=0

ajiki, φ

)

B

, ∀φ ∈ V, ∀j = 1..., n.

Substituting φ = δuj ∈ V in (3.4j) and using some elementary identities like

2 (v, v − w) = ‖v‖2 − ‖w‖2 + ‖v − w‖2 (3.5)

then applying Cauchy inequality for ε = 1, it follows

τ ‖δuj‖
2
B

+ b ‖uj‖
2

+ 2h [a − (1 + T max |a(t)|)] ‖δuj‖
2
B
≤ (3.6j)

2h ‖Fj‖
2
B

+ b ‖uj−1‖
2 + τ ‖δuj−1‖

2
B

+ 2h2 max |a(t)|

j−1
∑

i=0

‖ki‖
2
B

For a ≥ C5 = 1 + T max |a(t)| , we obtain:

τ ‖δuj‖
2
B

+ b ‖uj‖
2
≤ (3.7j)

2h ‖Fj‖
2
C(I,B) + 2h2 max |a(t)|

j−1
∑

i=0

‖ki‖
2
B + τ ‖δuj−1‖

2
B

+ b ‖uj−1‖
2

≤ hc + h2c

j
∑

k=1

‖ui‖
2
B + τ ‖δuj−1‖

2
B

+ b ‖uj−1‖
2
.

Choose a positive integer n0 such that cT
n0

< 1. Then for n ≥ n0 we get

(1 − Ch)
[

τ ‖δuj‖
2
B

+ b ‖uj‖
2
]

≤ (3.8)

≤
(

1 + Ch2
)

[

τ ‖δuj−1‖
2
B

+ b ‖uj−1‖
2
]

+ h2c

j
∑

k=1

b ‖ui‖
2
B + ch.

Iterating to arrive at

(1 − Ch)
j
[

τ ‖δuj‖
2
B

+ b ‖uj‖
2
]

≤
(

1 + jCh2
)j
[

τ ‖δu0‖
2
B + b ‖U0‖

2
]

+ jCh

(3.9j)
Hence we get

τ ‖δuj‖
2
B

+ b ‖uj‖
2
≤ c

which implies

‖δuj‖
2
B

+ ‖uj‖
2 ≤

c

min (τ, b)
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Next, we will estimate
∥

∥δ2uj

∥

∥

B
, for this ,we consider the difference of rela-

tions (3.9j)-(3.9(j-1)) for j = 2....., n and φ = δ2uj ∈ V , we obtain

τ
(

δ2uj − δ2uj−1, δ
2uj

)

B
+ a

(

δuj − δuj−1, δ
2uj

)

B
+ (3.10)

b
(

uj − uj−1, δ
2uj

)

=
(

Fj − Fj−1, δ
2uj

)

B
+ 2h

j−2
∑

i=0

(

(aji − aj−1i) ki, δ
2uj

)

B
.

using the elementary identities and estimates, it follows

τ
∥

∥δ2uj

∥

∥

2

B
+ 2ah

∥

∥δ2uj

∥

∥

2

B
+ b ‖δuj‖

2 ≤ 2 ‖Fj − Fj−1‖B

∥

∥δ2uj

∥

∥

B
(3.11)

+τ
∥

∥δ2uj−1

∥

∥

2

B
+ b ‖δuj−1‖

2
+ 2h2c1

j−2
∑

i=0

‖ki‖B

∥

∥δ2uj

∥

∥

B

+2h max |a(t)| ‖kj−1‖B

∥

∥δ2uj

∥

∥

B
.

On the other hand, using Cauchy inequality for ε = 1, we get

2 ‖Fj − Fj−1‖B

∥

∥δ2uj

∥

∥

B
≤ c0h + c0h

∥

∥δ2uj

∥

∥

2

B
(3.12)

2h max |a(t)| ‖kj−1‖B

∥

∥δ2uj

∥

∥

B
≤ h max |a(t)| ‖uj−1‖

2
B

+ (3.13)

h max |a(t)|
∥

∥δ2uj

∥

∥

2

B
≤ hc + h max |a(t)|

∥

∥δ2uj

∥

∥

2

B

2h2c1

j−2
∑

i=0

‖ki‖B

∥

∥δ2uj

∥

∥

B
≤ h2c1 (j − 1) + h2c1 (j − 1)

∥

∥δ2uj

∥

∥

2

B

≤ hc + hc1T
∥

∥δ2uj

∥

∥

2

B
(3.14)

Substituting (3.12), (3.13) and (3.14) in (3.11) it yields

τ
∥

∥δ2uj

∥

∥

2

B
+ h(2a − (c0 + max |a(t)| + Tc1))

∥

∥δ2uj

∥

∥

2

B
+ b ‖δuj‖

2
≤ (3.15)

τ
∥

∥δ2uj−1

∥

∥

2

B
+ b ‖δuj−1‖

2 + ch + ch
(

τ
∥

∥δ2uj−1

∥

∥

2

B
+ b ‖δuj−1‖

2
)

+

ch2
(

τ
∥

∥δ2uj−1

∥

∥

2

B
+ b ‖δuj−1‖

2
)

+ ch2

j−1
∑

i=0

b ‖δuj‖
2
B

.

Choose a positive integer n0 such that cT
n0

< 1. Consequently for n ≥ n0and
a ≥ (c0 + max |a(t)| + Tc1) we get

(1 − Ch)
[

τ
∥

∥δ2uj

∥

∥

2

B
+ b ‖δuj‖

2
]

≤
(

1 + Ch2
)

[

τ
∥

∥δ2uj−1

∥

∥

2

B
+ b ‖δuj−1‖

2
]

(3.16)
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+ch + ch2

j−1
∑

i=0

b ‖δuj‖
2
B

recursively, we obtain

(1 − Ch)
j
[

τ
∥

∥δ2uj

∥

∥

2

B
+ b ‖δuj‖

2
]

≤
(

1 + jCh2
)j
[

τ
∥

∥δ2u0

∥

∥

2

B
+ b ‖δu0‖

2
]

+ jCh

(3.17)
from where we derive

∥

∥δ2uj

∥

∥

B
+ ‖δuj‖ ≤ C

This proves Lemma 3.2�

Corollary 3.3. The functions un (t) are lipschitz continuous on I and the
sequences {un (t)} and {un (t)} are bounded in C(I, B) uniformly in n and t :

‖un (t)‖ ≤ C, ‖un (t)‖ ≤ C,

∥

∥

∥

∥

dun

dt
(t)

∥

∥

∥

∥

≤ C (3.18)

‖un (t) − un (t)‖ ≤ C
T

n
, ‖un (t) − un (t − h)‖ ≤ C

T

n
(3.19)

‖δun (t)‖ ≤ C,
∥

∥δun (t)
∥

∥ ≤ C,

∥

∥

∥

∥

d

dt
δun (t)

∥

∥

∥

∥

B

≤ C (3.20)

∥

∥δun (t) − δun (t)
∥

∥

B
≤ C

T

n
,
∥

∥δun (t) − δun (t − h)
∥

∥

B
≤ C

T

n
(3.21)

∥

∥

∥

∥

δun −
dun

dt
(t)

∥

∥

∥

∥

L2(I,B)

≤ C
T

n
(3.22)

for all t ∈ I and n ≥ n0.

Proof. The proof is a consequence of Lemma 3.2.

4 Convergence and existence results

For all n ≥ n0, we define the sequences
{

F
n
}

and {Kn} of step functions

respectively by

F
n

(t) =

{

F
J
, t ∈ [tj−1, tj ] , j = 1....n

0, t ∈ [−h, 0]

and
{

Kn (t) = h
∑j−1

i=0 ajiki

Kn (0) = ha10k0,
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The variational equation (3.4j) may be written as:

τ

(

d

dt
δun (t) , φ

)

B

+ a (δun (t) , φ)B − b (un (t) , φ) = (4.1)

(

F
n

(t) + Kn (t) , φ
)

B
, ∀φ ∈ V, t ∈ I.

Theorem 4.1. Under the assumptions (H1) and (H5), there exists a function

u ∈ C0,1 (I, V ) such du
dt

∈ L∞ (I, V )∩C0,1 (I, B) and d2u
dt2

∈ L∞ (I, B) satisfying
(i) un → u in C (I, V ) .

(ii) un (t) → u (t) in V for all t ∈ I.

(iii) δun → du
dt

in C (I, B) .

(iv) δu
n

(t) ⇀ du
dt

(t) in V for all t ∈ I.

(v) dun

dt
⇀ du

dt
in L2 (I, V ) .

(vi) d
dt

δun ⇀ d2u
dt2

in L2 (I, B) .

Moreover, the error estimate is

‖un − u‖C(I,V ) +

∥

∥

∥

∥

δun −
du

dt

∥

∥

∥

∥

C(I,B)

≤ Ch
1

2 (4.2)

for all n ≥ n0.

Proof. Let un and um be the Rothe functions corresponding to the step
hn = T

n
and hm = T

m
respectively, with m > n ≥ n0. Considering the difference

of (4.1) for n and m, with φ = δu
n,m

= δu
n
− δu

m
∈ V, we get for all t ∈ I.

τ

(

d

dt
(δun (t) − δum (t)), δu

n,m
)

B

+ a

∥

∥

∥
δu

n
(t) − δu

m
(t)
∥

∥

∥

2

B
(4.3)

+b
(

un (t) − um (t) , δu
n,m
)

=
(

(F
n

(t) − F
n

(t)), δu
n,m
)

B

+
(

Kn (t) − Km (t) , δu
n,m
)

B

Similarly as in [1], we obtain

τ

2

d

dt
‖δun (t) − δum (t)‖

2
B +

b

2

d

dt
‖un (t) − um (t)‖

2
= (4.4)

τ
(

d
dt

(δun (t) − δum (t)),
(

δun (t) − δu
n

(t)
))

B

+τ
(

d
dt

(δun (t) − δum (t)),
(

δu
m

(t) − δum (t)
))

B

+b
(

(un (t) − un (t)) + (um (t) − um (t)) , δu
n,m
)

+(F
n

(t) − F
m
(

t), δu
n,m
)

B
+
(

Kn (t) − Km (t) , δu
n,m
)

B

−a
∥

∥

∥
δu

n
(t) − δu

m
(t)
∥

∥

∥

2

B
.
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Using some estimates, we see that each term in the right hand-side of (4.4)
is estimate respectively by

τ

(

d

dt
(δun (t) − δum (t)),

((

δun (t) − δu
n

(t)
)

+
(

δu
m

(t) − δum (t)
))

B

)

≤ C

(

1

n
+

1

m

)

(4.5)

b
(

(un (t) − un (t)) + (um (t) − um (t)) , δu
n,m
)

≤ c

(

1

n
+

1

m

)

(4.6)

(F
n

(t) − F
m
(

t), δu
n,m
)

B
≤

∥

∥

∥
F

n
(t) − F

m
(t)
∥

∥

∥

B

∥

∥

∥
δu

n,m
∥

∥

∥

B

≤ ‖F (tk) − F (ti)‖B

∥

∥

∥
δu

n,m
∥

∥

∥

B

≤ c0 |tk − tj |
∥

∥

∥
δu

n,m
∥

∥

∥

B

≤ c

(

1

n
+

1

m

)

∥

∥

∥
δu

n,m
∥

∥

∥

B
.

On the other hand we have

∥

∥

∥
δu

n,m
∥

∥

∥

B
≤ cT

(

1

n
+

1

m

)

+ ‖δun − δum‖B

≤ cT

(

1

n
+

1

m

)

+ ‖δun‖B + ‖δum‖B

≤ c

(

1

n
+

1

m

)

+ c,

consequently

(F
n

(t) − F
m
(

t), δu
n,m
)

B
≤ c

(

1

n
+

1

m

)2

+ c

(

1

n
+

1

m

)

(4.7)

Therefore, we obtain

(

Kn (t) − Km (t) , δu
n,m
)

B

≤ ‖Kn (t) − Km (t)‖B

∥

∥

∥
δu

n,m
∥

∥

∥

B

≤

∥

∥

∥

∥

∥

T

n

j−1
∑

i=0

ajiki −
T

m

j−1
∑

i=0

ajiki

∥

∥

∥

∥

∥

B

∥

∥

∥
δu

n,m
∥

∥

∥

B
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≤ T

(

1

n
+

1

m

)

∥

∥

∥

∥

∥

j−1
∑

i=0

ajiki

∥

∥

∥

∥

∥

B

∥

∥

∥
δu

n,m
∥

∥

∥

B

≤ T

(

1

n
+

1

m

)

max |a(t)|
∥

∥

∥
δu

n,m
∥

∥

∥

B

≤ c

(

1

n
+

1

m

)[

c

(

1

n
+

1

m

)

+ c

]

.

Then
(

Kn (t) − Km (t) , δu
n,m
)

B
≤ c

(

1

n
+

1

m

)2

+ c

(

1

n
+

1

m

)

(4.8)

Summing up the inequalities (4.5)-(4.8) it follows that (4.4) becomes

τ

2

d

dt
‖δun (t) − δum (t)‖

2
B +

b

2

d

dt
‖un (t) − um (t)‖

2
≤ (4.9)

c

(

1

n
+

1

m

)2

+ c

(

1

n
+

1

m

)

which implies

[

d

dt
‖δun (t) − δum (t)‖

2
B +

b

2

d

dt
‖un (t) − um (t)‖

2

]

≤
2

min (τ, b)

[

c

(

1

n
+

1

m

)2

+ c

(

1

n
+

1

m

)

]

.

Since un (0) = um (0) = u0 and δun (0) = δum (0) = u1, integrating over (0, t),
it yields

‖δun (t) − δum (t)‖2
B + ‖un (t) − um (t)‖2

≤

[

C9T

(

1

n
+

1

m

)

+ C10T

(

1

n
+

1

m

)2
]

exp (C11T )

Taking the upper bound with respect to t ∈ I in the left hand side of the last
inequality, we obtain

sup
t∈I

‖δun (t) − δum (t)‖
2
B + sup

t∈I

‖un (t) − um (t)‖
2

≤ cT

(

1

n
+

1

m

)

+ cT

(

1

n
+

1

m

)2

that implies
‖δun − δum‖

2
C(I,B) + ‖un − um‖

2
C(I,V ) ≤ C (4.10)

From (4.10) we deduce that both {un}n , {δun}n are Cauchy sequences in the
Banach spaces C(I, V ), C(I, B) respectively. Consequently there exist two func-
tions u ∈ C(I, V ) and w ∈ C(I, B) such that
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un → u in C(I, V ), δun → w in C(I, B). (4.11)

Now, on the basis of estimations (3.18), (3.19) and (4.11), Lemma 3.2 we
state the following assertions:

(i) u ∈ C0,1 (I, V )
(ii) u is differentiable in I and du

dt
∈ L∞ (I, V ) .

(iii) un (t) → u (t) in V for all t ∈ I.

(iv) dun

dt
⇀ du

dt
in L2 (I, V ) .

From the estimates (3.20), (3.21), (4.11) and Lemma 3.2, the following state-
ments are true for the functions δun and the corresponding step function δu

n
:

(v) w ∈ C0,1 (I, B)
(vi) w is differentiable in I and dw

dt
∈ L∞ (I, B)

(vii) δu
n

(t) ⇀ w (t) in V for all t ∈ I;
(viii) d

dt
δun ⇀ dw

dt
in L2 (I, B) .

Using the same steps as in [1] we can easily prove that w coincides with du
dt

for all v ∈ L2 (I, B),
Now, we give an existence result.
Theorem 4.2. Suppose that the conditions H1 − H3 hold, then problem

(1.5)-(1.8) has a unique weak solution.
Proof. First, for existence we have to show that the properties (1)− (4) in

the Definition 2.1are fulfilled.
From Theorem 4.1 we conclude directly that the two first statements of

Definition 2.1 are satisfied, the third one is true since un → u in C (I, V ),
δun → du

dt
in C (I, B) as n → ∞, un (0) = u0 and du

dt
(0) = u1 are in V and B

respectively. It remains to prove the last statement. Integrating over (0, t) the
relation (4.1) for all φ ∈ V, we get

τ (δun (t) − u1, φ)B + a

∫ t

0

(

δu
n

(s) , φ
)

B
ds + b

∫ t

0

(un (s) , φ) ds = (4.12)

∫ t

0

(

F
n

(s) , φ
)

B
ds +

∫ t

0

(Kn (s) , φ)B ds

the third statement in Theorem 4.1 implies that

(δun (t) − u1, φ)B →
n→∞

(

du

dt
− u1, φ

)

B

, ∀φ ∈ V, ∀t ∈ I. (4.13)

It is easy to see that the expressions |(un (s) , φ)|,
∣

∣

∣

(

δu
n

(s) , φ
)∣

∣

∣
and

∣

∣

∣

(

F
n

(s) , φ
)

B

∣

∣

∣
are uniformly bounded with respect to both n and s, then by

bounded convergence theorem it yields

∫ t

0

(

δu
n

(s) , φ
)

B
ds →

n→∞

∫ t

0

(

du

dt
(s) , φ

)

B

ds, ∀φ ∈ V , ∀t ∈ I. (4.14)
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∫ t

0

(un (s) , φ) ds →
n→∞

∫ t

0

(u (s) , φ) ds, ∀φ ∈ V , ∀t ∈ I (4.15)

∫ t

0

(

F
n

(s) , φ
)

B
ds →

n→∞

∫ t

0

(F (s) , φ)Bds, ∀φ ∈ V , ∀t ∈ I. (4.16)

On the other hand we have the following Lemma
Lemma 4.3. Under the assumptions of Theorem 4.2, the sequence {Kn (t)}

is uniformly bounded and Kn (t) →
n→∞

K (u) (t) in L2 (I, B) .

Proof. Is the same as the proof of Lemma 2.4 in [3].
From Lemma 4.3 and bounded convergence theorem we conclude that

∫ t

0

(Kn (s) , φ)B ds →
n→∞

∫ t

0

(K (s)u, φ)B ds (4.17)

Finally taking into account (4.13)-(4.16), then passing to the limit as n → ∞
in (4.12) we get

τ
(

du
dt

− u1, φ
)

B
+ a

∫ t

0

(

du
dt

(s) , φ
)

B
ds + b

∫ t

0
(u (s) , φ) ds

=
∫ t

0 (F (s) , φ)Bds +
∫ t

0 (K (s)u, φ)B ds., ∀φ ∈ V
(4.18)

Differentiating this identity we obtain the required relation.
To prove the uniqueness of the weak solution we suppose that it exists two

weak solutions û and ǔ of problem (1.5)-(1.8). Let u = û − ǔ and φ = du
dt

(t) .

From (2.1) we obtain

τ

∫

I

(

d2u

dt2
(t) ,

du

dt
(t)

)

B

dt+a

∫

I

(

du

dt
(t) ,

du

dt
(t)

)

B

dt+b

∫

I

(

u (t) ,
du

dt
(t)

)

dt =

(4.19)

∫

I

(
∫ t

0

a (t − s) [k (s, u1) − k (s, u2)]ds,
du

dt
(t)

)

B

dt.

Let p be a length of a finite number corresponding to the subdivision of time
such that

w.p <
min (τ, b)

2
, w = max |a (t)|

∫ T

0

L (t) dt, (4.20)

testing (4.18) with

φ =

{

du
dt

, t ∈ [0, p]
0, t ∈ ]p, T ]
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we get

τ

p
∫

0

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

2

B

dt + a

p
∫

0

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

2

B

dt + b

p
∫

0

‖u (t)‖2
dt

=

∫

I

(
∫ t

0

a (t − s) [k (s, u1) − k (s, u2)] ds,
du

dt
(t)

)

B

dt.

Using the Cauchy Schwarz inequality and the condition (H4) we obtain

τ

p
∫

0

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

2

B

dt + b

p
∫

0

‖u (t)‖
2
dt ≤ (4.21)

∫

I

∥

∥

∥

∥

∫ t

0

a (t − s) [k (s, u1) − k (s, u2)] ds

∥

∥

∥

∥

2

B

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

2

B

then
p
∫

0

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

2

B

dt +

p
∫

0

‖u (t)‖
2
dt ≤ (4.22)

2

min (τ, b)
max

I
|a (t)| .p.

T
∫

0

L (t) dt. ‖u (t)‖ ×

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

B

≤ wp
2

min (τ, b)

[

(

max
t∈[0,p]

‖u (t)‖

)2

+

(

max
t∈[0,p]

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

B

)2
]

.

Let t1, t2 ∈ [0, p] be such that

∥

∥

∥

∥

du

dt
(t1)

∥

∥

∥

∥

B

= max
[0,p]

∥

∥

∥

∥

du

dt
(t)

∥

∥

∥

∥

B

(4.23)

‖u (t2)‖ = max
[0,p]

‖u (t)‖ (4.24)

since du
dt

(0) = u (0) = 0 it result that

t1
∫

0

d

dt

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

2

B

dt +

t2
∫

0

d

dt
‖u (t)‖2

dt =

∥

∥

∥

∥

du

dt
(t1)

∥

∥

∥

∥

2

B

+ ‖u (t2)‖
2 ≤ (4.25)

p
∫

0

d

dt

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

2

B

dt +

p
∫

0

d

dt
‖u (t)‖

2
dt
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from inequalities (4.22), (4.20) and (4.25) we obtain

du

dt
(t) = u (t) = 0, ∀t ∈ [0, p]

Repeating the same procedure on the [ip, (i + 1) p] , i = 1,..., we get

u (t) = 0, ∀t ∈ I

this achieves the proof of Theorem 4.2.�
Conclusion. A new nonlocal problem generated by an integro-differential
equation subject to integral condition has been studied by applying the time
discretization method. It may be concluded that this technique is very pow-
erful and efficient in finding the approximate solutions for a large class of
integro-differential equations. As a continuation of this work we propose the
investigation of the following time fractional integro-differential equation for
(x, t) ∈ (0, 1) × I:

τ
∂2αυ

∂t2α
+ a

∂αυ

∂tα
− b

∂2υ

∂x2
= f (x, t) +

∫ t

0

a (t − s) k (s, υ (x, s)) ds,

that has many applications in various fields of science and engineering. The
fractional derivatives appearing in the above equation must be understood in
the sense of Caputo fractional derivative.
Acknowledgements. The authors are thankful to the referee for his valuable
comments and suggesting several changes, which have improved this paper.
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