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Abstract. In this paper, we prove the existence of multiple solutions for the following
quasilinear Schrödinger equation

−∆u− u∆(|u|2) + V(|x|)u = f (|x|, u), x ∈ RN .

Under some generalized assumptions on f , we obtain infinitely many radial solutions
for N ≥ 2, many non-radial solutions for N = 4 and N ≥ 6, and a non radial solution
for N = 5. Our results generalize and extend some existing results.
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1 Introduction and preliminaries

This article deals mainly with the following quasilinear Schrödinger equation

− ∆u− u∆(|u|2) + V(|x|)u = f (|x|, u), x ∈ RN , (1.1)

where N ≥ 2, V : [0, ∞)→ R and f : [0, ∞)×R→ R.
It is well known that Schrödinger equation has already found a great deal of interest in

recently years because not only it is very important for other fields to study the Schrödinger
equation but also it provides a good model for developing mathematical methods. By virtue
of variational methods, Schrödinger equation has been widely studied for multiplicity of non-
trivial solutions over the past several years. See, e.g., [4,6,10,12,13,24,29,34] and the references
and quoted in them. However, quasilinear Schrödinger equation is taken as a generalisation
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of the Schrödinger equation. Some authors studied the multiplicity of solutions for quasi-
linear problem. See, e.g., [1, 20, 23, 31] and the references and quoted in them. In the most
of the aforementioned references, there are rarely papers to study the radial and non-radial
solutions for quasiliner and semilinear Schrödinger equation which has the properties of ra-
dial symmetry except for the papers [3, 5, 7, 8, 18, 19, 27, 28] and the references. Especially, in
[14], Kristály et al. proved the existence of sequences of non-radial, sign-changing solutions
for semilinear Schrödinger equation when sN = [N−1

2 ] + (−1)N , N ≥ 4, where the elements in
different sequences cannot be compared from symmetrical point of view. The idea comes from
the solution of the Rubik cube, and it has been extended to Heisenberg groups by Kristály and
Balogh [15]. Based on this fact, recently, Yang et al. [30] first studied infinitely many radial
and non-radial solutions for the problem (1.1) under the following assumptions on V and f :

(V) V ∈ C([0, ∞), R) ∩ L∞([0, ∞), R) and 0 < V0 := infr≥0 V(r) ≤ V(r) for all r ≥ 0.

( f1) f ∈ C([0, ∞)×R, R), and there exist c > 0 and 4 < p < 22∗ such that

| f (r, u)| ≤ c(|u|+ |u|p−1) for any r ≥ 0 and u ∈ R,

where 2∗ = 2N
N−2 if N ≥ 3 and 2∗ = ∞ if N = 2.

( f2) f (r, u) = o(|u|) as |u| → 0 uniformly in r.

( f3) There exists R > 0 such that

C0 = inf
x∈RN ,|u|≥R

F(|x|, u) > 0,

where F(r, u) =
∫ u

0 f (r, s)ds.

( f4) There exists α > 4 such that

αF(r, u) ≤ u f (r, u) for any r ≥ 0 and u ∈ R.

( f5) f (r,−u) = − f (r, u) for any r ≥ 0 and u ∈ R.

Moreover, the authors gave the following theorems in [30]. (Note that ` is defined in (2.1) in
the rest paper.)

Theorem 1.1 ([30]). Assume that N ≥ 2, (V), ( f1)–( f5) hold. Then problem (1.1) has a sequence of
radial solutions {un} such that `(un)→ ∞ as n→ ∞.

Theorem 1.2 ([30]). Assume that N = 4 or N ≥ 6, (V), ( f1)–( f5) hold. Then problem (1.1) has a
sequence of non-radial solutions {un} such that `(un)→ ∞ as n→ ∞.

Theorem 1.3. [30] Assume that (V) and ( f1)–( f4) hold. If N = 5 and

( f6) for all z = (x, y) ∈ R×R4 and for all g ∈ O(R4)

f (|(x + 1, y)|, u) = f (|(x, g(y))|, u) and V(|(x + 1, y)|) = V(|(x, g(y))|),

where O(R4) is the orthogonal transform group in R4. Then problem (1.1) has a nontrivial non-radial
solution.
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In 2013, Tang [29] gave some much weaker conditions and studied the existence of in-
finitely many solutions for Schrödinger equation via symmetric mountain pass theorem with
sign-changing potential. Using Tang’s conditions, some authors studied the existence of
infinitely many solutions for different equations. See, e.g., [9, 16, 25, 32, 33, 35, 36] and the
references quoted in them. These results generalized and extended some existing results.
Especially, Zhang et al. [37] proved many radial and non-radial solutions for a fractional
Schrödinger equation by using Tang’s conditions and methods which are more weaker than
(AR)-condition and super-quadratic conditions.

Inspired by the above references, we consider problem (1.1) with the following more gen-
eral super-quartic conditions, and establish the existence of infinitely many radial and non-
radial solutions by symmetric mountain pass theorem in [2, 26]. To state our results, we give
the following much weaker conditions:

(V ′) V ∈ C([0, ∞)) is bounded from below by a positive constant V0;

( f ′3) lim
|u|→∞

|F(r,u)|
|u|4 = ∞, uniformly in r ∈ [0,+∞) and there exists r0 ≥ 0 such that

F(r, u) ≥ 0, ∀ u ∈ R, |u| ≥ r0;

( f ′4) F (r, u) := 1
4 u f (r, u)− F(r, u) ≥ 0, and there exist c0 > 0 and κ > max{1, 2N

N+2} such that

|F(r, u)|κ ≤ c0|u|2κF (r, u), ∀ u ∈ R, |u| ≥ r0.

Next, we are ready to state the main results of this paper. (Note that ` is defined later in (2.1).)

Theorem 1.4. Suppose that N ≥ 2, (V ′), ( f1), ( f2), ( f ′3), ( f ′4) and ( f5) hold. Then problem (1.1) has
a sequence of radial solutions {un} such that `(un)→ ∞ as n→ ∞.

Theorem 1.5. Suppose that N = 4 or N ≥ 6, (V ′), ( f1), ( f2), ( f ′3), ( f ′4) and ( f5) hold. Then problem
(1.1) has a sequence of non-radial solutions {un} such that `(un)→ ∞ as n→ ∞.

Theorem 1.6. Suppose that N = 5, (V ′), ( f1), ( f2), ( f ′3), ( f ′4) and ( f6) hold. Then problem (1.1) has
a nontrivial non-radial solution.

Remark 1.7. On the one hand, note that the condition (V ′) is weaker than (V). In (V), V ∈
L∞([0,+∞)), it is very important for ` to prove the boundedness of (C)c-sequence {vn}. But
in (V ′), there is no need to assume that V ∈ L∞([0,+∞)), and we give a different approach
to prove the boundedness of (C)c-sequence {vn}, which is different from Yang’s methods (see
[30]). On the other hand, note that condition ( f ′4) is somewhat weaker than the condition ( f4).
As for the specific examples, we can see the reference [29].

Remark 1.8. By conditions ( f ′3) and ( f ′4), we can get

F (r, u) ≥ 1
c0

(
|F(r, u)|
|u|2

)κ

→ ∞

uniformly in r as |u| → ∞.
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2 Variational framework and some lemmas

Before stating this section, we first recall the following important notions.
As usual, for 1 ≤ s < +∞, let

‖u‖s =

(∫
RN
|u|s
) 1

s

, u ∈ Ls(RN).

Let
H1(RN) =

{
u ∈ L2(RN) : ∇u ∈ L2(RN)

}
with the norm

‖u‖H1 =

(∫
RN

(|∇u|2 + u2)dx
) 1

2

.

Let S be the best Sobolev constant

S‖u‖2
2∗ ≤

∫
RN
|∇u|2dx

for any u ∈ H1(RN).
Our working spaces is defined by

H :=
{

u ∈ H1(RN) :
∫

RN
V(|x|)u2dx < ∞

}
with the inner product

(u, v)H =
∫

RN
(∇u∇v + V(|x|)uv)dx

and the norm
‖u‖H = (u, u)

1
2
H.

To this end, we define the functional by

J(u) =
1
2

∫
RN

[(1 + 2u2)|∇u|2 + V(|x|)u2]dx−
∫

RN
F(|x|, u)dx

and define the derivative of J at u in the direction of φ ∈ C∞
0 (RN) as follows:

〈J(u), φ〉 =
∫

RN
[(1 + 2u2)∇u∇φ + |∇u|2uφ + V(|x|)uφ]dx−

∫
RN

f (|x|, u)φdx.

In order to prove Theorem 1.4, we denote by E the space of radial functions of H, namely,

E := {u ∈ H : u(x) = u(|x|)} .

For the proof of Theorem 1.5, following [5], choose an integer 2 ≤ m ≤ N/2 with 2m 6=
N− 1, and write the elements of RN = Rm ×Rm ×RN−2m as x = (x1, x2, x3) with x1, x2 ∈ Rm

and x3 ∈ RN−2m. Now, consider the action of

Gm := O(m)×O(m)×O(N − 2m)

on H and define by
lu(x) = u(l−1x).
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Let ς ∈ O(N) be involution given by ς(x1, x2, x3) = (x2, x1, x3). The action of G := {id, ς} on

Fix(Gm) := {u ∈ H : lu = u, ∀ l ∈ Gm}

is defined by

(lu)(x) =

{
u(x), if l = id,

−u(l−1x), if l = ς.

Let
E := Fix(G) = {u ∈ Fix(Gm) : hu = u, ∀ h ∈ G} .

Note that 0 is the only radially symmetric function in E for this case.
In both cases, E is a closed subspace of H, and the embedding E ↪→ Ls(RN) are continuous

for s ∈ [2, 2∗] and the embeddings E ↪→ Ls(RN) are compact for s ∈ (2, 2∗) (see [26, Lemma 2]).
It follows from the embedding E ↪→ Ls(RN) for s ∈ [2, 2∗] that

‖u‖s ≤ γs‖u‖E = γs‖u‖H, ∀ u ∈ E, s ∈ [2, 2∗].

We know that J is not well defined in general in E. To overcome this difficulty, we apply
an argument developed by Liu et al. [17] and Colin and Jeanjean [11]. We make the change of
variables by v = g−1(u), where g is defined by

g′(t) =
1

(1 + 2g2(t))
1
2

on [0, ∞) and g(t) = −g(−t) on (−∞, 0].

Let us recall some properties of the change of variables g : R → R which are proved in
[11, 17, 21] as follows.

Lemma 2.1. The function g(t) and its derivative satisfy the following properties:

(1) g is uniquely defined, C∞ and invertible;

(2) |g′(t)| ≤ 1 for all t ∈ R;

(3) |g(t)| ≤ |t| for all t ∈ R;

(4) g(t)/t→ 1 as t→ 0;

(5) g(t)/
√

t→ 2
1
4 as t→ +∞;

(6) g(t)/2 ≤ tg′(t) ≤ g(t) for all t > 0;

(7) g2(t)/2 ≤ tg(t)g′(t) ≤ g2(t) for all t ∈ R;

(8) |g(t)| ≤ 21/4|t|1/2 for all t ∈ R;

(9) there exists a positive constant C such that

|g(t)| ≥
{

C|t|, if |t| ≤ 1,

C|t| 12 , if |t| ≥ 1;

(10) for each α > 0, there exists a positive constant C(α) such that

|g(αt)|2 ≤ C(α)|g(t)|2;

(11) |g(t)||g′(t)| ≤ 1√
2
.
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Hence, by making the change of variables, from J(u) we obtain the following functional

`(v) =
1
2

∫
RN

[|∇v|2 + V(|x|)g2(v)]dx−
∫

RN
F(|x|, g(v))dx, (2.1)

which is well defined on the space E. Similar to the proof of [30, 37], it is easy to see that
` ∈ C1(E, R), and

〈`′(v), ω〉 =
∫

RN
[∇v∇ω + V(|x|)g(v)g′(v)ω]dx−

∫
RN

f (|x|, g(v))g′(v)ωdx, (2.2)

for any ω ∈ E. Moreover, the critical points of ` are the weak solutions of the following
equation

−∆v =
1√

1 + 2|g(v)|2
( f (|x|, g(v))−V(|x|)g(v)) in RN .

We also know that if v is a critical point of the functional `, then u = g(v) is a critical point of
the functional J, i.e. u = g(v) is a solution of problem (1.1).

To prove our results, we need the principle of symmetric criticality theorem (see [22, The-
orem 1.28]) as follows.

Lemma 2.2 ([22]). Assume that the action of the topological group G on the Hilbert space X is
isometric. If Φ ∈ C1(X, R) is invariant and if u is a critical point of Φ restricted to Fix(G), then u is
a critical point of Φ.

Therefore, from the above lemma, if v is a critical point of Φ := `|E, then v is a critical
point of `, i.e. u = g(v) is a solution of (1.1).

A sequence {vn} ⊂ E is said to be a (C)c-sequence if `(v)→ c and ‖`′(v)‖(1 + ‖vn‖)→ 0.
` is said to satisfy the (C)c-condition if any (C)c-sequence has a convergent subsequence.

Lemma 2.3. Suppose that (V ′), ( f1), ( f2), ( f ′3) and ( f ′4) are satisfied. Then any (C)c-sequence {vn} of
` is bounded.

Proof. Let {vn} be a (C)c-sequence, then we have

`(vn)→ c and 〈`′(vn), vn〉 → 0. (2.3)

Hence, by (6) in Lemma 2.1, there is a constant C1 > 0 such that

C1 ≥ `(vn)−
1
2
〈`′(vn), vn〉 ≥

∫
RN
F (|x|, g(vn))dx. (2.4)

Firstly, let S2
n =

∫
RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx. Next, we prove that there exists a constant

C2 > 0 such that
S2

n =
∫

RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx ≤ C2.

Suppose to the contrary that

S2
n =

∫
RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx → ∞, as n→ ∞.

On the one hand, setting g̃(vn) := g(vn)
Sn

, by (2) in Lemma 2.1, then ‖g̃(vn)‖E ≤ 1. Passing
to a subsequence, we may assume that g̃(vn) ⇀ σ in E, g̃(vn)→ σ in Ls(RN), 2 < s < 2∗, and
g̃(vn)→ σ a.e. on RN .
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By (2.1) and (2.3), we can get

lim
n→∞

∫
RN

|F(|x|, g(vn))|
S2

n
dx =

1
2

. (2.5)

On the other hand, let ψn = g(vn)
g′(vn)

, by (6) in Lemma 2.1, then there is a constant C3 > 0
such that ‖ψn‖ ≤ C3‖vn‖E. Moreover, by (2.4), we know that there exists a constant C4 > 0
such that

C4 ≥ `(vn)−
1
4
〈`′(vn), ψn〉

=
1
4

∫
RN

(g′(vn))
2|∇vn|2dx +

1
4

∫
RN

V(|x|)g2(vn)dx

+
∫

RN

(
1
4

f (|x|, g(vn))g(vn)− F(|x|, g(vn))

)
dx

=
1
4

∫
RN

(g′(vn))
2|∇vn|2dx +

1
4

∫
RN

V(|x|)g2(vn)dx +
∫

RN
F (|x|, g(vn))dx,

which implies that ∫
RN
F (|x|, g(vn))dx ≤ C4. (2.6)

Let

η(r) := inf
{
F (x, g(vn)) | x ∈ RN with |g(vn)| ≥ r

}
,

for r > 0. By Remark 1.8, η(r)→ ∞ as r → ∞. For 0 ≤ a < b, let

Ωn(a, b) =
{

x ∈ RN : a ≤ |g(vn)| < b
}

and

Cb
a := inf

{
F (|x|, g(v))
|g(v)|2 : x ∈ RN and v ∈ R with a ≤ |g(v)| < b

}
.

Since F (|x|, u) > 0 if u 6= 0, we have Cb
a > 0 and

F (|x|, g(vn)) ≥ Cb
a |g(vn)|2.

Hence, from (2.6) and the above inequality, we can get

C4 ≥
∫

RN
F (|x|, g(vn))dx

≥
∫

Ωn(0,r)
F (|x|, g(vn))dx +

∫
Ωn(r,+∞)

F (|x|, g(vn))dx

≥
∫

Ωn(0,r)
F (|x|, g(vn))dx + η(r)meas(Ωn(r,+∞)),

which shows that meas(Ωn(r,+∞)) → 0 as r → ∞ uniformly in n. Thus, for any s ∈ [2, 22∗),
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by (11) in Lemma 2.1, Hölder’s inequality and Sobolev’s embedding, we get∫
Ωn(r,+∞)

g̃s(vn)dx ≤
(∫

Ωn(r,+∞)
g̃22∗(vn)dx

) s
22∗

(meas(Ωn(r,+∞)))
22∗−s

22∗

=
1

Ss
n

(∫
Ωn(r,+∞)

g22∗(vn)dx
) s

22∗

(meas(Ωn(r,+∞)))
22∗−s

22∗

≤ C4

Ss
n

(∫
Ωn(r,+∞)

|∇g2(vn)|2dx
) s

4

(meas(Ωn(r,+∞)))
22∗−s

22∗

≤ C5

Ss
n

(∫
Ωn(r,+∞)

|∇vn|2dx
) s

4

(meas(Ωn(r,+∞)))
22∗−s

22∗

≤ C5

S
s
2
n

(meas(Ωn(r,+∞)))
22∗−s

22∗ → 0

(2.7)

as r → ∞ uniformly in n.
If σ = 0, then g̃(vn) → 0 in Ls(RN) for all s ∈ (2, 2∗), and g̃(vn) → 0 a.e. in RN . By virtue

of ( f2), we can find some number r1 > 0 such that r0 > r1 and

| f (|x|, u)| < ε|u|, for |u| ≤ r1,

where r0 is given in ( f ′3). Then

∫
Ωn(0,r1)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx ≤
∫

Ωn(0,r1)

(
ε
2 |g(vn)|2

|g(vn)|2

)
|g̃(vn)|2dx

≤ ε

2
‖g̃(vn)‖2

2.

(2.8)

It follows from (2.4) that

C1 ≥
∫

Ωn(0,r1)
F (|x|, g(vn))dx +

∫
Ωn(r1,r0)

F (|x|, g(vn))dx +
∫

Ωn(r0,+∞)
F (|x|, g(vn))dx.

≥
∫

Ωn(0,r1)
F (|x|, g(vn))dx + Cr0

r1

∫
Ωn(r1,r0)

|g(vn)|2dx +
∫

Ωn(r0,+∞)
F (|x|, g(vn))dx,

thus we have ∫
Ωn(r1,r0)

|g(vn)|2dx ≤ C1

Cr0
r1

. (2.9)

By ( f1) and ( f2), for any ε > 0, there exists a Cε > 0 such that

| f (r, u)| ≤
(

ε|u|+ Cε|u|p−1
)

and |F(r, u)| ≤
(

ε

2
|u|2 + Cε

p
|u|p

)
, (2.10)

and then∫
Ωn(r1,r0)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx ≤
∫

Ωn(r1,r0)

(
ε
2 |g(vn)|2 + Cε

p |g(vn)|p

|g(vn)|2

)
|g̃(vn)|2dx

≤
(

ε

2
+

Cε

p
rp−2

0

) ∫
Ωn(r1,r0)

|g̃(vn)|2dx.

(2.11)

By using (2.9), we have∫
Ωn(r1,r0)

|g̃(vn)|2dx ≤ 1
S2

n

∫
Ωn(r1,r0)

|g(vn)|2dx ≤ 1
S2

n

C1

Cr0
r1

. (2.12)
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Therefore, it follows from (2.11) and (2.12) that

∫
Ωn(r1,r0)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx ≤
(

ε

2
+

Cε

p
rp−2

0

)
1

S2
n

C1

Cr0
r1

→ 0, as n→ ∞. (2.13)

Let κ′ = κ/(κ− 1). Since κ > max{1, 2N
N+2}, we obtain 2κ′ ∈ (2, 22∗). Hence from ( f ′4), (2.4)

and (2.7), one has

∫
Ωn(r0,∞)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx

≤
[∫

Ωn(r0,∞)

(
|F(|x|, g(vn))|
|g(vn)|2

)κ

dx
] 1

κ
[∫

Ωn(r0,∞)
|g̃(vn)|2κ′dx

] 1
κ′

≤ c
1
κ
0

[∫
Ωn(r0,∞)

F (|x|, g(vn))dx
] 1

κ
(∫

Ωn(r0,∞)
|g̃(vn)|2κ′dx

) 1
κ′

≤ [C1c0]
1
κ

(∫
Ωn(r0,∞)

|g̃(vn)|2κ′dx
) 1

κ′

→ 0.

(2.14)

Thus it follows from (2.8), (2.13) and (2.14) that

∫
R3

|F(|x|, g(vn))|
S2

n
dx =

∫
Ωn(0,r1)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx

+
∫

Ωn(r1,r0)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx

+
∫

Ωn(r0,∞)

|F(|x|, g(vn))|
|g(vn)|2

|g̃(vn)|2dx

→ 0, as n→ ∞,

(2.15)

which contradicts (2.5).

Now, we consider the case σ 6= 0. Set A :=
{

x ∈ RN : σ(x) 6= 0
}

. Thus meas(A) > 0. For
a.e. x ∈ A, we have lim

n→∞
|g(vn(x))| = ∞. Hence A ⊂ Ωn(r0, ∞) for large n ∈ N, where r0 is

given in ( f ′3). By ( f ′3), we can get

lim
n→∞

F(|x|, g(vn))

|g(vn)|4
= +∞.

It follows from Fatou’s Lemma that

lim
n→∞

∫
A

F(|x|, g(vn))

|g(vn)|4
dx = +∞. (2.16)
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Hence, from (2.3), (2.10) and (2.16), we can get

0 = lim
n→∞

c + o(1)
S2

n
= lim

n→∞

`(vn)

S2
n

= lim
n→∞

1
S2

n

(
1
2

∫
R3

[
|∇vn|2 + V(|x|)g2(vn)

]
dx−

∫
RN

F(|x|, g(vn))dx
)

= lim
n→∞

[
1
2
−
∫

Ωn(0,r0)

F(|x|, g(vn))

g2(vn)
|g̃(vn)|2dx−

∫
Ωn(r0,∞)

F(|x|, g(vn))

g2(vn)
|g̃(vn)|2dx

]
≤ 1

2
+ (ε + Cεr

p−2
0 )|g̃(vn)|22 − lim inf

n→∞

∫
A

F(|x|, g(vn))

g4(vn)
|g(vn)g̃(vn)|2dx

≤ 1
2
+ (ε + Cεr

p−2
0 )γ2

2‖g̃(vn)‖2
E − lim inf

n→∞

∫
A

F(|x|, g(vn))

g4(vn)
|g(vn)g̃(vn)|2dx

≤ 1
2
+ (ε + Cεr

p−2
0 )γ2

2 − lim inf
n→∞

∫
A

F(|x|, g(vn))

g4(vn)
|g(vn)g̃(vn)|2dx

→ −∞,

(2.17)

which is a contradiction. Thus there exists C2 > 0 such that

S2
n =

∫
RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx ≤ C2.

Next, we prove {vn} is bounded in E, i.e. we only need to prove that there exists C7 > 0
such that

S2
n =

∫
RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx ≥ C7‖vn‖2

E. (2.18)

Now, we may assume that vn 6= 0 (otherwise, the conclusion is trivial). If this conclusion is
not true, passing to a subsequence, we have S2

n
‖vn‖2

E
→ 0. Let ωn = vn

‖vn‖E
and hn = g2(vn)

‖vn‖2
E

. Then

lim
n→∞

∫
RN

(
|∇ωn|2 + V(|x|)hn(x)

)
dx = 0.

Thus ∫
RN
|∇ωn|2dx → 0,

∫
RN

V(|x|)hn(x)dx → 0 and
∫

RN
V(|x|)ω2

n(x)dx → 1.

Similar to the idea of [23], we assert that for each ε > 0, there exists C8 > 0 independent of n
such that meas(Θn) < ε, where Θn := {x ∈ RN : |vn(x)| ≥ C8}. Otherwise, there is an ε0 > 0
and a subsequence {vnk} of {vn} such that for any positive integer k,

meas
({

x ∈ RN : |vn(x)| ≥ k
})
≥ ε0 > 0.

Set Θnk := {x ∈ RN : |vnk(x)| ≥ k}. By (9) in Lemma 2.1, we have

S2
nk
≥
∫

RN
V(|x|)g2(vnk)dx ≥

∫
Θnk

V(|x|)g2(vnk)dx ≥ C9kε0 → +∞,

as k → ∞, which is a contradiction. Hence the assertion is true. Notice that as |vn(x)| ≤ C8,
by (9) and (10) in Lemma 2.1, we have

C10v2
n ≤ g2(

1
C8

vn) ≤ C11g2(vn).
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Thus∫
RN\Θn

V(|x|)ω2
ndx ≤ C12

∫
RN\Θn

V(|x|) g2(vn)

‖vn‖2
E

dx ≤ C12

∫
RN

V(|x|)hn(x)dx → 0. (2.19)

At last, by virtue of the integral absolutely continuity, there exists ε > 0 such that whenever
A′ ⊂ RN and meas(A′) < ε, ∫

A′
V(|x|)ω2

ndx ≤ 1
2

. (2.20)

It follows from (2.19) and (2.20) that∫
RN

V(|x|)ω2
ndx =

∫
RN\Θn

V(|x|)ω2
ndx +

∫
Θn

V(|x|)ω2
ndx ≤ 1

2
+ on(1).

This yields that 1 ≤ 1
2 , which is a contradiction. This implies that (2.18) holds. Hence {vn} is

bounded in E.

Lemma 2.4. Suppose that (V ′), ( f1), ( f2), ( f ′3) and ( f ′4) are satisfied. Then ` satisfies (C)c-condition.

Proof. By Lemma 2.3, it can conclude that {vn} is bounded in E. Going if necessary to a
subsequence, we can assume that vn ⇀ v in E. By the embedding, we have vn → v in Ls(R3)

for all 2 < s < 2∗.
Firstly, we prove that there exists C13 > 0 such that∫

RN

(
|∇(vn − v)|2 + V(|x|)(g(vn)g′(vn)− g(v)g′(v))(vn − v)

)
dx ≥ C13‖vn − v‖2

E. (2.21)

Indeed, we may assume vn 6= v (otherwise the conclusion is trivial). Set

ωn =
vn − v
‖vn − v‖E

and hn =
g(vn)g′(vn)− g(v)g′(v)

vn − v
.

We argue by contradiction and assume that∫
RN
|∇ωn|2 + V(|x|)hn(x)ω2

ndx → 0.

By
d
dt
(g(t)g′(t)) = g(t)g′′(t) + (g′(t))2 =

1
(1 + 2g2(t))2 > 0,

then g(t)g′(t) is strictly increasing and for each C14 > 0 there is δ > 0 such that

d
dt
(g(t)g′(t)) ≥ δ

as |t| ≤ C14. Thus we can see that hn(x) is positive. Hence∫
RN
|∇ωn|2dx → 0,

∫
RN

V(|x|)hn(x)ω2
ndx → 0 and

∫
RN

V(|x|)ω2
n(x)dx → 1.

By a similar fashion as (2.19) and (2.20), we can get a contradiction. This implies that (2.21)
holds.
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Secondly, by (2), (3), (8), (11) in Lemma 2.1 and (2.10), we have∣∣∣∣∫
RN

(
f (|x|, g(vn))g′(vn)− f (|x|, g(v))g′(v)

)
(vn − v)dx

∣∣∣∣
≤
∫

RN

(
ε|g(vn)||g′(vn)|+ Cε|g(vn)|p−1|g′(vn)|

+ε|g(v)||g(v)|+ Cε|g(v)|p−1|g′(v)|
)
|vn − v|dx

≤ εC15 + Cε

(
‖vn‖

p−2
2

p
2

+ ‖v‖
p−2

2
p
2

)
‖vn − v‖ p

2
= on(1).

(2.22)

Hence together with (2.21) and (2.22), we get

on(1) = 〈`(un)− `(u), un − u〉

=
∫

R3
|∇(un − u)|2dx +

∫
RN

V(|x|)
(

g(vn)g′(vn)− g(v)g′(v)
)
(vn − v)dx

−
∫

RN

(
f (|x|, g(vn))g′(vn)− f (|x|, g(v))g′(v)

)
(vn − v)dx

≥ C13‖vn − v‖2
E + on(1).

This implies vn → v in E and this completes the proof.

3 Proof of Theorem 1.4 and Theorem 1.5

To prove our results, we state the following symmetric mountain pass theorem.

Lemma 3.1 ([2, 26]). Let X be an infinite dimensional Banach space, X = Y ⊕ Z, where Y is finite
dimensional. If ` ∈ C1(X, R) satisfies (C)c-condition for all c > 0, and

(`1) `(0) = 0, `(−u) = `(u) for all u ∈ X;

(`2) there exist constants ρ, α > 0 such that `|∂Bρ∩Z ≥ α;

(`3) for any finite dimensional subspace X̃ ⊂ X, there is R = R(X̃) > 0 such that `(u) ≤ 0 on
X̃\BR;

then ` possesses an unbounded sequence of critical values.

Let {ej} is a total orthonormal basis of E and define Xj = Rej,

Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj, ∀ k ∈ Z.

Then E = Yn ⊕ Zn, Yn is a finite dimensional space.

Lemma 3.2. Suppose that (V ′), ( f1), ( f2), ( f ′3) and ( f ′4) are satisfied. Then there exist constant ρ, α > 0
such that

`|Sρ∩Zm ≥ α.
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Proof. From (2.1), (3) and (8) in Lemma 2.1, for u ∈ Zm and p ∈ (4, 22∗), we can choose ε small
enough such that

`(v) =
1
2

∫
RN

[|∇v|2 + V(|x|)g2(v)]dx−
∫

RN
F(|x|, g(v))dx

≥ C14

2
‖g(v)‖2

E −
ε

2

∫
RN
|g(v)|2dx− Cε

p

∫
RN
|g(v)|pdx

≥ C14

2
‖g(v)‖2

E −
ε

2

∫
RN
|g(v)|2dx− C′ε

p

∫
RN
|g(v)|

p
2 dx

≥ C15

(
1
2
‖g(v)‖2

E −
1
4
‖g(v)‖2

E −
1
4
‖g(v)‖

p
2
E

)
≥ C15

4
‖g(v)‖2

E

(
1− ‖g(v)‖

p−4
2

E

)
> 0.

This completes the proof.

Lemma 3.3. Suppose that (V ′), ( f1), ( f2), ( f ′3) and ( f ′4) are satisfied. Then for any finite dimensional
subspace Ẽ ⊂ E, there exists constant R = R(Ẽ) > 0 such that

`(v)→ −∞, ‖v‖E → ∞, v ∈ Ẽ.

Proof. Arguing indirectly, assume that for some sequence {vn} ⊂ Ẽ with ‖vn‖E → ∞, there is
M > 0 such that `(vn) ≥ −M for all n ∈N. On the one hand, let ωn = vn

‖vn‖E
, then ‖ωn‖E = 1.

Since Ẽ is finite dimensional, passing to a subsequence, then we assume that

ωn ⇀ ω in E,

ωn → ω in Ls(RN) for 2 < s < 2∗,

ωn → ω a.e. RN ,

and so ‖ω‖E = 1, which implies that ω 6= 0. Let Λ = {x ∈ RN : ω(x) 6= 0}, then meas(Λ) > 0.
Since |vn| = |ωn|‖vn‖E, by ‖vn‖E → ∞ and (4) in Lemma 2.1, then we have |g(vn)| → ∞.
Therefore, by (2) in Lemma 2.1, we have

S2
n =

∫
RN

(
|∇vn|2 + V(|x|)g2(vn)

)
dx

≥
∫

Λ

(
|∇g(vn)|2 + V(|x|)g2(vn)

)
dx

→ ∞.

On the other hand, set g̃(vn) =
g(vn)

Sn
, then ‖g̃(vn)‖E ≤ 1. Passing to a subsequence, we may

assume that g̃(vn) ⇀ σ in E, g̃(vn) → σ in Ls(RN) for all 2 < s < 2∗, g̃(vn) → σ a.e. on RN ,
and so ‖σ‖E ≤ 1. Hence, we can conclude a contradiction by a similar fashion as (2.15) and
(2.17). This completes the proof.

Corollary 3.4. Suppose that (V ′), ( f1), ( f2), ( f ′3) and ( f ′4) are satisfied. Then for any Ẽ ⊂ E, there
exists R = R(Ẽ) > 0, such that

`(v) ≤ 0, ‖v‖E ≥ R, ∀ v ∈ Ẽ.
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Proof of Theorem 1.4. Let X = E, Y = Ym and Z = Zm. By Lemmas 2.3, 2.4, 3.2 and Corol-
lary 3.4, all conditions of Lemma 3.1 are satisfied. Thus, problem (1.1) possesses has a se-
quence of radial solutions {vn} such that `(vn) → ∞ as n → ∞, where un = g(vn). This
completes the proof.

Proof of Theorem 1.5. Using a similar way as Theorem 1.4, we can complete the proof of Theo-
rem 1.5. �

4 Proof of Theorem 1.6

In this section, we want to prove Theorem 1.6. Before proving our results, we need the
following mountain pass theorem without compactness (see [22], Theorem 1.15)

Lemma 4.1 ([22]). Let X be an Hilbert space, ` ∈ C1(X, R), e ∈ X, and r > 0 such that ‖e‖ > r and
inf‖v‖=r `(v) > `(0) ≥ `(e). Then there exists a sequence {vn} such that `(vn)→ c and `′(vn)→ 0,
where

c = inf
γ∈Γ

max
t∈[0,1]

`(γ(t)) > 0,

and Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

The following lemma, has been proved in [30], which is very useful for the proof of Theo-
rem 1.6.

Lemma 4.2 ([30]). Let {Ωj}j∈N be a sequence of open subsets of R such that

(1) R = ∪j∈NΩ̄j and Ωi ∩Ωj = ∅, if i 6= j.

(2) There exists a constant c0 > 0 such that for j ∈N

‖v‖
L

10
3 (Ωj×R4)

≤ c0‖v‖H1(Ωj×R4), ∀ v ∈ H1(Ωj ×R4).

Let {vn} be a bounded sequence of H1(R5). If

sup
j∈N

∫
Ωj×R4

|vn|q → 0, when n→ ∞, f or q ∈
[

2,
10
3

)
,

then vn → 0 in Ls(R5), for all 2 < s < 10
3 .

For the proof of Theorem 1.6, following [19], let G be a subgroup of O(R4). It is obvious
that R4 is compatible with G if for some r > 0,

m(y, r, G) = lim
|y|→∞

m(y, r, G) = +∞,

where

m(y, r, G) := sup
n∈N

{
n ∈N : ∃ g1, g2, . . . , gn ∈ G such that i 6= j⇒ B(gi(y)) ∩ B(gj(y)) = ∅

}
.

Note that R4 is compatible with O(R4) and O(R2) × O(R2) (see [22]). For simplicity of
notation, we denote G := O(R2)×O(R2). We consider the action of G on H1(R5), defined by

(lu)(x, y) = u(x, l−1y), where (x, y) ∈ R×R4, l ∈ O(R4).
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Let
H1

G(R
5) :=

{
u ∈ H1(R5) : lu = u, ∀ l ∈ G

}
and ς ∈ O(N) be the involution in R5 = R×R2 ×R2 given by ς(x1, x2, x3) = (x2, x1, x3). We
define an action of the group G1 := {id, ς} on H1(R5) by

hu(x) =

{
u(x), if h = id,

−u(h−1x), if h = ς.

Let
H1

G1
(R5) :=

{
u ∈ H1(R5) : lu = u, ∀ l ∈ G1

}
.

Set E := H1
G(R

5) ∩ H1
G1
(R5). It is clear that u = 0 is only radial function in E, which is a

Hilbert space with the inner product of H1(R5).
The following compactness result is due to [19].

Lemma 4.3 ([19]). The imbedding H1
G(R

5) ↪→ Ls(Ω×R4) is compact, where Ω is a bounded subset
of R, s ∈ (2, 10

3 ).

Proof of Theorem 1.6. Similar to Lemma 3.2 and 3.3, it is easy to verify that ` satisfies the con-
ditions of Lemma 4.1. Then, there exists a (C)c-sequence {vn} ⊂ E i.e., {vn} satisfies

`(vn)→ c and (1 + ‖vn‖)`′(vn)→ 0,

where c is the Mountain Pass value given in Lemma 4.1. Similarly as in [30,37], by Lemma 2.1,
we have

on(1) = ‖`′(vn)‖(1 + ‖vn‖)
≥ 〈`′(vn), vn〉

=
∫

R5
|∇vn|2 +

∫
R5

V(|x|)g(vn)g′(vn)vn −
∫

R5
f (|x|, g(vn))g′(vn)vn

≥ C‖vn‖2 − C
∫

R5
|vn|

p
2 .

(4.1)

Hence, without loss of generality, we can choose δ > 0 such that for each n∫
R5
|vn|

p
2 ≥ ‖vn‖2 ≥ δ. (4.2)

Otherwise, (4.1) implies that vn → 0 in E and hence c = 0, which leads to a contradiction. Let
Ωj = (j, j + 1), then R = ∪j∈NΩ̄j. We may claim that there exists $ > 0 such that

sup
j∈N

∫
Ωj×R4

vn(x, y)dxdy ≥ 2$ > 0.

Otherwise, by Lemma 4.2, we have vn → 0 in in Ls(R5), where 2 < s < 10
3 , which contradicts

(4.2) since 2 < p
2 < 2∗. Hence, for every n, there exists jn such that∫

Ωjn×R4
vn(x, y)dxdy ≥ $ > 0.

Making the change of variable x = x′ + jn, one has∫
Ω×R4

vn(x′ + jn, y)dx′dy ≥ $ > 0.
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where Ω = (0, 1). Let wn(x′, y) = vn(x′ + jn, y), then∫
Ω×R4

wn(x′, y)dx′dy ≥ $ > 0. (4.3)

Note that {vn} is also a (C)c sequence of `. Hence

wn ⇀ w in E,

wn → w in Ls
loc(R

5), where 2 < s <
10
3

,

wn ⇀ w a.e. on R5.

It is standard to prove that w is a critical point of `. Moreover, (4.3) implies w 6= 0, i.e., the
problem (1.1) has a nonradial solution v = g(w). This completes the proof.
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