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1 Introduction

Huang etc. in [6] proposed a cubic differential system, which can be considered a generalization of

the predator-prey models and the mathematical form of the system satisfies the following:





dX

dt
= X(b1 + b2X − b3X

2) − b4XY,

dY

dt
= −cY + (αX − βY )Y,

(1.1)

where X and Y represent the densities of prey and predator species at time t respectively. b3, b4, c, α, β

are positive constants, and b1 is non-negative, and the sign of b2 is undetermined. When b2 < 0 and

b3 = 0, the system (1.1) becomes the standard predator-prey model. The more detailed biological

implication for the model, one may further refer to [6] and the references therein.

In [6], the authors introduced the following scaling transformations,

X =
cu

α
, Y =

cv

β
, t =

τ

c

and rewrite t as τ , then system (1.1) turns into





du

dt
= u(a1 + a2u − a3u

2) − kuv,

dv

dt
= v(−1 + u − v),

(1.2)

where a1 = b1/c, a2 = b2/α, a3 = b3c/α
2 and k = b4/β. a1 is non-negative, and the sign of a2

is undetermined, a3 and k are positive constants. For system (1.2), in [6], the authors studied the

properties of the equilibrium points, the existence of a uniqueness limit cycle, and the conditions

for three limit cycles.

1Corresponding author, e-mail: biequnyi @yahoo.com.cn

EJQTDE, 2011 No. 26, p. 1



In the case that the densities of the predator and prey are spatially inhomogeneous in a bounded

domain with smooth boundary Ω ⊂ Rn, instead of the ordinary differential system (1.2), we are

led to consider the following reaction-diffusion system:





∂u

∂t
− d1∆u = u(a1 + a2u − a3u

2 − kv), in Ω × (0,∞),

∂v

∂t
− d2∆v = v(−1 + u − v), in Ω × (0,∞),

∂νu = ∂νv = 0, on ∂Ω × (0,∞),

u(x, 0) = u0(x) ≥ 0, 6≡ 0, v(x, 0) = v0(x) ≥ 0, 6≡ 0, on Ω,

(1.3)

where di > 0 (i = 1, 2) is the diffusion coefficient corresponding to u and v. Here, ν is the outward

unit normal vector on ∂Ω and ∂ν = ∂/∂ν. The admissible initial data u0(x) and v0(x) are continuous

functions on Ω. The homogeneous Neumann boundary condition means that (1.3) is self-contained

and has no population flux across the boundary ∂Ω. The study of predator-prey models has a long

history, we refer to [2, 10] for background on ODE models and to [1, 3, 4, 7, 12–15, 17] for diffusive

models.

First of all, we note that (1.3) has two trivial non-negative constant steady states, namely,

E0 = (0, 0), E1 = (u∗∗, 0), where u∗∗ = (a2 +
√

a2
2 + 4a1a3)/(2a3). Simple analysis shows that

model (1.3) has the only positive constant steady-state solution if and only if a1 + a2 > a3. We

denote this steady state by (u∗, v∗), where

u∗ =
(a2 − k) +

√
(a2 − k)2 + 4(a1 + k)a3

2a3
and v∗ = u∗ − 1.

Another aspect of our goal is to investigate the corresponding steady-state problem of the

reaction-diffusion system (1.3), which may display the dynamical behavior of solutions to (1.3) as

time goes to infinity. This steady-state problem satisfies





−d1∆u = u(a1 + a2u − a3u
2 − kv), in Ω,

−d2∆v = v(−1 + u − v), in Ω,

∂νu = ∂νv = 0, on ∂Ω.

(1.4)

It is clear that only non-negative solutions of (1.4) are of realistic interest.

The remaining content in our paper is organized as follows. In section 2, we mainly analyze the

global stability of constant steady states to (1.3). Then, in section 3, we give a priori estimates

of upper and lower bounds for positive solutions of (1.4), and finally in section 4 we derive some

non-existence and existence results of positive non-constant solutions of (1.4).

2 Some properties of solutions to (1.3) and stability of (u∗
, v

∗)

In this section, we are mainly concerned with some properties of solutions to (1.3) and the global

stability of (u∗, v∗) for system (1.3). Throughout this section, let (u(x, t), v(x, t)) be the unique

solution of (1.3). It is easily seen that (u(x, t), v(x, t)) exists globally and is positive, namely,

u(x, t), v(x, t) > 0 for all x ∈ Ω and t > 0.
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2.1 Some properties of the solutions to (1.3)

The following assertions characterize the global stability of each of the trivial non-negative constant

steady states, and the boundedness of the positive solutions to (1.3).

Theorem 2.1 Let (u(x, t), v(x, t)) be the solution to (1.3).

(i) Assume that a1 = 0, a2 ≤ 0, then

(u(x, t), v(x, t)) → (0, 0), uniformly on Ω as t → ∞. (2.1)

(ii) Assume that a1 = 0 and 0 < a2 ≤ a3, or a1 > 0 and a1 + a2 ≤ a3, then

(u(x, t), v(x, t)) → (u∗∗, 0), uniformly on Ω as t → ∞. (2.2)

(iii) Assume that a1 ≥ 0, a1 + a2 > a3, then, for 0 < ε ≪ 1, there exists t0 ≫ 1 such that

u(x, t) ≤
a2 +

√
a2

2 + 4a1a3

2a3
+ ε, v(x, t) ≤

a2 +
√

a2
2 + 4a1a3

2a3
− 1 + ε, (2.3)

for all x ∈ Ω and t ≥ t0.

Before proving the above conclusions, we need to introduce the following lemma, which can be

proved using the comparison principle (see also [17]).

Lemma 2.1 Assume that f(s) is a positive C1 function for s ≥ 0, constants d > 0, β ≥ 0. Let

T ∈ [0,∞) and ω ∈ C2,1(Ω × (0,∞)) ∩ C1,0(Ω × [0,∞)) be a positive function.

(i) If ω satisfies





∂ω

∂t
− d∆ω ≤ (≥)ω1+βf(ω)(α − ω), (x, t) ∈ Ω × (T,∞),

∂νω = 0, (x, t) ∈ ∂Ω × [T,∞),

and the constant α > 0. Then

lim sup
t→∞

max
Ω

ω(·, t) ≤ α (lim inf
t→∞

min
Ω

ω(·, t) ≥ α).

(ii) If ω satisfies





∂ω

∂t
− d∆ω ≤ ω1+βf(ω)(α − ω) (x, t) ∈ Ω × (T,∞),

∂νω = 0 (x, t) ∈ ∂Ω × [T,∞),

and the constant α ≤ 0. Then

lim sup
t→∞

max
Ω

ω(·, t) ≤ 0.

In the following, we give the proof of Theorem 2.1.

Proof of Theorem 2.1. (i) From the first equation of (1.3) we see that

∂u

∂t
− d1∆u ≤ u2(a2 − a3u). (2.4)
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Since a2 ≤ 0, by Lemma 2.1, we have

lim sup
t→∞

max
Ω

u(·, t) ≤ 0. (2.5)

In view of u is positive, we obtain

lim
t→∞

u(·, t) = 0

uniformly on Ω. For any given ε > 0 small enough, there is a T1 ≫ 1, such that

u(x, t) ≤ ε, ∀x ∈ Ω, t ≥ T1.

From the second equation of (1.3) we have, for x ∈ Ω and t > T1,

∂v

∂t
− d2∆v ≤ v(−1 + ε − v).

Thanks to Lemma 2.1 and the arbitrariness of ε > 0, it follows that

lim sup
t→∞

max
Ω

v(·, t) ≤ 0.

Since v is also positive, we arrive at

lim
t→∞

v(·, t) = 0

uniformly on Ω.

Before proving (ii), we firstly prove (iii). From the first equation of (1.3) we see that

∂u

∂t
− d1∆u ≤ u(a1 + a2u − a3u

2) = a3u
(
u +

−a2 +
√

a2
2 + 4a1a3

2a3

)(a2 +
√

a2
2 + 4a1a3

2a3
− u
)
.

By Lemma 2.1, one gets

lim sup
t→∞

max
Ω

u(·, t) ≤
a2 +

√
a2

2 + 4a1a3

2a3
. (2.6)

For any given ε > 0, there exists T2 ≫ 1, such that

u(x, t) ≤
a2 +

√
a2

2 + 4a1a3

2a3
+ ε, ∀x ∈ Ω, t ≥ T2. (2.7)

By the second equation of (1.3) we have, for x ∈ Ω and t > T2,

∂v

∂t
− d2∆v ≤ v(−1 +

a2 +
√

a2
2 + 4a1a3

2a3
+ ε − v). (2.8)

Since a1 + a2 > a3, then −1 + (a2 +
√

a2
2 + 4a1a3)/(2a3) > 0. Thanks to Lemma 2.1 again,

lim sup
t→∞

max
Ω

v(·, t) ≤
a2 +

√
a2

2 + 4a1a3

2a3
− 1 + ε,

which asserts our result (iii).

Now, we begin to verify (ii). In order to obtain the result, we need to consider two different

cases.
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Case 1. a1 = 0, 0 < a2 ≤ a3. By (2.4) and Lemma 2.1 we have

lim sup
t→∞

max
Ω

u(·, t) ≤
a2

a3
. (2.9)

For any given ε > 0, there exists T3 ≫ 1, such that

u(x, t) ≤
a2

a3
+ ε, ∀x ∈ Ω, t ≥ T3.

By the second equation of (1.3) we have, for x ∈ Ω and t > T3,

∂v

∂t
− d2∆v ≤ v(−1 +

a2

a3
+ ε − v).

Thanks to Lemma 2.1, we obtain

lim sup
t→∞

max
Ω

v(·, t) ≤ −1 +
a2

a3
+ ε.

By the arbitrariness of ε > 0, it follows that

lim sup
t→∞

max
Ω

v(·, t) ≤ −1 +
a2

a3
≤ 0.

Since v is positive, we have

lim
t→∞

v(·, t) = 0

uniformly on Ω.

Case 2. a1 > 0, a1 + a2 ≤ a3. In this case, the inequalities (2.6)-(2.8) also hold. In view of

a1 + a2 ≤ a3, then −1 + (a2 +
√

a2
2 + 4a1a3)/(2a3) ≤ 0. By the arbitrariness of ε > 0, it follows

that

lim sup
t→∞

max
Ω

v(·, t) ≤ −1 +
a2 +

√
a2

2 + 4a1a3

2a3
≤ 0.

Consequently,

lim
t→∞

v(·, t) = 0

uniformly on Ω as above. For any given ε > 0 small enough, there is a T4 ≫ 1, such that

v(x, t) ≤ ε, ∀x ∈ Ω, t ≥ T4.

From the first equation of (1.3) we have, for x ∈ Ω and t > T4,

∂u

∂t
− d1∆u ≥ u(a1 + a2u − a3u

2 − kε)

= a3u
(
u +

−a2 +
√

a2
2 + 4(a1 − kε)a3

2a3

)(a2 +
√

a2
2 + 4(a1 − kε)a3

2a3
− u
)
.

Also by Lemma 2.1, we have

lim sup
t→∞

min
Ω

u(·, t) ≥
a2 +

√
a2

2 + 4(a1 − kε)a3

2a3
.
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Hence, it follows that

lim sup
t→∞

min
Ω

u(·, t) ≥
a2 +

√
a2

2 + 4a1a3

2a3

since ε is arbitrary small. This combined with (2.6) yields

lim
t→∞

u(·, t) =
a2 +

√
a2

2 + 4a1a3

2a3

uniformly on Ω. Thus, the proof is complete. �

2.2 Local stability of (u∗
, v

∗) to system (1.3)

By Theorem 2.1, from now on, without special statement, we always assume that a1 + a2 > a3,

which guarantees the existence of (u∗, v∗). In this subsection, we will analyze the local stability of

(u∗, v∗) to (1.3). To this end, we first introduce some notations.

Let 0 = µ0 < µ1 < µ2 < · · · be the eigenvalues of the operator −∆ on Ω with the homogeneous

Neumann boundary condition. Set Xj is the eigenspace corresponding to µj. Let

X = {(u, v) ∈ [C1(Ω)]2 | ∂νu = ∂νv = 0 on ∂Ω},

{φjl; l = 1, . . . ,m(µj)} be an orthonormal basis of Xj, and Xjl = {cφjl| c ∈ R2}. Here m(µj) is

the multiplicity of µj . Then

X =
∞⊕

j=0

Xj and Xj =

m(µj)⊕

l=1

Xjl. (2.10)

Theorem 2.2 The positive constant solution (u∗, v∗) to system (1.3) is uniformly asymptotically

stable provided that a1 + a2 > a3 and 4a1a3 + 2k(2a3 − a2) + a2
2 > 0 (in the sense of [5]).

Proof. The linearization of (1.3) at (u∗, v∗) is

∂

∂t

(
u

v

)
= L

(
u

v

)
+

(
f1(u − u∗, v − v∗)

f2(u − u∗, v − v∗)

)
,

where fi(z1, z2) = O(z2
1 + z2

2), i = 1, 2, and

L =

(
d1∆ − u∗(2a3u

∗ − a2) − ku∗

v∗ d2∆ − v∗

)
.

For each j, j = 0, 1, 2, · · · ,Xj is invariant under the operator L, and ξ is an eigenvalue of L on Xj

if and only if ξ is an eigenvalue of the matrix

Aj =

(
−d1µj − u∗(2a3u

∗ − a2) − ku∗

v∗ − d2µj − v∗

)

detAj = d1d2µ
2
j + [d1v

∗ + d2u
∗(2a3u

∗ − a2)]µj + u∗v∗(k + 2a3u
∗ − a2),

TrAj = −(d1 + d2)µj − u∗(2a3u
∗ − a2) − v∗ ≤ −u∗(2a3u

∗ − a2) − v∗,

where detAj and TrAj are respectively the determinant and trace of Aj. It is easy to check that

detAj > 0 and TrAj < 0 if u∗ > a2/(2a3), i.e. 4a1a3 + 2k(2a3 − a2) + a2
2 > 0. The same analysis as

in [16] gives that the spectrum of L lies in {Reξ < −δ} for some positive δ independent of i ≥ 0.

It is known that (u∗, v∗) is uniformly asymptotically stable and the proof is complete. �
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2.3 Global stability of (u∗
, v

∗) to system (1.3)

In this subsection, we will be devoted to the global stability of (u∗, v∗) for system (1.3).

Theorem 2.3 Assume that a1 + a2 > a3 and a1a3 + k(a3 − a2) > 0, then (u∗, v∗) is globally

asymptotically stable.

Proof. In order to give the proof, we need to construct a Lyapunov function. First, we define

E(u)(t) =

∫

Ω

{
u(x, t) − u∗ − u∗ ln

u(x, t)

u∗

}
dx,

E(v)(t) =

∫

Ω

{
v(x, t) − v∗ − v∗ ln

v(x, t)

v∗

}
dx.

We note that E(u)(t) and E(v)(t) are non-negative, E(u)(t) = 0 and E(v)(t) = 0 if and only if

(u(x, t), v(x, t)) = (u∗, v∗). Furthermore, easy computations yield that

dE(u)

dt
=

∫

Ω

{
(1 −

u∗

u
)ut

}
dx =

∫

Ω

{
− d1

u∗|∇u|2

u2
+ (u − u∗)(a1 + a2u − a3u

2 − kv)
}

dx

=

∫

Ω

{
− d1

u∗|∇u|2

u2
+ (u − u∗)(−a2u

∗ + a3(u
∗)2 + kv∗ + a2u − a3u

2 − kv)
}

dx

=

∫

Ω

{
− d1

u∗|∇u|2

u2
− [a3(u + u∗) − a2](u − u∗)2 − k(u − u∗)(v − v∗)

}
dx.

Similarly,

dE(v)

dt
=

∫

Ω

{
(1 −

v∗

v
)vt

}
dx =

∫

Ω

{
− d2

v∗|∇v|2

v2
+ (v − v∗)(−1 + u − v)

}
dx

=

∫

Ω

{
− d2

v∗|∇v|2

v2
+ (v − v∗)(−u∗ + v∗ + u − v)

}
dx

=

∫

Ω

{
− d2

v∗|∇v|2

v2
− (v − v∗)2 + (u − u∗)(v − v∗)

}
dx.

Now define

E(t) = E(u)(t) + kE(v)(t).

Hence

dE(t)

dt
=

dE(u)(t)

dt
+ k

dE(v)(t)

dt

=

∫

Ω

{
− d1

u∗|∇u|2

u2
− d2k

v∗|∇v|2

v2
− [a3(u + u∗) − a2](u − u∗)2 − k(v − v∗)2

}
dx

≤

∫

Ω

{
− [a3(u + u∗) − a2](u − u∗)2 − k(v − v∗)2

}
dx.

When u∗ > a2/a3, i.e., a1a3 + k(a3 − a2) > 0 then dE(t)/dt ≤ 0, and the equality holds if and

only if (u, v) = (u∗, v∗). Hence, the standard arguments together with (iii) of Theorem 2.1 and

Theorem 2.2 deduce that (u∗, v∗) attracts all solutions of (1.3). This finishes the proof. �
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3 A priori estimates for positive solutions to (1.4)

From now on, our aim is to investigate the steady-state problem (1.4). In this section, we will

deduce a priori estimates of positive upper and lower bounds for positive solutions of (1.4). To this

end, we first cite two known results.

Lemma 3.1 (Maximum principle [8]) Suppose that g ∈ C(Ω × R).

(i) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆w(x) + g(x,w(x)) ≥ 0 in Ω, ∂νw ≤ 0 on ∂Ω.

If w(x0) = maxΩ w, then g(x0, w(x0)) ≥ 0.

(ii) Assume that w ∈ C2(Ω) ∩ C1(Ω) and satisfies

∆w(x) + g(x,w(x)) ≤ 0 in Ω, ∂νw ≥ 0 on ∂Ω.

If w(x0) = minΩ w, then g(x0, w(x0)) ≤ 0.

Lemma 3.2 (Harnack inequality [9]) Let w ∈ C2(Ω) ∩ C1(Ω) be a positive solution to ∆w(x) +

c(x)w(x) = 0 in Ω subject to the homogeneous Neumann boundary condition where c(x) ∈ C(Ω).

Then there exists a positive constant C∗ = C∗(‖c‖∞,Ω) such that

max
Ω

w ≤ C∗ min
Ω

w.

Theorem 3.1 Assume that a1 + a2 > a3, then the positive solution (u, v) of (1.4) satisfies

max
Ω

u(x) <
a2 +

√
a2

2 + 4a1a3

2a3
, max

Ω
v(x) <

a2 +
√

a2
2 + 4a1a3

2a3
− 1.

Proof. Assume that (u, v) is a positive solution of (1.4). We set

u(x1) = max
Ω

u, v(x2) = max
Ω

v.

Applying Lemma 3.1 to (1.4), we obtain that

a1 + a2u(x1) − a3u
2(x1) − kv(x1) ≥ 0, (3.1)

−1 + u(x2) − v(x2) ≥ 0. (3.2)

From (3.1), it follows that

a3u
2(x1) − a2u(x1) − a1 ≤ −kv(x1) < 0 ⇒ u(x1) <

a2 +
√

a2
2 + 4a1a3

2a3
.

If a1 + a2 > a3, then in view of (3.2), it is easy to see that

v(x2) ≤ u(x2) − 1 <
a2 +

√
a2

2 + 4a1a3

2a3
− 1.

The proof is complete. �
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Theorem 3.2 Assume that a1 + a2 > a3, let d be an arbitrary fixed positive number, then, there

exists a positive constant C
¯

only depending on a1, a2, a3, k, d and Ω such that if d1, d2 ≥ d, any

positive solution (u, v) of (1.4) satisfies

min
Ω

u(x) > C
¯

min
Ω

v(x) > C
¯

.

Proof. Since
∫
Ω v(−1+u−v)dx = 0, there exists x0 ∈ Ω such that v(x0)(−1+u(x0)−v(x0)) =

0, that is

u(x0) = 1 + v(x0).

It follows that maxΩ u(x) ≥ 1. Let c1(x) = d−1
1 [a1 + a2u− a3u

2 − kv], by Theorem 3.1 and Lemma

3.2, there exists a positive constant C1, such that

min
Ω

u(x) ≥
maxΩ u(x)

C1
≥

1

C1
. (3.3)

Now, it suffices to verify the lower bounds of v(x). We shall prove by contradiction.

Suppose that Theorem 3.2 is not true, then there exists a sequence {d2,i}
∞
i=1 with d2,i ≥ d and

the positive solution (ui, vi) of (1.4) corresponding to d2 = d2,i, such that

min
Ω

vi(x) → 0 as i → ∞.

By the Harnack inequality, we know that there is a positive constant C2 independent of i such

that maxΩ vi(x) ≤ C2 minΩ vi(x). Consequently,

vi(x) → 0 uniformly on Ω, as i → ∞.

Let wi = vi/‖vi‖∞ and (ui, wi) satisfies the following elliptic model





−d1∆ui = ui(a1 + a2ui − a3u
2
i − kvi) in Ω,

−d2,i∆wi = wi(−1 + ui − vi) in Ω,

∂νui = ∂νwi = 0 on ∂Ω.

(3.4)

Moreover, integrating over Ω by parts, we have
∫

Ω
ui(a1 + a2ui − a3u

2
i − kvi)dx = 0,

∫

Ω
wi(−1 + ui − vi)dx = 0. (3.5)

The embedding theory and the standard regularity theory of elliptic equations guarantee that there

is a subsequence of (ui, wi) also denoted by itself, and two non-negative functions u,w ∈ C2(Ω),

such that (ui, wi) → (u,w) in [C2(Ω)]2 as i → ∞. Since ‖wi‖∞ = 1, we have ‖w‖∞ = 1. Since

(ui, wi) satisfy (3.5), so do (u,w), i.e.
∫

Ω
u(a1 + a2u − a3u

2)dx = 0,

∫

Ω
w(−1 + u)dx = 0. (3.6)

By (3.3) and Theorem 3.1, we have 0 < u ≤ (a2 +
√

a2
2 + 4a1a3)/(2a3), and when u lies in

this interval, a1 + a2u − a3u
2 ≥ 0. As a result, by the first integral identity of (3.6) we obtain

u = (a2 +
√

a2
2 + 4a1a3)/(2a3). In view of a1 + a2 > a3, so u = (a2 +

√
a2

2 + 4a1a3)/(2a3) > 1 ,

and the second integral identity of (3.6) yields
∫
Ω wdx = 0, which implies a contradiction. This

completes the proof. �
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4 Non-existence and existence for non-constant solutions to (1.4)

4.1 Non-existence of positive non-constant solutions

In this subsection, based on the priori estimates in Section 3 for positive solutions to (1.4), we

present some results for non-existence of positive non-constant solutions of (1.3) as the diffusion

coefficient d1 or d2 is sufficiently large.

Note that µ1 be the smallest positive eigenvalue of the operator −∆ in Ω subject to the homo-

geneous Neumann boundary condition. Now, using the energy estimates, we can claim

Theorem 4.1 (i) There exists a positive constant d̃1 = d̃1(a1, a2, a3, k,Ω) such that (1.4) has no

non-constant positive solutions provided that µ1d1 > d̃1 and µ1d2 > (a2 +
√

a2
2 + 4a1a3)/(2a3)− 1;

(ii) There exists a positive constant d̃2 = d̃2(a1, a2, a3, k,Ω) such that (1.4) has no non-constant

positive solutions provided that µ1d2 > d̃2 and µ1d1 > a1+ | a2 | (a2 +
√

a2
2 + 4a1a3)/a3.

Proof. Let (u, v) be any positive solution of (1.4) and denote ḡ = (1/|Ω|)
∫
Ω g dx. Then,

multiplying the corresponding equation in (1.4) by u − ū and v − v̄ respectively, integrating over

Ω, we obtain

d1

∫

Ω
|∇(u − ū)|2dx =

∫

Ω
(a1u + a2u

2 − a3u
3 − kuv)(u − ū) dx

=

∫

Ω

[
a1(u − ū) + a2(u

2 − ū2) − a3(u
3 − ū3) − k(uv − ūv̄)

]
(u − ū) dx

=

∫

Ω

[
a1 + a2(u + ū) − a3(u

2 + uū + ū2) − kv
]
(u − ū)2 dx − k

∫

Ω
ū(u − ū)(v − v̄)dx

≤
[
a1 +

| a2 | (a2 +
√

a2
2 + 4a1a3)

a3
+ C(ε, a1, a2, a3, k,Ω)

] ∫

Ω
(u − ū)2dx + ε

∫

Ω
(v − v̄)2dx.

Similarly,

d2

∫

Ω
|∇(v − v̄)|2dx =

∫

Ω
(−v + uv − v2)(v − v̄) dx

=

∫

Ω
[−1 + u − (v + v̄)](v − v̄)2dx +

∫

Ω
v̄(u − ū)(v − v̄) dx

≤ (
a2 +

√
a2

2 + 4a1a3

2a3
− 1 + ε)

∫

Ω
(v − v̄)2dx + C(ε, a1, a2, a3, k,Ω)

∫

Ω
(u − ū)2dx.

Consequently, there exists 0 < ε ≪ 1 which depends only on a1, a2, a3, k,Ω , such that
∫

Ω

{
d1|∇(u − ū)|2 + d2|∇(v − v̄)|2

}
dx

≤
[
a1 +

| a2 | (a2 +
√

a2
2 + 4a1a3)

a3
+ C(ε, a1, a2, a3, k,Ω)

] ∫

Ω
(u − ū)2 dx

+
(a2 +

√
a2

2 + 4a1a3

2a3
− 1 + ε

) ∫

Ω
(v − v̄)2dx.

(4.1)

Thanks to the well-known Poincaré Inequality

µ1

∫

Ω
(g − ḡ)2 dx ≤

∫

Ω
|∇(g − ḡ)|2 dx,
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we yield from (4.1) that

µ1

∫

Ω

{
d1(u − ū)2 + d2(v − v̄)2

}
dx

≤
[
a1 +

| a2 | (a2 +
√

a2
2 + 4a1a3)

a3
+ C(ε, a1, a2, a3, k,Ω)

] ∫

Ω
(u − ū)2 dx

+
(a2 +

√
a2

2 + 4a1a3

2a3
− 1 + ε

) ∫

Ω
(v − v̄)2dx.

(4.2)

It is clear that there exists d̃1 depending only on a1, a2, a3, k,Ω, such that when µ1d1 > d̃1 and

µ1d2 > (a2 +
√

a2
2 + 4a1a3)/(2a3) − 1, u ≡ ū =const., in turn, v ≡ v̄ =const., which asserts our

result (i).

As above, we have

µ1

∫

Ω

{
d1(u − ū)2 + d2(v − v̄)2

}
dx ≤

[
a1 +

| a2 | (a2 +
√

a2
2 + 4a1a3)

a3
+ ε
]

×
∫
Ω(u − ū)2 dx + C(ε, a1, a2, a3, k,Ω)

∫
Ω(v − v̄)2dx.

(4.3)

The remaining arguments are rather similar as above. The proof is complete. �

4.2 Existence of positive non-constant solutions

This subsection is concerned with the existence of non-constant positive solutions to (1.4). The

main tool to be used is the topological degree theory. To set up a suitable framework where the

topological degree theory can apply, let us first introduce some necessary notations.

Let X be as in section 2. For simplicity, we write

u = (u, v), u∗ = (u∗, v∗).

We also denote the following sets

D =

(
d1 0

0 d2

)
, G(u) =

(
a1u + a2u

2 − a3u
3 − kuv

−v + uv − v2

)
, A =

(
θ − ku∗

v∗ − v∗

)
,

where θ = u∗(a2 − 2a3u
∗). Then DuG(u∗) = A. Moreover, (1.4) can be written as

{
−∆u = D−1G(u), x ∈ Ω,

∂νu = 0, x ∈ ∂Ω.
(4.4)

Furthermore, u solves (4.4) if and only if it satisfies

f(d1, d2;u) := u− (I − ∆)−1{D−1G(u) + u} = 0 on X, (4.5)

where (I − ∆)−1 is the inverse of I − ∆ with the homogeneous Neumann boundary condition.

Direct computation gives

Duf(d1, d2;u
∗) = I − (I − ∆)−1{D−1A + I}. (4.6)
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In order to apply the degree theory to obtain the existence of positive non-constant solutions, our

first aim is to compute the index of f(d1, d2;u) at u∗. By the Leray-Schauder Theorem (see [11]),

we have that if 0 is not the eigenvalue of (4.6), then

index(f(d1, d2; ·),u
∗) = (−1)r,

where r is the number of negative eigenvalues of (4.6).

It is easy to see that, for each integer j ≥ 0, Xj is invariant under Duf(d1, d2;u
∗), and ξ is an

eigenvalue of Duf(d1, d2;u
∗) on Xj if and only if ξ(1 + µj) is an eigenvalue of the matrix

M(µj) := µjI − D−1A =

(
µj − θd−1

1 ku∗d−1
1

−v∗d−1
2 µj + v∗d−1

2

)
.

Thus, Duf(d1, d2;u
∗) is invertible if and only if, for all j ≥ 0, the matrix µjI−D−1A is nonsingular.

Denote

H(µ; d1, d2) := d1d2 detM(µ) = d1d2µ
2 + (v∗d1 − θd2)µ + v∗(ku∗ − θ).

In addition, we also have that, if H(µj ; d1, d2) 6= 0, the number of negative eigenvalues of Duf(d1, d2;u
∗)

on Xj is odd if and only if H(µj; d1, d2) < 0.

Let m(µj) be the algebraical multiplicity of µj. In conclusion, we can assert the following:

Proposition 4.1 Suppose that, for all j ≥ 0, the matrix µjI − D−1A is nonsingular. Then

index(f(d1, d2; ·),u
∗) = (−1)r, where r =

∑

j≥0,H(µj ;d1,d2)<0

m(uj).

Now, we analyze the sign of H(µ; d1, d2). Simple computations give that if

(v∗d1 − θd2)
2 − 4d1d2v

∗(ku∗ − θ) > 0, (4.7)

then H(µ; d1, d2) = 0 has exactly two different roots µ∗(d1, d2) and µ∗(d1, d2):

µ∗(d1, d2) =
1

2d1d2
{θd2 − v∗d1 −

√
(θd2 − v∗d1)2 − 4d1d2v∗(ku∗ − θ)},

µ∗(d1, d2) =
1

2d1d2
{θd2 − v∗d1 +

√
(θd2 − v∗d1)2 − 4d1d2v∗(ku∗ − θ)}.

In fact, we observe that µ∗(d1, d2) and µ∗(d1, d2) are the two real roots of the matrix M(u).

Moreover, H(µ; d1, d2) < 0 if and only if µ ∈ (µ∗(d1, d2), µ
∗(d1, d2)).

We can claim the main result of this subsection as follows.

Theorem 4.2 Assume that a1 +a2 > a3 and 4a1a3 +2k(2a3−a2)+a2
2 < 0, or equivalently, θ > 0,

and satisfies θ/d1 ∈ (µs, µs+1) for some s ≥ 1. If
∑s

j=1 m(µj) is odd, then there exists a positive

constant d̂ such that (1.4) has at least one non-constant positive solution for all d2 ≥ d̂.

Proof. First, it is clear that when d2 is large enough then (4.7) holds, and a simple computation

gives that the constant term v∗(ku∗ − θ) of H(µ; d1, d2) is positive. Hence, we have µ∗(d1, d2) >

µ∗(d1, d2) > 0. Moreover

lim
d2→∞

µ∗(d1, d2) =
θ

d1
, lim

d2→∞
µ∗(d1, d2) = 0.
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As θ/d1 ∈ (µs, µs+1), it follows that there exists a d̂ such that

µ∗(d1, d2) ∈ (µs, µs+1), and 0 < µ∗(d1, d2) < µ1 ∀d2 > d̂.

On the other hand, by Theorem 4.1 we know that there exists d̃1 > 0 such that (1.4) has no non-

constant positive solution if d1 > d̃. Moreover, taking a larger d̂ if necessary, we may assume that

θ/d1 < µ1 for all d1 ≥ d̂ ≥ d̃1. Thus, we have

0 < µ∗(d1, d2) < µ∗(d1, d2) < µ1 for any fixed d1, d2 ≥ d̂.

We are now in the position of proving (1.4) has at least one non-constant positive solution for

any d2 ≥ d̂ under the hypotheses of the theorem. On the contrary, suppose that this assertion is

not true for some d2 ≥ d̂. In the following, we will derive a contradiction by using a homotopy

argument.

For such d2 and t ∈ [0, 1], we define

D(t) =

(
td1 + (1 − t)d̂ 0

0 td2 + (1 − t)d̂

)
,

and consider the problem

{
−∆u = D−1(t)G(u), x ∈ Ω,

∂νu = 0, x ∈ ∂Ω.
(4.8)

It is clear that finding positive solutions of (1.4) becomes equivalent to finding positive solutions of

(4.8) for t = 1. On the other hand, for 0 ≤ t ≤ 1. u is a non-constant positive solution of (4.8) if

and only if it is a solution of the problem

h(u; t) = u− (I − ∆)−1{D−1(t)G(u) + u} = 0 on X. (4.9)

We note that

h(u; 1) = f(d1, d2;u), h(u; 0) = f(d̂, d̂;u), (4.10)

and
{

Duf(d1, d2;u
∗) = I− (I − ∆)−1{D−1A + I},

Duf(d̂, d̂; u∗) = I − (I − ∆)−1{D̃−1A + I},
(4.11)

where f(·, ·; ·) was defined by (4.5) and

D̃ =

(
d̂ 0

0 d̂

)
.

It is obvious that u∗ is the only positive constant solution of (1.4) and by the choice of d̂, (4.9)

has no non-constant positive solution for t = 0, 1.

From Proposition 4.1, it immediately follows that

{
index(h(·, 1),u∗) = index(f(·, d1, d2),u

∗) = (−1)
Ps

j=1
m(µj ) = −1,

index(h(·, 0),u∗) = index(f(·, d̂, d̂),u∗) = (−1)0 = 1.
(4.12)
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By Theorem 3.1 and 3.2, there exists a positive constant C such that (1.4) has no solution on ∂Θ,

where

Θ =
{
u ∈ [C(Ω)]2|

1

2
C < u(x), v(x) <

a2 +
√

a2
2 + 4a1a3

a3

}
.

Since h(u; t) : Θ × [0, 1] → C(Ω) × C(Ω) is compact, the degree deg(h(u; t),Θ, 0) is well defined.

By the homotopy invariance of degree, we can conclude

deg((h(·; 0),Θ, 0) = deg((h(·; 1),Θ, 0). (4.13)

However, as both equations h(u; 0) = 0 and h(u; 1) = 0 have the unique positive solution u∗ in Θ,

we get from (4.12) that,

deg((h(·; 1),Θ, 0) = index(h(·, 1),u∗) = (−1)
Ps

j=1
m(µj ) = −1,

deg((h(·; 0),Θ, 0) = index(h(·, 0),u∗) = (−1)0 = 1.

This contradicts (4.13). The proof is complete. �

Similarly, we have the following result, whose proof is similar to the above and thus is omitted.

Theorem 4.3 Assume that a1 + a2 > a3 and (4.7) hold. Let µ∗(d1, d2) < µ∗(d1, d2) be the two

positive roots of H(µ; d1, d2) = 0. If

µ∗(d1, d2) ∈ (µl, µl+1) and µ∗(d1, d2) ∈ (µq, µq+1) for some 0 ≤ l < q,

and
∑q

k=l+1 m(µk) is odd, then (1.4) has at least one non-constant positive solution.
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