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Abstract. In this paper, we study the global stability of a predator–prey system with
Beddington–DeAngelis and Tanner functional response. By using the iteration method
and comparison principle, we prove the global asymptotic stability of the unique posi-
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1 Introduction

The purpose of this paper is to consider the following predator–prey system with Beddington–
DeAngelis and Tanner functional response

ut = d1∆u + u− u2 − uv
a+u+v , (x, t) ∈ Ω× (0, ∞),

vt = d2∆v + v(δ− β v
u ), (x, t) ∈ Ω× (0, ∞),

∂u
∂ν = ∂v

∂ν = 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω̄,

(1.1)

where u(x, t) and v(x, t) are the densities of prey and predator, respectively, Ω is a bounded
domain with smooth boundary ∂Ω, a, δ and β are positive constants. In this paper we assume
that the two diffusion coefficients d1 and d2 are the diffusion coefficients corresponding to
u and v, respectively, and are positive and equal, but not necessary constants. We use d
to represent the common value. The admissible initial data u0(x) and v0(x) are continuous
functions on Ω̄.
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The functional response uv
a+u+v was introduced by Beddington [1] and DeAngelis [3]. They

proposed the following predator–prey model with Beddington–DeAngelis functional response

{
x′ = x(r− θx)− Exy

a+bx+cy ,

y′ = −dy + βxy
a+bx+cy .

(1.2)

Huang et al. [9, 10] proposed a class of virus dynamics model with Beddington–DeAngelis
functional response. Liu and Kong [11] studied the dynamics of a predator–prey system with
Beddington–DeAngelis functional response and delays.

Besides the Beddington–DeAngelis functional responses mentioned above, there are sev-
eral other well-known functional responses, such as Holling type (I, II, III, IV), Monod–
Haldane type and Hassel–Verley type functional responses etc. Some authors studied and
raised some open questions for structured predator–prey models with different types of func-
tional responses. Especially, in [15], Peng and Wang considered the steady states of a diffusive
Holling–Tanner prey–predador model


ut = d1∆u + au− u2 − uv

m+u , (x, t) ∈ Ω× (0, ∞),

vt = d2∆v + bv− v2

γu , (x, t) ∈ Ω× (0, ∞),
∂u
∂ν = ∂v

∂ν = 0, (x, t) ∈ ∂Ω× (0, ∞),

u(x, 0) = u0(0) > 0, v(x, 0) = v0(0) ≥ 0, x ∈ Ω̄.

(1.3)

They discussed the existence and non-existence of positive non-constant steady solutions for
(1.3), and proved that (1.3) has no positive non-constant steady solution under a certain con-
dition. In the another paper [16], by the construction of a Lyapunov function and a stan-
dard linearization procedure, they studied the stability of diffusive predator–prey system of
Holling–Tanner type (1.3). Chen and Shi [2] concentrated on the steady states of (1.3). They
used the comparison principle and defined iteration sequences to prove the global stability
for the constant positive equilibrium. Their result improves the earlier one given in [16] which
was established by Lyapunov method. We also note here that the (non-spatial) kinetic equa-
tion of system (1.3) was first proposed by Tanner [20] and May [14], see also [12, 13].

Recently, Qi and Zhu [17] studied the global stability of diffusive predator–prey system
(1.3). Indeed, in [17], they established improved global asymptotic stability of the unique
positive equilibrium solution. For more detailed biological implications of the model, besides
the references mentioned above, one can see [4–8, 18, 19].

Motivated by the previous works [17], in this paper by incorporating the diffusion and
ratio-dependent Beddington–DeAngelis functional response into system (1.3), we study the
stability of the positive equilibrium solution of (1.1).

A direct computation gives that (1.1) has a unique positive equilibrium (u∗, v∗), where

u∗ =
β
(

1− a +
√
(1− a)2 + 4a(1 + δ

β )
)

2(β + δ)
, v∗ =

δ

β
u∗.
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2 Proof of the main result

Let w = v
u , then we have

wt =
vt

u
− utv

u2 ,

∇w =
∇v
u
− ∇u

u2 v,

∆w =
∆v
u
− v∆u

u2 −
2∇u · ∇v

u2 +
2|∇u|2

u3 v.

Therefore the equation satisfied by w is

wt − d∆w = w
(

δ− 1 + u + w
(
−β +

u
a + u + v

))
+ 2d

∇u
u
· ∇w. (2.1)

Theorem 2.1. Suppose d = d(x, t) is strictly positive, bounded and continuous in Ω × [0,+∞),
a, δ and β are positive constants, δ < 1, then the positive equilibrium solution (u∗, v∗) is globally
asymptotically stable in the sense that every solution u(x, t) of (1.1) satisfies

lim
t→∞

(u(x, t), v(x, t)) = (u∗, v∗)

uniformly in x ∈ Ω.

Proposition 2.2. Suppose δ < 1 and ε1 > 0 small. There exists a sufficiently large constant T > 0
such that the solution u of (1.1) satisfies

u ≤ u2(ε1) ≡
1− a− δ

β u1 +

√(
1− a− δ

β u1

)2
+ 4a

2
+ O(ε1),

for x ∈ Ω and t ≥ T, where

u1 =
1− a +

√
(1− a)2 + 4a(1 + w1(ε1))

2(1 + w1(ε1))
,

w1 =
δu1 + (u1)

2 − βu1 − aβ

2βu1

+

√
(βu1 + aβ− δu1 − (u1)2)2 + 4βu1(a(δ− 1) + u1(δ− 1 + a + u1))

2βu1
,

and u1 ≡ 1.

Proof. Since v > 0, a direct computation gives

ut − d∆u ≤ u(1− u), in Ω× (0, ∞).

By a simple comparison argument and the well established fact that any positive solution of{
ut − d∆u = u(1− u), in Ω× (0, ∞),
∂u
∂ν = 0, on ∂Ω× (0, ∞),

converges to the asymptotic stable equilibrium 1 as t → ∞, we get that for all ε1 > 0, there
exists a constant t1 > 0, such that

u(x, t) < u1(ε1) ≡ 1 +
ε1

5
(2.2)
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if x ∈ Ω and t ≥ t1. Thus

wt − d∆w ≤ w
(

δ− 1 + u1(ε1) + w
(
−β +

u1(ε1)

a + u1(ε1)w + u1(ε1)

)
+

2d
u
∇u · ∇w

)
for x ∈ Ω and t ≥ t1.

It is clear that the following equation about W(t)

Wt = W
(

δ− 1 + u1(ε1) + W
(
−β +

u1(ε1)

a + u1(ε1)W + u1(ε1)

))
(2.3)

has three solutions:

W0 = 0,

W1,2 =
δu1(ε1) + (u1(ε1))

2 − βu1(ε1)− aβ

2βu1(ε1)
(2.4)

±
√
(βu1(ε1) + aβ− δu1(ε1)− (u1(ε1))2)2 + 4βu1(ε1)(a + u1(ε1))(δ− 1 + u1(ε1))

2βu1(ε1)

It is clear that W1(t) is the unique asymptotically stable positive equilibrium point of (2.3),
and W0(t) = 0 is unstable. Thus, all positive solutions W(t) of (2.3) converge to the unique
positive asymptotically stable equilibrium point W1(t), since the trajectories of (2.3) cannot
cross the x-axis. By a simple comparison argument, we get that there exists a positive constant
t2 ≥ t1 such that

v
u
= w(x, t) ≤ w1(ε1) ≡W1 +

ε1

5
(2.5)

for all x ∈ Ω and t ≥ t2. Consequently, v ≤ w1(ε1)u, and

ut − d∆u ≥ u(1− u)− w1(ε1)u
a
u + 1 + w1(ε1)

=
u
[
(1− u)( a

u + 1 + w1(ε1))− w1(ε1)
]

a
u + 1 + w1(ε1)

for all x ∈ Ω and t ≥ t2. The equation

(1− u)
( a

u
+ 1 + w1(ε1)

)
− w1(ε1) = 0

has only one positive root

û =
1− a +

√
(1− a)2 + 4a(1 + w1(ε1))

2(1 + w1(ε1))
,

which is a stable equilibrium point of the ODE

ut =
u[(1− u)( a

u + 1 + w1(ε1))− w1(ε1)]
a
u + 1 + w1(ε1)

. (2.6)

Thus, all positive solution of (2.6) converge to û, which implies that there exists t3 > t2 such
that

u ≥ u1(ε1) ≡
1− a +

√
(1− a)2 + 4a(1 + w1(ε1))

2(1 + w1(ε1))
− ε1

5
(2.7)

for all x ∈ Ω and t ≥ t3. On the other hand, by using the second equation of (1.1), we get

vt − d∆v ≥ v
(

δ− β
v

u1(ε1)

)
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for all x ∈ Ω and t ≥ t3. Thus, there exists a constant t4 > t3 such that

v ≥ v1(ε1) =
δu1(ε1)

β
− ε1

5
(2.8)

for all x ∈ Ω and t ≥ t4. Substituting v ≥ v1(ε1) into the first equation of (1.1), we get

ut − d∆u ≤ u− u2 − uv1(ε1)

a + u + v1(ε1)
=

u[(1− u)(a + u + v1(ε1))− v1(ε1)]

a + u + v1(ε1)
.

The quadratic equation
(1− u)(a + u + v1(ε1))− v1(ε1) = 0

has only one positive root

ˆ̂u =
1− a− uv1(ε1) +

√
(1− a− uv1(ε1))2 + 4a
2

. (2.9)

By comparison principle then yields there exists t5 > t4 such that if t ≥ t5,

u ≤ u2(ε1) ≡ ˆ̂u +
ε1

5
. (2.10)

Simple computation using (2.2), (2.4), (2.5) and (2.7)–(2.10) shows the expression of u2(ε1) and
that of u1(ε1) and w1(ε1) are valid. This completes the proof.

By repeating the above procedure, for any positive integer n, there exists T sufficiently
large such that when t ≥ T,

u ≤ un+1(ε1) ≡
1− a− uvn(ε1) +

√
(1− a− uvn(ε1))2 + 4a
2

+
ε1

5
,

u ≥ un(ε1) ≡
1− a +

√
(1− a)2 + 4a(1 + wn(ε1))

2(1 + wn(ε1))
− ε1

5

uniformly in Ω, where

vn(ε1) =
δ

β
un(ε1)−

ε1

5
,

wn =
δun(ε1) + (un(ε1))

2 − βun(ε1)− aβ

2βun(ε1)

+

√
(βun(ε1) + aβ− δun(ε1)− (un(ε1))2)2 + 4βun(ε1)(a + un(ε1))(δ− 1 + un(ε1))

2βun(ε1)
.

When ε1 = 0, we have

un+1 =
1− a− δ

β un +

√(
1− a− δ

β un

)2
+ 4a

2
,

un =
1− a +

√
(1− a)2 + 4a(1 + wn)

2(1 + wn)
,

vn =
δ

β
un
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and u1 = 1, u1 > u∗, u1 < u∗. Direct calculation gives(
1− a− δ

β
u1

)2

+ 4a = (1− a)2 +
δ2u1

2

β2 − 2(1− a)
δ

β
u1 + 4a

< (1 + a)2 +
δ2u1

2

β2 + 2(1 + a)
δ

β
u1 +

4aδu1
β

=

(
1 + a +

δ

β
u1

)2

,

thus,

u2 =
1− a− δ

β u1 +
√
(1− a− δ

β u1)
2 + 4a

2
< 1 = u1.

Then, we can obtain that {un} is a decreasing sequence by induction. Similarly, since

wn =
δ

2β
+

un

2β
− 1

2
− a

2un

+

√(
δ

2β
+

un

2β
− 1

2
− a

2un

)2

+
1
β

(
a(δ− 1)

un
+ un + a + δ− 1

)
,

and

un =
1
2

 1− a
1 + wn

+

√(
1 + a

1 + wn

)2

+ 4a

 ,

where δ < 1, we obtain that {wn} is a decreasing sequence and {un} is an increasing sequence.
Thus, under the assumption of Theorem 2.1, we have

lim
n→∞

un = lim
n→∞

un = u∗.

Consequently, we have
lim
n→∞

vn = lim
n→∞

vn = v∗.

Now, we show limt→∞(u, v) = (u∗, v∗), uniformly in Ω.

Proof of Theorem 2.1. for any ε > 0, there exists N ∈ Z+ such that when n > N,

|un − u∗|+ |un − u∗| < ε

4
. (2.11)

Choose ε1 > 0 sufficiently small such that

|uN(ε1)− uN |+ |uN(ε1)− uN | <
ε

4
. (2.12)

and the same to vn(ε1), vn, vn(ε1), vn and v∗. Furthermore, there exists tM � 1 such that
when t ≥ tM,

uN(ε1) ≤ u(x, t) ≤ uN(ε1) in Ω.

Hence, by (2.11) and (2.12), when t ≥ tM,

|u(x, t)− u∗| < ε in Ω.

This proves limt→∞ u(x, t) = u∗ uniformly in Ω. Similarly, limt→∞ v(x, t) = v∗ uniformly in Ω.
This finished the proof of Theorem 2.1.
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