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Abstract. In this paper, combining the upper and lower solution method with per-
turbation theory, we study the asymptotic behavior of entire large solutions to Eq.
∆pu = b(x) f (u), u(x) > 0, x ∈ R, where b ∈ Cα

loc(R
N) (α ∈ (0, 1)) is positive in

RN (N ≥ 3), f ∈ C1[0, ∞) is positive on (0, ∞) which satisfies a generalized Keller–
Osserman condition and is rapidly varying or regularly varying with index µ ≥ p− 1.
We then discuss the uniqueness of solutions by the asymptotic behavior of entire large
solutions at infinity.
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1 Introduction

In this article, we study the exact asymptotic behavior of entire large solutions u ∈W1,p
loc (R

N)∩
C1,α

loc(R
N) (α ∈ (0, 1)) to the following quasilinear elliptic equation

∆pu = b(x) f (u), u(x) > 0, x ∈ RN , (1.1)

where ∆pu := div(|∇u|p−2∇u) stands for p -Laplacian operator with 1 < p < N (N ≥ 3). The
entire large solution means that u solve Eq. (1.1) in RN and u(x) → ∞ as |x| → ∞, which is
also called “entire blow-up solution” or “entire explosive solution” in many different contexts.
The nonlinearity f satisfies the following hypotheses:

(f1) f ∈ C1[0, ∞), f (0) = 0, f ′(t) ≥ 0 and f (t) > 0 for t > 0;

(f2) the following generalized Keller–Osserman condition holds,

∫ ∞

1
[(p/(p− 1))F(t)]−1/pdt < +∞, F(t) =

∫ t

0
f (s)ds;
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(f3) there exists C f ≥ 0 such that

lim
t→∞

(F(t))(p−1)/p

f (t)
∫ ∞

t (F(s))−1/pds
=: C f ≥ 0, (1.2)

the weight b satisfies

(b1) b ∈ Cα
loc(R

N) (α ∈ (0, 1)) is positive in RN ;

(b2) there exist a positive constant λ and a function k ∈ K such that

0 < b1 := lim inf
|x|→∞

b(x)
|x|−λkp−1(|x|) ≤ b2 := lim sup

|x|→∞

b(x)
|x|−λkp−1(|x|) < ∞,

where {
λ ∈ [p, p2), if p ∈ (1, 2];

λ ∈ [p1, p2), if p ∈ (2, N),{∫ ∞
t0

k(s)
s ds < ∞, if p ∈ (1, 2] and λ = p;∫ ∞

t0

kp−1(s)
s ds < ∞, if p ∈ (2, N) and λ = p1,

with

p1 = ((p− 2)N + p)/(p− 1) and p2 = (p2(N + 1)− p(N + 3))/(p2 − 3),

moreover, K denotes the set of Karamata functions k defined on [t0, ∞) by

k(t) := c exp
( ∫ t

t0

y(s)
s

ds
)

, t > t0 > 0

with c > 0 and y ∈ C[t0, ∞) such that limt→∞ y(t) = 0.

For p = 2, Eq. (1.1) has been extensively investigated by many authors and the link be-
tween Eq. (1.1) and geometric problem has been known for a long time, for instance, when
b ≡ 1 in Ω, f (u) = eu and N = 2, Bieberbach [7] first analyzed the existence, uniqueness
and asymptotic behavior of boundary blow-up solutions to Eq. (1.1) with p = 2 in a bounded
domain Ω ⊆ RN with C2-boundary. In the case, Eq. (1.1) plays an important role in the the-
ory of Riemannian surfaces of constant negative curvatures and in the theory of automorphic
functions. Later, Rademacher [40], using the ideas of Bieberbach, extended the results to a
bounded domain in R3. On the other hand, when f (u) = uγ, γ = (N + 2)/(N − 2), Yamabe
[45] showed the relationship between solvability of Eq. (1.1) with p = 2 and the existence
of a conformal metric on the Euclidean space RN , with a prescribed scalar curvature. It is
worth while to point out that, Keller [25] and Osserman [39] carried out a systematic research
on Eq. (1.1) with p = 2 and gave, respectively, the necessary and sufficient condition for the
existence of large solutions when b ≡ 1 in bounded domain Ω and b ≡ 1 in RN . Then Lazer
and McKenna [29], Lair [26–28], Cîrstea and Rădulescu [10], further investigate the existence
of large solutions to Eq. (1.1) in bounded and unbounded domains.

Motivated by certain geometric problems, for b ≡ 1 in bounded Ω ⊆ RN and f (u) = uγ,
γ = (N + 2)/(N − 2) with N > 2, Loewner and Nirenberg [31] proved Eq. (1.1) with p = 2
has a unique positive large solution u in Ω satisfying

lim
d(x)→0

u(x)(d(x))(N−2)/2 = (N(N − 2)/4)(N−2)/4,

where d(x) := dist(x, ∂Ω). If f satisfies (f1)–(f2) with p = 2 and the condition that
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(f01) there exist θ > 0 and t0 ≥ 1 such that f (ξt) ≤ ξ1+θ f (t) for each ξ ∈ (0, 1) and t ≥ t0/ξ,

Bandle and Marcus [5] further analyzed the asymptotic behavior of large solutions to Eq. (1.1)
with p = 2 in a bounded domain Ω ⊆ RN by a appropriate comparison function.

If f satisfies (f1) and the condition that

(f02)
∫ t

1
dt

f (t) < ∞, the limit limt→0+ f ′(t)
∫ ∞

t
ds

f (s) := L exists and satisfies L > 0;

(f03) there exist γ > 1, t0 ≥ 0 such that t 7→ f (t)/tγ is increasing if t ≥ t0,

the weight b satisfies

(b01) b ∈ Cα
loc(Ω) (α ∈ (0, 1)) is positive in bounded domain Ω;

(b02) there exists β ∈ (0, 2) such that limd(x)→0 b(x)(d(x))β = b0 > 0,

then García-Melián [18] derived that

(i) when L > 1, every large solution u of Eq. (1.1) with p = 2 in bounded domain Ω satisfies

lim
d(x)→0

u(x)
Φ(A(d(x))2−β)

= 1 with A =
b0

(2− β)((2− β)(L− 1) + 1)
,

and Φ satisfies ∫ ∞

Φ(t)

ds
f (s)

= t, t > 0;

(ii) when L = 1 and t f ′(Φ(t)) ≥ 1 for small enough t > 0, (i) still holds.

When b ≡ 1 in a bounded domain Ω, the existence of large solutions to Eq. (1.1) was first
studied by Diaz and Letelier [16] for f (u) = uγ (γ > p− 1). Then, Matero [33] studied the
existence and asymptotic behavior of large solutions to Eq. (1.1) in a bounded smooth domain
with a C2-boundary. If b ≡ 1 in bounded domain Ω ⊆ RN and f is a smooth, positive,
and increasing function which satisfies (f2), Gladiali and Porru [21] showed that if F(t)t−p is
increasing for large t, then any weak solution u to problem (1.1) satisfies

|u(x)− ψ(d(x))| < cd(x)ψ(d(x)) near ∂Ω

with ∫ ∞

ψ(t)
[(p/(p− 1))F(s)]−1/pds = t, t > 0. (1.3)

Furthermore, they showed that, under the additional assumption F(t)t−2p → ∞ as t → ∞,
one obtains

u(x)− ψ(d(x))→ 0 as d(x)→ 0.

If b is non-negative and continuous on a bounded domain Ω ⊆ RN and satisfies some appro-
priate additional condition, Mohammed [36] established the existence and asymptotic behav-
ior of large solutions to Eq. (1.1). Then, when b satisfies some suitable integral condition and
p ∈ (1, N) (N ≥ 2), Covei [15] studied the existence of entire large solutions to Eq. (1.1) in
RN . On the other hand, for the cases of f (u) = uγ with γ > p− 1 and f (u) = eu, García-
Melián [19, 20] investigated, respectively, the existence, uniqueness and asymptotic behavior
of boundary blow-up solutions to Eq. (1.1) in a smooth bounded domain.

In different direction, by applying Karamata regular variation theory Cîrstea and Răd-
ulescu [11–14] opened up a unified new approach to studied the boundary behavior and
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uniqueness of large solutions to Eq. (1.1) with p = 2 in a bounded domain, which enables us
to obtain some significant information about the qualitative behavior of large solutions in a
general framework. Later, Mohammed [37], Zhang et al. [46], Zhang [47–49], Huang et al. [23],
Huang [24], Mi et al. [34], Mi and Liu [35] apply similar techniques to further study asymp-
totic behavior and uniqueness of boundary blow-up solutions to (1.1) in a bounded domain
Ω ⊆ RN . Most recently, inspired by the above works, we [44] investigated the asymptotic
behavior of entire large solutions to Eq. (1.1) with p = 2 in RN by using Karamata regular
variation theory.

For further insight on Eq. (1.1), we refer the interested reader to the papers [1–4,6,9,17,22,
30, 38, 43] and the references therein.

In this paper, we investigate the exact asymptotic behavior and uniqueness of entire large
solutions to (1.1) in RN . Let f satisfy (f1)–(f2), ψ be the solution of (1.3), we conclude by
Lemmas 3.1 and 3.2 (v) that

(i) if (f3) holds, then C f ≤ 1/p;

(ii) if (f3) holds with C f = 1/p, then f is rapidly varying to infinity at infinity (please refer
to Definition 2.2);

(iii) (f3) holds with C f ∈ (0, 1/p) if and only if f ∈ RV(p(1+C f )−1)/(1−pC f ) (please refer to
Definition 2.1);

(iv) if f ∈ RVp−1, then (f3) holds with C f = 0 and in the case, ψ is rapidly varying to infinity
at zero (please refer to Definition 2.3).

Our results are summarized as follows.

Theorem 1.1. Let f satisfy (f1)–(f3), b satisfy (b1)–(b2).

(I) If C f ∈ (0, 1/p] in (f3), then any entire large solution u of problem (1.1) satisfies

ξ
(pC f−1)/pC f
2 ≤ lim inf

|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
≤ lim sup

|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p) ≤ ξ
(pC f−1)/pC f
1 ,

(1.4)

where ψ is uniquely determined by (1.3) and

ξi =

(
bi pp

(p− 1)p−3[ρ(λ, p, N)pC f + (p− 1)2(λ− p)]

)1/p

, i = 1, 2

with
ρ(λ, p, N) := p2(N + 1) + λ(3− p2)− p(N + 3).

In particular,

(i) when b1 = b2 = b0 in (b2)

lim
|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
=

(
b0 pp

(p− 1)p−3[ρ(λ, p, N)pC f + (p− 1)2(λ− p)]

)(pC f−1)/p2C f

.
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(ii) when C f = 1/p in (f3)

lim
|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p) = 1.

(II) If C f = 0 in (f3), then any entire large solution u of problem (1.1) satisfies

lim
ε→0

lim sup
|x|→∞

u(x)

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≤ 1;

lim
ε→0

lim inf
|x|→∞

u(x)

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≥ 1,

(1.5)

where τ1 =
(
ξ

p
1 − εξ

p
1 /b1

)1/p, τ2 =
(
ξ

p
2 + εξ

p
2 /b2

)1/p with ξi =
( bi pp

(p−1)p−1(λ−p)

)1/p,
i = 1, 2.

Theorem 1.2. Let f satisfy (f1)–(f3) with C f ∈ (0, 1/p] and further satisfy the condition that

(f4) t 7→ f (t)t1−p is nondecreasing on (0, ∞),

b satisfy (b1)–(b2) with b1 = b2, then problem (1.1) possesses a unique entire large solution.

Remark 1.3. k ∈ K is normalized slowly varying at infinity and limt→∞
tk′(t)
k(t) = 0.

Remark 1.4. Some basic examples of the functions which satisfy (f1)–(f3) are

(1) Let

F(t) =

{
0, if t = 0;

tp(ln t)pβ, if t ∈ (0, ∞),

where β > 1. Then a direct calculation shows that C f = 0 and

ψ(t) = exp
(
(((p− 1)/p)1/p(β− 1)t)1/(1−β)

)
, t > 0.

(2) Let

F(t) =

{
F̃(t), if t ∈ [0, e];

tp+β(1 + c0(ln t)−1), if t ∈ (e, ∞),

where c0 ≥ 0, β > 0, F̃ ∈ C1[0, e] is a differential continuation of the function
t 7→ tp+β(1 + c0(ln t)−1) on (e, ∞), which satisfies F̃ and F̃′ are increasing on [0, e] and

F̃(0) = F̃′(0) = 0, F̃(e) = (1 + c0) exp
(

p + β
)
,

F̃′(e) = (p + β + (p + β− 1)c0) exp
(

p + β− 1
)
.

In the case, a simple calculation shows that C f = β/(p(p + β)). Since

((p− 1)/p)1/p
∫ ∞

t

(
sp+β(1+ c0(ln s)−1)

)−1/pds ∼ ((p− 1)/p)1/p(p/β)t−β/p, t→ ∞,

we arrive at
ψ(t) ∼

(
((p− 1)/p)−1/p(β/p)t

)−p/β, t→ 0+.
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(3)

F(t) =


0, if t = 0;

exp(β) exp
(

β(1− t−1)
)
, if t ∈ (0, 1];

exp(βt), if t ∈ (1, ∞),

where β ≥ 2. In the case, a straightforward calculation shows that C f = 0 and

ψ(t) = −(p/β) ln
(
((p− 1)/p)1/p(β/p)t

)
∼ −(p/β) ln t, t→ 0+.

The paper is organized as follows. In Section 2, we give some bases of Karamata regular
variation theory. In Section 3, we collect some preliminary considerations. The proof of
Theorem 1.1 is given in Section 4. Finally, Section 5 is devoted to prove the uniqueness of
entire large solutions.

2 Some basic facts from Karamata regular variation theory

In this section, we introduce some preliminaries of Karamata regular variation theory which
come from [32, 41, 42].

Definition 2.1. A positive continuous function f defined on [a, ∞), for some a > 0, is called
regularly varying at infinity with index µ, denoted by f ∈ RVµ, if for each ξ > 0 and some
µ ∈ R,

lim
t→∞

f (ξt)
f (t)

= ξµ. (2.1)

In particular, when µ = 0, f is called slowly varying at infinity.

Clearly, if f ∈ RVµ, then L(t) := f (t)/tµ is slowly varying at infinity.
We also see that a positive continuous function h defined on (0, a) for some a > 0, is

regularly varying at zero with index µ (written as h ∈ RVZµ) if t→ h(1/t) ∈ RV−µ.

Definition 2.2. A positive continuous function f defined on [a, ∞), for some a > 0, is called
rapidly varying to infinity at infinity if

lim
t→∞

f (t)
tµ

= ∞ for each µ > 0.

Definition 2.3. A positive continuous function h defined on (0, a], for some a > 0, is called
rapidly varying to infinity at zero if

lim
t→0+

h(t)tµ = ∞ for each µ > 0.

Proposition 2.4 (Uniform convergence theorem). If f ∈ RVµ, then (2.1) holds uniformly for
ξ ∈ [c1, c2] with 0 < c1 < c2.

Proposition 2.5 (Representation theorem). A function L is slowly varying at infinity if and only if
it may be written in the form

L(t) = ϕ(t)exp
(∫ t

a1

y(s)
s

ds
)

, t ≥ a1,
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for some a1 ≥ a, where the functions ϕ and y are continuous and for t→ ∞, y(t)→ 0 and ϕ(t)→ c0,
with c0 > 0. If ϕ ≡ c0, then L is called normalized slowly varying at infinity and

f (t) = tµ L̂(t), t ≥ a1,

is called normalized regularly varying at infinity with index µ (written as f ∈ NRVµ).

A function f ∈ NRVµ if and only if

f ∈ C1[a1, ∞), for some a1 > 0 and lim
t→∞

t f ′(t)
f (t)

= µ.

Proposition 2.6 (Asymptotic behavior). If a function L is slowly varying at infinity, then for
t→ ∞, ∫ ∞

t
sµL(s)ds ∼ (−µ− 1)−1t1+µL(t), for µ < −1.

3 Auxiliary results

In this section, we collect some useful results.

Lemma 3.1. Let f satisfy (f1)–(f2).

(i) If f satisfies (f3), then C f ≤ 1/p .

(ii) If (f3) holds with C f ∈ (0, 1/p) if and only if f ∈ RV(p(1+C f )−1)/(1−pC f ).

(iii) If f ∈ RVp−1, then (f3) holds with C f = 0.

(iv) If (f3) holds with C f = 1/p, then f is rapidly varying to infinity at infinity.

Proof. (i) Let

J(t) = ((F(t))1/p)′
∫ ∞

t
(F(s))−1/pds, t > 0.

Integrate J from a > 0 to t > a and integrate by parts, we obtain that∫ t

a
J(s)ds = (F(t))1/p

∫ ∞

t
(F(s))−1/pds− (F(a))1/p

∫ ∞

a
(F(s))−1/pds + t− a, t > a. (3.1)

It follows by L’Hospital’s rule that

0 ≤ lim
t→∞

(F(t))1/p

t

∫ ∞

t
(F(s))−1/pds = lim

t→∞
J(t)− 1, (3.2)

i.e.,

lim
t→∞

(F(t))(p−1)/p

f (t)
∫ ∞

t (F(s))−1/pds
≤ 1/p .

(ii) (Necessity.) By (3.1) and L’Hospital’s rule, we have

lim
t→∞

F(t)
t f (t)

= lim
t→∞

(F(t))(p−1)/p

f (t)
∫ ∞

t (F(s))−1/pds
· (F(t))1/p

t

∫ ∞

t
(F(s))−1/pds

= lim
t→∞

(F(t))(p−1)/p

f (t)×
∫ ∞

t (F(s))−1/pds

×
(∫ t

a J(s)ds
t

+ t−1(F(a))1/p
∫ ∞

a
(F(s))−1/pds− t− a

t

)
= lim

t→∞

(F(t))(p−1)/p(J(t)− 1
)

f (t)
∫ ∞

t (F(s))−1/pds
= (1− pC f )/p .

(3.3)
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So, F ∈ NRVp/(1−pC f ), i.e., there exist a large constant t0 > 0 and a slowly varying function at
infinity L̂ ∈ C2[t0, ∞) such that

F(t) = tp/(1−pC f ) L̂(t), t ∈ [t0, ∞),

where

L̂(t) = c exp
(∫ t

t0

y(s)
s

ds
)

with c > 0, y ∈ C1([t0, ∞)) and lim
t→∞

y(t) = 0.

Furthermore, we have

f (t) = t(p(1+C f )−1)/(1−pC f )
(
(p/(1− pC f )) + y(t)

)
L̂(t), t ∈ [t0, ∞),

i.e.,
f ∈ RV(p(1+C f )−1)/(1−pC f ).

(Sufficiency). Let

F(t) =
∫ t

0
f (s)ds =

∫ 1

0
t f (tτ)dτ.

By Lebesgue’s dominated convergence theorem, we have

lim
t→∞

F(t)
t f (t)

= lim
t→∞

∫ 1

0

f (tτ)
f (t)

dτ =
∫ 1

0
τ(p(1+C f )−1)/(1−pC f )dτ = (1− pC f )/p. (3.4)

This implies that F ∈ p/(1− pC f ). On the other hand, by using reduction to absurdity we
can see that

lim
t→∞

(F(t))1/p

t
= ∞. (3.5)

Combining (f2) with (3.5) we can apply L’Hospital’s rule to obtain

lim
t→∞

t(F(t))−1/p∫ ∞
t (F(s))−1/pds

= lim
t→∞

(
t f (t)
pF(t)

− 1
)
=

pC f

1− pC f
.

This together with (3.4) implies (1.2) holds.
(iii) From the similar calculation as (3.4), we arrive at

lim
t→∞

F(t)
t f (t)

= 1/p. (3.6)

On the other hand, by using L’Hospital’s rule, we have

lim
t→∞

t(F(t))−1/p∫ ∞
t (F(s))−1/pds

= lim
t→∞

(
t f (t)
pF(t)

− 1
)
= 0. (3.7)

We conclude by (3.6)-(3.7) that (f3) holds with C f = 0.
(iv) When C f = 1/p, from the similar calculation as (3.3), we can see that

lim
t→∞

F(t)
t f (t)

= 0. (3.8)

So, for an arbitrary γ > 1, there exists t0 > 0 such that

f (t)
F(t)

> (1 + γ)t−1, t ≥ t0.
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Integrating the above inequality from t0 to t, we obtain

ln F(t)− ln F(t0) > (1 + γ)(ln t− ln t0), t ≥ t0,

i.e.,
F(t)
tγ

>
F(t0)t

t1+γ
0

, t ≥ t0.

Letting t → ∞, the Definition 2.2 shows that F is rapidly varying at infinity. This combined
with (f1) shows that f is also rapidly varying at infinity.

Lemma 3.2. Let f satisfy (f1)–(f3) and ψ is the solution of problem (1.3). Then

(i) ψ′(t) = −
(
(p/(p− 1))F(ψ(t))

)1/p, |ψ′(t)|p−2ψ′′(t) = (p− 1)−1 f (ψ(t)), ψ(t) > 0, t > 0;

(ii) limt→0+ ψ(t) = ∞;

(iii) limt→0+
ψ′(t)

tψ′′(t) = −pC f ;

(iv) limt→0+
tψ′(t)
ψ(t) = − 1−pC f

pC f
, where C f ∈ (0, 1/p ];

(v) when C f = 0 in (f3), ψ is rapidly varying at zero.

Proof. (i) By the definition of ψ and a straightforward calculation, we can show that (i)–(ii)
holds.
(iii)

lim
t→0+

ψ′(t)
tψ′′(t)

= lim
t→0+

(1− p)
((p/(p− 1))F(ψ(t)))(p−1)/p

f (ψ(t))
∫ ∞

ψ(t)(((p− 1)/p)F(s))−1/pds
= −pC f .

(iv) By using (3.1) and L’Hospital’s rule, we obtain

lim
t→0+

tψ′(t)
ψ(t)

= − lim
t→∞

(F(t))1/p

t

∫ ∞

t
(F(s))−1/pds

= − lim
t→∞

f (t)
∫ ∞

t (F(s))−1/pds
p(F(t))(p−1)/p

+ 1 = −
1− pC f

pC f
.

(3.9)

(v) It follows by the similar calculation as (3.9) that

lim
t→0+

tψ′(t)
ψ(t)

= −∞.

Hence, for an arbitrary γ > 0, there exists a small enough t0 > 0 such that

−ψ′(t)
ψ(t)

> (1 + γ)t−1, t ∈ (0, t0].

Integrate it from t to t0, we obtain that

ln
(
ψ(t)

)
− ln

(
ψ(t0)

)
> (1 + γ)(ln t0 − ln t), t ∈ (0, t0],

i.e.,
ψ(t)tγ > ψ(t0)t

1+γ
0 t−1, t ∈ (0, t0].

Letting t→ 0+, we see by Definition 2.3 that ψ is rapidly varying to infinity at zero.



10 H. Wan

Lemma 3.3 ([8, Lemma 2.4]). Let k ∈ K, then

lim
t→∞

k(t)∫ t
t0

k(s)
s ds

= 0.

If further
∫ ∞

t0

k(s)
s ds < ∞, then

lim
t→∞

k(t)∫ ∞
t

k(s)
s ds

= 0.

Lemma 3.4 (Weak comparison principle). Let Ω be a bounded domain and G : Ω ×R → R be
non-increasing in the second variable and continuous. Let u, w ∈ W1, p(Ω) satisfy the respective
inequalities ∫

Ω
|∇u|p−2∇u · ∇ϕdx ≤

∫
Ω

G(x, u)ϕdx; (3.10)∫
Ω
|∇w|p−2∇w · ∇ϕdx ≥

∫
Ω

G(x, w)ϕdx, (3.11)

for all non-negative ϕ ∈W1, p
0 (Ω). Then the inequality u ≤ w on ∂Ω implies u ≤ w in Ω.

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1.

Proof. Let ε ∈ (0, b1(p− 1)/2) and

τ1 =
(
ξ

p
1 − εξ

p
1 /(b1(p− 1))

)1/p, τ2 =
(
ξ

p
2 + εξ

p
2 /(b2(p− 1))

)1/p.

It follows that
(1/2)1/pξ1 < τ1 < τ2 < (3/2)1/pξ2.

For any constant R > t0 (t0 is given by the definition K), we define ΩR := {x ∈ RN : |x| > R}.
From (b1)–(b2), Proposition 2.6 and Lemma 3.2 (iii), we see that corresponding to ε, there

exist sufficiently small δε > 0 and large enough Rε > 0 such that for any (x, r) ∈ ΩRε × (0, 2δε),

Ii(x, r) =
(

τ
p
i ((p− 1)/p)p(p− 1)− τ

p
i ((p− 1)/p)p−1((3− p)/p)

ψ′(r)
rψ′′(r)

)
×
∣∣∣∣( |x|(p−λ)/(p−1)k(|x|)∫ ∞

|x| t
(1−λ)/(p−1)k(t)dt

− λ− p
p− 1

)∣∣∣∣
− τ

p
i ((p− 1)/p)p−1(p− 1)

ψ′(r)
rψ′′(r)

|x|k′(|x|)
k(|x|)

+

(
τi

p

)p

ρ(λ, p, N)(p− 1)p−2
∣∣∣∣ ψ′(r)
rψ′′(r)

+ pC f

∣∣∣∣ ≤ ε/2

(4.1)

and

|x|−λk(|x|)
(
b1 − ε/(2(p− 1))

)
< b(x) < |x|−λk(|x|)

(
b2 + ε/(2(p− 1))

)
, x ∈ ΩRε . (4.2)

Take

σ ∈ (0, δε) with σ < (1/2)1/pξ1

( ∫ ∞

Rε

s(1−λ)/(p−1)k(s)ds
)(p−1)/p
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and let u be an arbitrary entire large solution of Eq. (1.1).
Define

Dσ
− := ΩRε \Ωσ

−, Dσ
+ = ΩRε \Ωσ

+,

where

Ωσ
− :=

{
x ∈ ΩRε : τ1

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

≤ σ

}
and

Ωσ
+ :=

{
x ∈ ΩRε+1 : ψ

(
τ2

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

+ σ

)
≤ u(x)

}
. (4.3)

We may as well assume that

(3/2)(p−1)/pξ2

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

< δε, x ∈ ΩRε

and set

uε = ψ

(
τ1

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

− σ

)
,

uε = ψ

(
τ2

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

+ σ

)
.

A straightforward calculation combined with (4.1) and (4.2) shows that for any Dσ
−

∆puε − b(x) f (uε)

≤ (−ψ′(r))p−2ψ′′(r)|x|−λkp−1(|x|)
[

I1(x, r)−
(

b(x)
|x|−λkp−1(|x|) − b1

)
(p− 1)

+

(
τ1

p

)p

(p− 1)p−2(ρ(λ, p, N)pC f + (p− 1)2(λ− p)
)
− b1(p− 1)

]
≤ 0

with

r = τ1

( ∫ ∞

|x|
t(1−λ)/(p−1)k(t)dt

)(p−1)/p

− σ.

This implies that uε is a supersolution of Eq. (1.1) in Dσ
−.

In a similar way, we can show that uε is a subsolution of Eq. (1.1) in D+
σ .

We assert that there exists a large constant M > 0 independent of σ such that

u(x) ≤ uε(x) + M, x ∈ Dσ
− (4.4)

and
uε(x) ≤ u(x) + M, x ∈ ΩRε . (4.5)

In fact, we can choose a positive constant M independent of σ such that when x ∈ {x ∈ RN :
|x| = Rε}, we have

u(x) ≤ uε(x) + M (4.6)

and
uε(x) ≤ u(x) + M. (4.7)
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Moreover, we also see

u(x) < uε = ∞, x ∈
{

x ∈ RN : τ1

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)ds

)(p−1)/p

= σ

}
.

This implies that, we can take a sufficiently small ρ > 0 such that

sup
x∈Dσ

−

u(x) ≤ uε(x), x ∈ Dσ
− \ D̃σ

−, (4.8)

where

D̃σ
− = ΩRε \ Ω̃σ

−

with

Ω̃σ
− =

{
x ∈ ΩRε : τ1

( ∫ ∞

|x|
s(1−λ)/(p−1)k(s)

)(p−1)/p

≤ σ(1 + ρ)

}
.

Combining (4.6) with (4.8), we have

u(x) ≤ uε(x) + M, x ∈ ∂(D̃σ
−).

On the other hand, we conclude by (4.7) and the definition of Ω+
σ (please refer to (4.3)) that

uε(x) ≤ u(x) + M, x ∈ ∂(Dσ
+).

We note that u and uε both satisfy (3.10) in D̃σ
− and Dσ

+, respectively. Moreover, by (f1) we
obtain that uε + M and u + M are both supersolutions in D̃σ

− and Dσ
+, respectively. It follows

by Lemma 3.10 that

u(x) ≤ uε(x) + M, x ∈ D̃σ
− (4.9)

and

uε(x) ≤ u(x) + M, x ∈ Dσ
+. (4.10)

Indeed, (4.9) combined with (4.8) implies that (4.4) holds, and (4.10) together with (4.3) implies
that (4.5) holds. Hence, letting σ→ 0, we have for x ∈ ΩRε ,

u(x)

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≤ 1 +

M

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ;

u(x)

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≥ 1− M

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) .

Consequently, by Lemma 3.2 (ii), we have

lim sup
|x|→∞

u(x)

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≤ 1;

lim inf
|x|→∞

u(x)

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) ≥ 1.

(4.11)
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If C f ∈ (0, 1/p], then it follows by Lemma 3.2 (iv) that

lim sup
|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
= lim sup

|x|→∞

u(x)

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) lim

|x|→∞

ψ
(
τ1
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
≤ τ

(pC f−1)/pC f
1 ;

lim inf
|x|→∞

u(x)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
= lim inf
|x|→∞

u(x)

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p) lim

|x|→∞

ψ
(
τ2
( ∫ ∞
|x| s

(1−λ)/(p−1)k(s)ds
)(p−1)/p)

ψ
(( ∫ ∞

|x| s
(1−λ)/(p−1)k(s)ds

)(p−1)/p)
≥ τ

(pC f−1)/pC f
2 .

Letting ε→ 0, we obtain (1.4).
If C f = 0, then (4.11) implies that (1.5) holds.

5 Proof of Theorem 1.2

Proof. The existence of entire large solutions follows from Theorem 1.3 of [15]. Inspired by
the ideas of Mohammed in [37], we prove the uniqueness. Suppose u1 and u2 are entire large
solutions of problem (1.1). It follows by Theorems 1.1 that

lim
|x|→∞

u1(x)
u2(x)

= 1.

So, for fixed ε > 0, there exists a large constant Rε such that

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈ ΩRε . (5.1)

Define
u±(x) = (1± ε)u2(x), x ∈ RN .

By using (f4), we obtain

∆pu+ ≤ b(x) f (u+) and ∆pu− ≤ b(x) f (u−) in RN .

Let u0 is the unique solution of

∆pu0 = b(x)u0, x ∈ Ω0, u|∂Ω0 = u1,

where Ω0 = RN \ΩRε . We conclude by Lemma (3.4) that

u−(x) ≤ u0(x) ≤ u+(x), x ∈ Ω0. (5.2)

Noting u0 = u1 on Ω0, so it follows by combining (5.1) with (5.2) that

(1− ε)u2(x) ≤ u1(x) ≤ (1 + ε)u2(x), x ∈ RN = Ω0 ∪ΩRε .

Letting ε→ 0, we obtain u1 = u2 in RN .
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