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Abstract
Semilinear multivalued equations are considered, in separable Ba-

nach spaces with the Radon-Nikodym property. An effective criterion
for the existence of solutions to the associated Floquet boundary value
problem is showed. Its proof is obtained combining a continuation
principle with a Liapunov-like technique and a Scorza-Dragoni type
theorem. A strictly localized transversality condition is assumed. The
employed method enables to localize the solution values in a not nec-
essarily invariant set; it allows also to introduce nonlinearities with
superlinear growth in the state variable.
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1 Introduction

The paper deals with the Floquet boundary value problem (b.v.p.) associated
to a semilinear multivalued differential equation

{

x′(t) ∈ A(t)x(t) + F (t, x(t)), t ∈ [a, b], x(t) ∈ E
x(b) = Mx(a).

(1)
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in a separable Banach space E, with norm ‖·‖, satisfying the Radon-Nikodym
property (in particular in a separable and reflexive Banach space E). We
assume that

(A) A : [a, b] → L(E) is Bochner integrable, where L(E) denotes the space
of linear bounded operators from E into itself;

(F1) F : [a, b] × E ⊸ E is a upper-Carathéodory (u-Carathéodory ) multi-
valued map, i.e.,

(i) F (t, x) is nonempty, compact and convex for any t ∈ [a, b], x ∈ E;

(ii) the multifunction F (·, x) : [a, b] ⊸ E is measurable for all x ∈ E;

(iii) the multimap F (t, ·) : E ⊸ E is upper semicontinuous (u.s.c.) for
a.a. t ∈ [a, b];

(F2) for every bounded Ω ⊂ E, there exists νΩ ∈ L1([a, b], R) such that
‖y‖ ≤ νΩ(t), for a.a. t ∈ [a, b], every x ∈ Ω, and y ∈ F (t, x);

(M) M ∈ L(E).

The measurability is intended with respect to the Lebesgue σ-algebra in [a, b]
and the Borel σ-algebra in E. We denote with τ the Lebesgue measure on
[a, b].

We search for strong Carathéodory solutions of problem (1). Namely, by
a solution of (1) we mean an absolutely continuous function x : [a, b] → E
such that its derivative satisfies (1) for a.a. t ∈ [a, b]. We remark that,
in a Banach space E with the Radon-Nikodym property, each absolutely
continuous function x : [a, b] → E has the derivative x′(t) for a.a. t ∈
[a, b], x′ is Bochner integrable in [a, b] and x satisfies the integral formula.

We obtain a solution of (1) as the limit of a sequence of solutions of
approximating problems, denoted by (Pm), that we construct by means of
a Scorza-Dragoni type result (cfr. Theorem 2.1). We solve each problem
(Pm) with a continuation principle proved in [2] (see also Theorem 2.3) and
relative to the case of condensing solution operators. To this aim we have, in
particular, to show the so called transversality condition (see e.g. condition
(d) in Theorem 2.3), i.e. the lack of solutions on the boundary of a suit-
able set for all the parametrized problems associated to each (Pm). So we
introduce a Frechét differentiable Liapunov-like function V : E → R and
denote with K its zero sublevel set. Under suitable conditions on V ′ we are
able to guarantee that all the functions in C([a, b], K) satisfy the required
transversality. This approach originates by Gaines and Mawhin [7] and we
refer to [2] and [4] for an updated list of contributions on this topic. A not
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completely satisfactory condition on V ′ in a neighborhood of the boundary
∂K of K, was proposed in [2, Theorem 5.2], for getting the required transver-
sality. Indeed, as a consequence of the proof of [2, Proposition 4.1], it is not
difficult to see that such a condition implies the positive invariance of K,
which is not necessary for having the transversality. Under additional regu-
larities, i.e. when A is continuous on [a, b] and F is globally u.s.c., a strictly
localized transversality condition on ∂K was proved in [2], which does not
imply the invariance of K (see e.g. [2, Example 1]). If |V ′

x(x)| 6= 0 and x
belongs to an Hilbert space H , a straightforward consequence of the Riesz
representation Theorem is the existence of a bounded and lipschitzian func-
tion φ : H → R satisfying V ′

x(φ(x)) = ‖V ′
x‖. In [4] such a φ is the key

point for the construction of a sequence of approximating problems. This
lead to an existence result for (1) ([4, Theorem 3.4]) in a separable Hilbert
space, when A(t) satisfies (A) and F is a Carathéodory nonlinearity, which
is based on a strictly localized transversality condition. In Theorem 2.2, we
assume that K is open, bounded, convex and 0 ∈ K, and we prove the ex-
istence of a function with similar properties as the mentioned φ but in an
arbitrary Banach space. Thanks to it, we are able to solve the b.v.p. (1)
in an arbitrary separable Banach space with the Radon-Nikodym property
and we assume the strictly localized transversality condition (V4); this is the
main result in the paper and it is contained in Theorem 3.1. We remark that
Theorem 3.1 is more general than the quoted result in [2]. Moreover, also
in a Hilbert space, it is an improvement of the quoted one in [4]. In fact, in
Example 3.1 we discuss a b.v.p. in R which can be investigated by means of
Theorem 3.1 but that it is not possible to study with the quoted results in
[2] and [4]. Finally in Example 3.1 we show that condition (V4) does not im-
ply either the positive or the negative invariance of the sublevel set K. The
employed technique enables to localize the solution values in K. Moreover,
due to condition (F2), the nonlinearity F can also have a superlinear growth
in its variable x.

A spatial dispersal process where the classical diffusion term is replaced
by a non-local type one can be modeled with an equation of the type

ut(t, x) = γ(t, x)u(t, x) +

∫

Ω

k(x, y)u(t, y)dy, for a.a. t ∈ [a, b] (2)

where x ∈ Ω ⊂ R
n, γ : [a, b] × Ω → R and the function k : Ω × Ω → R

represents the dispersal kernel. Equation (2) can be viewed as a special case
of the integro-differential inclusion

ut(t, x) ∈ γ(t, x)u(t, x) + F (t, x, Su(t, ·)), for a.a. t ∈ [a, b] (3)
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where Sv(x) =
∫

Ω
k(x, y)v(y)dy and F is a suitable multivalued map. Non-

linear dynamics as (3) also appear in the study of viscoelasticity properties,
in transport problems and in the theory of phase transitions (cfr. [3] and the
references there contained). We remark that both (2) and (3) can be refor-
mulated as equations or inclusions in Banach spaces of the type appearing in
problem (1) and studied with the techniques developed in this paper. This
is showed in details in [3].

We denote by U(t, s), (t, s) ∈ ∆ = {(t, s) ∈ [a, b]× [a, b] : a ≤ s ≤ t ≤ b},
the evolution system generated by {A(t)}t∈[a,b] (see [9] for details). It is well
known that

‖U(t, s)‖ ≤ e
R b
a ‖A(t)‖ dt, for all (t, s) ∈ ∆. (4)

Moreover, the map M − U(b, a) is invertible if and only if, for any f ∈
L1([a, b], E) the b.v.p.

{

x′ = A(t)x + f(t), for a.a. t ∈ [a, b],
x(b) = Mx(a)

is uniquely solvable and, in this case, its solution can be written as follows

x(t) = U(t, a)
(

M − U(b, a)
)−1
∫ b

a

U(b, s)f(s) ds +

∫ t

a

U(t, s)f(s) ds (5)

(see e.g. [2, Lemma 5.1], where the result is proved assuming the invertibility
of M , but indeed this condition is not necessary).

We denote by γ the Hausdorff measure of non-compactness (m.n.c.) on
E. It is well known that, if V : E → E is a Lipschitz function of constant L
and Ω ⊂ E, then

γ(V (Ω)) ≤ Lγ(Ω). (6)

Let {fn}n ⊂ L1([a, b], E). If there exist ν, c ∈ L1[a, b] such that ‖fn(t)‖ ≤ ν(t)
and γ({fn(t)}n) ≤ c(t) for a.a. t ∈ [a, b] and n ∈ N, then

γ
({

∫ b

a

fn(t)dt
}

n

)

≤
∫ b

a

c(t)dt. (7)

For any subset Ω of E and δ > 0 it follows that (see e.g. [2])

γ(
⋃

λ∈[0,δ]

λ Ω) = δγ(Ω). (8)

In a space of continuous functions, an important example of monotone and
non-singular m.n.c. is the modulus of equicontinuity:

modC(Ω) = lim
δ→0

sup
x∈Ω

max
|t1−t2|≤δ

|x(t1) − x(t2)|.
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It is easy to see that the modulus of equicontinuity of a set is equal to zero if
and only if the set is equicontinuous. We refer to [8] for a wide presentation
of the theory of m.n.c.
If X is a subset of E and Λ is a space of parameters, a family of compact
valued multimaps G : Λ × X ⊸ E is called condensing with respect to a
m.n.c. β (shortly β-condensing) if, for every Ω ⊆ X that is not relatively
compact, we have

β(G(Λ × Ω)) < β(Ω) .

Given the topological spaces X and Y , the multimap F : X ⊸ Y is said
to be quasi-compact if it maps compact sets of X into relatively compact
sets in Y .

Let B be the open unit ball in E. Given ε > 0 and H ⊂ E bounded,
define Bε

H = H + εB and ‖H‖ = sup
x∈H

‖x‖. Finally we denote with ‖ · ‖1 the

norm in L1([a, b], R).

2 Preliminaries

The technique that we use in order to prove the existence result in Theorem
3.1, consists into associating to the b.v.p. (1) a sequence of approximating
problems. Each one of them is obtained by means of a Scorza-Dragoni type
result for u-Carathéodory multimaps. It is well known that, for a single-
valued map, the measurability in t for every x and the continuity in x for a.a. t
implies the almost continuity. This result was extended to set valued function
under the same assumptions (see [8, Theorem 1.3.2.]), but a straightforward
generalizations to the case of upper-semicontinuity is not possible (see, e.g.,
[8, Example 1.3.1.]). So, we introduce the following notion.

Definition 2.1 An u-Carathéodory map F : [a, b] × E ⊸ E is said to have
the Scorza-Dragoni property if there exists a multivalued mapping F0 : [a, b]×
E ⊸ E ∪ {∅} with compact, convex values having the following properties:

(i) F0(t, x) ⊂ F (t, x), for all (t, x) ∈ [a, b] × E;

(ii) if u, v : [a, b] → E are measurable functions with v(t) ∈ F (t, u(t)) a.e.
on [a, b], then v(t) ∈ F0(t, u(t)) a.e. on [a, b];

(iii) for every ε > 0 there exists a closed Iε ⊂ [a, b] such that τ([a, b]\Iε) < ε,
F0(t, x) 6= ∅ when (t, x) ∈ Iε × E and F0 is u.s.c. on Iε × E.
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Trivially, every almost-usc multimap (see [6, Definition 3.3]) has the Scorza-
Dragoni property. Notice that, if E is separable, an u-Carathédory map is
almost-usc if and only if it is globally measurable (see [11, Theorems 1 and 2]).
Moreover, if E is separable, every quasi-compact u-Carathédory multimap
has the Scorza-Dragoni property (see [5, Theorem 1], see also [10, Thoerem
1] and [8, Theorem 1.1.12] ). We remark that (see [5]) an u-Carathédory map
F is quasi-compact if there exists g ∈ L1([a, b], R) such that for any bounded
Ω ⊂ E and t ∈ [a, b]

lim
h→0+

γ(F ((t − h, t + h) ∩ [a, b], Ω)) ≤ g(t)γ(Ω). (9)

Hence the following theorem holds.

Theorem 2.1 Let E be a separable Banach space and F : [a, b]×E ⊸ E be
an u-Carathéodory map. If F is globally measurable or quasi-compact, then
F has the Scorza-Dragoni property.

We prove now the existence of a function with the necessary properties
needed in order to construct a sequence of problems which approximate (1).

Theorem 2.2 Let E be a Banach space and K ⊂ E be nonempty, open,
bounded, convex and such that 0 ∈ K. Assume that V : E → R is Fréchet
differentiable with V ′ Lipschitzian in Bε

∂K, for some ε > 0, and

(V 1) V ⌊∂K≡ 0;

(V 2) V ⌊K≤ 0;

(V 3) ‖V ′
x‖ ≥ δ for all x ∈ ∂K, where δ > 0 is given.

Then there exists a bounded Lipschitzian function φ : Bε
∂K → E such that

V ′
x(φ(x)) = 1 for every x ∈ Bε

∂K .

Proof. The proof splits into three steps.
STEP 1. V ′

x(y − x) < 0 for every x ∈ ∂K, y ∈ K. Given x ∈ ∂K, let us
suppose that there exists y0 ∈ K such that V ′

x(y0 − x) ≥ 0. Then one of the
following three conditions holds:

1) ∃y ∈ K : V ′
x(y − x) > 0.

2) V ′
x(y − x) = 0 for all y ∈ K.

3) V ′
x(y − x) ≤ 0 for all y ∈ K and there exist y1, y2 ∈ K : V ′

x(y1 − x) = 0
and V ′

x(y2 − x) < 0.
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Assume 1). The convexity of K and the linearity of V ′
x imply that zλ =

(1 − λ)x + λy ∈ K and V ′
x(zλ − x) = λV ′

x(y − x) ≥ 0 for every λ ∈ [0, 1].
According to Taylor’s formula and (V1) we then have, for every λ ∈ (0, 1],

V (zλ)

‖zλ − x‖ =
V (zλ) − V (x)

‖zλ − x‖ =
V ′

x(zλ − x) + o(‖zλ − x‖)
‖zλ − x‖

=
V ′

x(y − x)

‖y − x‖ +
o(‖zλ − x‖)
‖zλ − x‖ .

Therefore

lim
λ→0+

V (zλ)

‖zλ − x‖ =
V ′

x(y − x)

‖y − x‖ > 0,

in contradiction with (V2).
Assume 2). Then V ′

x(y) ≡ V ′
x(x) in K. Since K is open and V ′

x is linear, it
follows that V ′

x ≡ 0, in contradiction with (V3).
Finally assume 3). For λ ∈ R put wλ = (1 − λ)y1 + λy2. Since K is open
and y1 ∈ K, there is r > 0 such that y1 + rB ⊂ K. Since w0 = y1, there
exists λ > 0 such that ‖wλ − y1‖ ≤ r, i.e. wλ ∈ K, for |λ| ≤ λ. Take now
λ ∈ (−λ, 0). Since V ′

x(y1 − x) = 0 and V ′
x(y2 − x) < 0, according to the

linearity of V ′
x we have that V ′

x(wλ − x) = λV ′
x(y2 − x) > 0, in contradiction

with 3).
STEP 2. The function x → V ′

x(x) is strictly positive and Lipschitzian in
Bε

∂K . Since 0 ∈ K then, for every x ∈ ∂K, V ′
x(x) = −V ′

x(0 − x) > 0.

Moreover, since K is open, there exists r ∈ (0, infx∈∂K ‖x‖
2

) such that rB ⊂ K.

Let ρ ∈ (0, 1
2
δr). Given x ∈ ∂K, since ‖V ′

x‖ ≥ δ > 2ρ
r
, there exists w

such that ‖w‖ = 1 and V ′
x(w) > ρ

r
. Consider z = rw. Then ‖z‖ = r and

V ′
x(z) > ρ. Hence λ0 = V ′

x(x)
V ′

x(z)
> 0. Since V ′

x(λ0z − x) = 0 and V ′
x(y − x) < 0

for every y ∈ K, we have that λ0z /∈ K. Hence ‖λ0z‖ ≥ infx∈∂K ‖x‖, i.e.

λ0 ≥ infx∈∂K ‖x‖
r

> 2. Therefore, for every x ∈ ∂K,

V ′
x(x) = λ0V

′
x(z) > 2ρ. (10)

Denoted by L the Lipschitz constant of V ′ in Bε
∂K and fixed y0 ∈ ∂K, for

every x, y ∈ Bε
∂K it holds

|V ′
x(x) − V ′

y(y)| ≤ ‖V ′
x − V ′

y‖‖x‖ + ‖V ′
y‖‖x − y‖

≤ L‖Bε
∂K‖‖x − y‖ + (‖V ′

y − V ′
y0
‖ + ‖V ′

y0
‖)‖x − y‖

≤ [L(‖∂K‖ + ε) + L‖y − y0‖ + ‖V ′
y0
‖]‖x − y‖

≤ [2L(‖∂K‖ + ε) + ‖V ′
y0
‖]‖x − y‖

:= L‖x − y‖.

Hence the map x → V ′
x(x) is Lipschitizian in Bε

∂K of Lipschitz constant
L = 2L(‖∂K‖ + ε) + ‖V ′

y0
‖ and L = L(ǫ) is increasing in ε. According to
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(10), we then have V ′
x(x) ≥ 2ρ − εL for every x ∈ Bε

∂K . We can then take ε
sufficiently small to have V ′

x(x) ≥ ρ for every x ∈ Bε
∂K .

STEP 3. Definition and properties of φ. Let us define now φ : Bε
∂K → E as

φ(x) = x
V ′

x(x)
. Then ‖φ(x)‖ ≤ ‖∂K‖+ε

δr
and V ′

x(φ(x)) = 1 for every x. Moreover,

fixed y0 ∈ ∂K, for every x, y ∈ Bε
∂K

‖φ(x) − φ(y)‖ = ‖ x
V ′

x(x)
− y

V ′
y(y)

‖ = 1
V ′

x(x)V ′
y(y)

‖xV ′
y(y) − yV ′

x(x)‖
≤ 1

ρ2

(

|V ′
x(x) − V ′

y(y)|‖x‖ + |V ′
x(x)|‖x − y‖

)

≤ 1
ρ2

(

L‖Bε
∂K‖ + |V ′

x(x) − V ′
y0

(y0)| + |V ′
y0

(y0)|
)

‖x − y‖
≤ 1

ρ2

(

2L‖Bε
∂K‖ + |V ′

y0
(y0)|

)

‖x − y‖,

which implies that φ is Lipschitzian.

Remark 2.1 Notice that the function x → φ(x)‖V ′
x‖ is Lipschitizian and

bounded in Bε
∂K .

The following continuation principle was proved in [2, Theorem 3.1] in the
case when the r.h.s. is sublinear in x. It is not difficult to see that the same
result is true under the more general condition (F2).

Theorem 2.3 Consider an u-Carathéodory map P : [a, b]×E ⊸ E satisfy-
ing (F2) (with P instead of F ) and a subset S of absolutely continuous func-
tions x : [a, b] → E. Let H : [a, b]×E×E× [0, 1] ⊸ E be an u-Carathéodory
map. Assume that, for every bounded Ω ⊂ E, there exists νΩ ∈ L1([a, b], R)
such that ‖w‖ ≤ νΩ(t), for a.a. t ∈ [a, b], every x, y ∈ Ω, λ ∈ [0, 1] and
w ∈ H(t, x, y, λ) and let

H(t, c, c, 1) ⊂ P (t, c), for all (t, c) ∈ [a, b] × E. (11)

Furthermore, assume that

(a) There exists a closed and convex subset Q ⊆ C([a, b], E), with
◦

Q 6= ∅,
and a closed subset S1 of S such that the problem

{

x′(t) ∈ H(t, x(t), q(t), λ), for a.a. t ∈ [a, b],

x ∈ S1

is solvable with a convex set T (q, λ) of solutions, for each (q, λ) ∈
Q × [0, 1];

(b) T is quasi-compact and β-condensing with respect to a monotone and
non-singular m.n.c. β defined on C([a, b], E);

EJQTDE, 2011 No. 47, p. 8



(c) T (Q × {0}) ⊂ Q;

(d) The map T (·, λ) has no fixed points on the boundary ∂Q of Q for every
λ ∈ [0, 1).

Then the b.v.p.
{

x′ ∈ P (t, x), for a.a. t ∈ [a, b],

x ∈ S,

has a solution in Q.

3 Existence Result

In this section we show the solvability of the b.v.p. (1). Our proof involves
a sequence of approximating problems that we obtain combining the Scorza-
Dragoni type result in Theorem 2.1 with the result in Theorem 2.2. The
approximating problems are treated by means of the continuation principle
in the form of Theorem 2.3. A standard limit argument is then applied to
complete the proof. Strict transversality conditions are assumed.

Theorem 3.1 Consider the b.v.p. (1) under assumptions (A), (F1), (F2)
and (M) and suppose that F has the Scorza-Dragoni property. Let us assume
the following hypotheses:

(i) (M − U(b, a)) is invertible;

(ii) there exists g ∈ L1([a, b], R) such that γ(F (t, Ω)) ≤ g(t)γ(Ω) for any
bounded Ω ⊂ E and a.a. t ∈ [a, b] and

‖g‖1

(

e
R b

a
‖A(t)‖ dt‖[M − U(b, a)]−1‖ + 1

)

e
R b

a
‖A(t)‖ dt < 1; (12)

(iii) there exist a nonempty, open, bounded, convex set K ⊂ E, such that 0 ∈
K and M∂K ⊂ ∂K, positive constants δ, ε and a Fréchet differentiable
function V : E → R with V ′ Lipschitzian in Bε

∂K , satisfying (V1)-
(V2)-(V3) as well as

(V 4) V ′
x(A(t)x + λw) ≤ 0 for a.a. t ∈ (a, b] and for every x ∈ ∂K, λ ∈

(0, 1) and w ∈ F (t, x).

Then (1) has at least a solution x with x(t) ∈ K for all t ∈ [a, b].
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Proof The proof splits into three steps
STEP 1. Introduction of a sequence of approximating problems. According
to Urisohn lemma, there exists a continuous function µ : E → [0, 1] such

that µ ≡ 0 on E \ Bε
∂K and µ ≡ 1 on B

ε/2
∂K . Theorem 2.2 then implies that

φ̂ : E → R defined by

φ̂(x) =

{

µ(x)φ(x)‖V ′
x‖ x ∈ Bε

∂K

0 otherwise
(13)

is well-defined, continuous and bounded on all E. Since (t, x) 7−→ A(t)x is
a Carathéodory map on [a, b] × E, it is also almost continuous. Hence the
multimap (t, x) ⊸ A(t)x+F (t, x) has the Scorza-Dragoni property (cfr. e.g.
Theorem 2.1). We can then find a decreasing sequence {Jm}m of sets and a
multimap F0 : [a, b] × E ⊸ E such that, for each m ∈ N,

• Jm ⊂ [a, b] and τ(Jm) < 1
m

;

• [a, b] \ Jm is closed;

• (t, x) ⊸ A(t)x + F0(t, x) − p(t)‖V ′
x‖φ(x)
m

is u.s.c. on [a, b] \ Jm × E.

Put J = ∩∞
m=1Jm. We remark that τ(J) = 0, F0(t, x) 6= ∅ whenever t 6∈ J

and the multimap (t, x) ⊸ A(t)x + F0(t, x) is u.s.c. on [a, b] \ J × E. Let

p(t) := ‖A(t)‖
(

‖∂K‖ +
ε

2

)

+ ν
B

ε/2
∂K

(t) + 1, (14)

with ν
B

ε/2
∂K

∈ L1([a, b], R) obtained by condition (F2). For each m ∈ N, we

define the nonempty, compact, convex valued multimap

Fm(t, x) =

{

F0(t, x) − p(t)
[

χJm(t) + 1
m

]

φ̂(x) (t, x) ∈ [a, b] \ J × E

−p(t)
[

χJm(t) + 1
m

]

φ̂(x) (t, x) ∈ J × E

and introduce the b.v.p.







x′(t) ∈ A(t)x(t) + Fm(t, x(t)), for a.a. t ∈ [a, b]
(Pm)

x(b) = Mx(a).

STEP 2. Solvability of problems (Pm). Fix m ∈ N. Since F0 is globally u.s.c.
in ([a, b] \ J)×E, hence Fm(·, x) is measurable, for each x ∈ E, and according
to the continuity of φ̂, Fm(t, ·) is u.s.c. for all t ∈ [a, b] \ J . Consequently
Fm satisfies (F1). Take Ω ⊂ E bounded. According to (F2), there exists
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Ĵ ⊂ [a, b], with τ(Ĵ) = 0, such that when t ∈ [a, b]\ (J ∪ Ĵ) and y ∈ Fm(t, Ω),
since y = y0 − p(t)

[

χJm(t) + 1
m

]

φ̂(x) for some y0 ∈ F0(t, x), we have that

‖y‖ ≤ νΩ(t) + 2p(t) max
x∈Bε

∂K

‖φ̂(x)‖.

Hence Fm satisfies condition (F2). Now we prove that, whenever m is suffi-
ciently large, all the assumptions, from (a) to (d), of Theorem 2.3 are satis-
fied.
Property (a). Introduce the nonempty, compact, convex valued multimap

Gm(t, y, λ) =

{

λF0(t, y) − p(t)
[

χJm(t) + 1
m

]

φ̂(y), (t, y, λ) ∈ ([a, b] \ J) × E × [0, 1]

−p(t)
[

χJm(t) + 1
m

]

φ̂(y), (t, y, λ) ∈ J × E × [0, 1]

which is clearly u-Caratheodory and trivially A(t)x+Gm(t, y, λ) satisfies (11).
Consider the closed set Q = C([a, b], K). Since K is convex and open, with
0 ∈ K, we have that also Q is convex and it has a nonempty interior. Define
the multivalued map Tm(q, λ) which associates to each (q, λ) ∈ Q× [0, 1] the
set of all solutions of the problem

{

x′(t) ∈ A(t)x(t) + Gm(t, q(t), λ), for a.a. t ∈ [a, b]
x(b) = Mx(a).

(15)

Since (15) is a linear problem, then Tm is a well-defined, convex valued mul-
timap on Q × [0, 1], so (a) is satisfied.
Property (b). Given {qn}n ⊂ Q and {λn}n ⊂ [0, 1], let {xn}n be such that
xn ∈ Tm(qn, λn) for all n. According to condition (i) and (5), there exists
{kn}n ⊂ L1([a, b], E), with kn(t) ∈ F0(t, qn(t)) for a.a. t ∈ [a, b] and every n,
such that

xn(t) = U(t, a) (M − U(b, a))−1

∫ b

a

U(b, s)fn(s) ds+

∫ t

a

U(t, s)fn(s) ds (16)

where where fn(t) = λnkn(t) − p(t)
[

χJm(t) + 1
m

]

φ̂(qn(t)). Put

D̃ :=
(

e
R b

a ‖A(t)‖ dt‖[M − U(b, a)]−1‖ + 1
)

e
R b
a ‖A(t)‖ dt,

Condition (F2) implies that,

‖xn(t)‖ ≤ D̃

[

‖νK‖1 + 2‖p‖1 max
x∈Bε

∂K

‖φ̂(x)‖
]

, for all t ∈ [a, b], n ∈ N,
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implying that {xn}n is equibounded. For each t ∈ [a, b], the properties of the
Hausdorff m.n.c. yield

γ ({fn(t)}n) ≤ γ ({λnkn(t)}n) + p(t)
(

χJm(t) + 1
m

)

γ
(

{φ̂(qn(t))}n

)

≤
γ
(

∪λ∈[0,1]{λkn(t)}n

)

+

p(t)
(

χJm(t) + 1
m

)

γ
(

{φ(qn(t))‖V ′
qn(t)‖ : qn(t) ∈ Bε

∂K}
)

=

γ ({kn(t)}n) + p(t)
(

χJm(t) + 1
m

)

γ
(

{φ(qn(t))‖V ′
qn(t)‖ : qn(t) ∈ Bε

∂K}
)

.

Therefore, according to condition (ii),

γ ({fn(t)}n) ≤ g(t)γ ({qn(t)}n)

+p(t)
(

χJm(t) + 1
m

)

γ
(

{φ(qn(t))‖V ′
qn(t)‖ : qn(t) ∈ Bε

∂K}
)

for a.a. t ∈ [a, b]. Since the function x 7−→ φ(x)‖V ′
x‖ is Lipschitzian on Bε

∂K ,

of some Lipschitz constant L̂ > 0 (see Remark 2.1), (6) finally implies that

γ ({fn(t)}n) ≤
(

g(t) + L̂p(t)(χJm(t) + 1
m

)
)

γ ({qn(t)}n)

≤
(

g(t) + L̂p(t)(χJm(t) + 1
m

)
)

sup
t∈[a,b]

γ ({qn(t)}n)
(17)

for a.a. t ∈ [a, b]. According to (F2), (4) and (7) we have that

γ ({xn(t)}n) ≤ D̃ sup
t∈[a,b]

γ ({qn(t)}n)

∫ b

a

[g(s) + L̂(χJm(s) +
1

m
)p(s)] ds (18)

If we assume in addition that qn → q in C([a, b], K) and λn → λ as n → ∞,
we obtain that γ ({qn(t)}n) ≡ 0 and (18) implies that γ ({xn(t)}n) ≡ 0.
Hence {xn(t)}n is relatively compact for each t ∈ [a, b]. Moreover, since
{xn}n is an equibounded set of solutions of (15), it is not difficult to show that
{x′

n}n is equibounded in L1([a, b], E). Consequently, according to a classical
convergence result (see e.g. [1, Lemma 1.30]), there exist x ∈ C([a, b], E) with
x′(t) defined for a.a. t and a subsequence, denoted again as the sequence,
such that xn → x in C([a, b], E) and x′

n ⇀ x′ weakly in L1([a, b], E) as
n → ∞. A classical closure theorem (see e.g. [8, Lemma 5.1.1]) then implies
that x ∈ Tm(q, λ) hence Tm is quasi-compact.

Now we show that Tm is also β-condensing with respect to the monotone
and non-singular m.n.c.

β(Ω) := max
{qn}n⊂Ω

(

sup
t∈[a,b]

γ({qn(t)}n), modC({qn}n)

)

,
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where the ordering is induced by the positive cone in R
2 (see [8, Example

2.1.4]). Indeed, let Ω ⊆ Q be such that β (Tm(Ω × [0, 1])) ≥ β(Ω) and take
xn ∈ Tm(qn, λn) satisfying

β ({xn}n) = β (Tm(Ω × [0, 1])) ≥ β(Ω) ≥ β ({qn}n) .

According to (18), we obtain that

sup
t∈[a,b]

γ ({qn(t)}n) ≤ sup
t∈[a,b]

γ ({xn(t)}n)

≤ D̃
(

‖g‖1 + (‖p‖L1(Jm) + 1
m
‖p‖1)L̂

)

sup
t∈[a,b]

γ ({qn(t)}n) .

Condition (12) and the definition of D̃ then implies the contradictory
conclusion

sup
t∈[a,b]

γ ({qn(t)}n) < sup
t∈[a,b]

γ ({qn(t)}n) ,

whenever m is sufficiently large. Hence Tm is β-condensing.
Property (c). The set Tm(q, 0), for each q ∈ Q, coincides with the unique
solution xm of the linear system

{

x′(t) = A(t)x(t) − p(t)(χJm(t) + 1
m

)φ̂(t) t ∈ [a, b]
x(b) = Mx(a)

(19)

Condition (i) and (5) then implies that, for all t ∈ [a, b],

xm(t) = U(t, a) (M − U(b, a))−1

∫ b

a

U(b, s)ϕm(s) ds +

∫ t

a

U(t, s)ϕm(s) ds

with ϕm(t) = −p(t)(χJm(t) + 1
m

)φ̂(t). We also have that

‖ϕm‖1 ≤ max
x∈Bε

∂K

‖φ̂(x)‖
(

‖p‖L1(Jm) +
‖p‖1

m

)

.

According to condition (4), it implies that

‖xm(t)‖ ≤ D̃ max
x∈Bε

∂K

‖φ̂(x)‖
(

‖p‖L1(Jm) +
‖p‖1

m

)

for all t ∈ [a, b]. Let r > 0 be such that rB ⊂ K; if we assume a sufficiently
large m, we have that ‖xm(t)‖ ≤ r for all t ∈ [a, b], implying that Tm(Q ×
{0}) ⊂

◦

Q. Hence condition (c) is satisfied.
Property (d). Since we already showed that Tm(·, 0) has no fixed points
on ∂Q, it remains to prove this property for Tm(·, λ) with λ ∈ (0, 1). We
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reason by a contradiction and assume the existence of λ ∈ (0, 1), q ∈ ∂Q and
t0 ∈ [a, b] such that q ∈ Tm(q, λ) and q(t0) ∈ ∂K. Since, when q(a) ∈ ∂K,
it follows that q(b) = Mq(a) ∈ M∂K ⊂ ∂K, we can assume, with no loss of

generality, that t0 ∈ (a, b]. Hence there is h > 0 such that q(t) ∈ B
ε/2
∂K for all

t ∈ [t0 − h, t0]. Moreover, according to the continuity of t −→ ‖V ′
q(t)‖ in [a, b]

and (V3), with no loss of generality, we can assume that ‖V ′
q(t)‖ ≥ δ/2 in

[t0 − h, t0]. Since Jm is open in [a, b], if in addition t0 ∈ Jm, we can take h in
such a way that [t0 − h, t0] ⊆ Jm. Since τ(J) = 0, with no loss of generality,
we can assume the existence of g0 ∈ L1([a, b], E) with g0(t) ∈ F0(t, q(t)) for
a.a. t ∈ [a, b] such that q′(t) = A(t)q(t) + λg0(t) − p(t)(χJm(t) + 1

m
)φ̂(q(t))

for a.a. t ∈ [a, b]. Consequently, conditions (V1)-(V2) imply that

0 ≤ −V (q(t0 − h)) =
∫ t0

t0−h
V ′

q(t)(q
′(t)) dt

=
∫ t0

t0−h
V ′

q(t)

(

A(t)q(t) + λg0(t) − p(t)(χJm(t) + 1
m

)φ̂(q(t))
)

dt

=
∫

[t0−h,t0]∩Jm

[

V ′
q(t) (A(t)q(t) + λg0(t)) − p(t)(1 + 1

m
)‖V ′

q(t)‖
]

dt

+
∫

[t0−h,t0]\Jm

[

V ′
q(t)

(

A(t)q(t) + λg0(t) −
p(t)‖V ′

q(t)
‖φ(q(t))

m

)]

dt

≤
∫

[t0−h,t0]∩Jm
‖V ′

q(t)‖
(

‖A(t)‖(‖∂K‖ + ε
2
) + ν

B
ε/2
∂K

(t) − p(t)
)

dt

+
∫

[t0−h,t0]\Jm

[

V ′
q(t)

(

A(t)q(t) + λg0(t) −
p(t)‖V ′

q(t)
‖φ(q(t))

m

)]

dt.

Therefore, denoted

Λm =

∫

[t0−h,t0]∩Jm

‖V ′
q(t)‖

(

‖A(t)‖(‖∂K‖ +
ε

2
) + ν

B
ε/2
∂K

(t) − p(t)
)

dt,

and

Γm =

∫

[t0−h,t0]\Jm

[

V ′
q(t)

(

A(t)q(t) + λg0(t) −
p(t)‖V ′

q(t)‖φ(q(t))

m

)]

dt

it holds Γm+Λm ≥ 0. Since t0 ∈ Jm implies [t0−h, t0]\Jm = ∅ and, according
to (14), Λm < 0, it is clear that t0 6∈ Jm. The assumption q(t0) ∈ ∂K,
condition (V4) and the positivity of p(t) on all [a, b] then imply that

V ′
q(t0)

(

A(t0)q(t0) + λw0 −
p(t0)‖V ′

q(t0)
‖φ(q(t0))

m

)

≤
≤ −p(t0)‖V ′

q(t0)
‖

2m
≤ − δp(t0)

2m
< 0

for all w0 ∈ F (t0, q(t0)) and since F is compact valued and the operator
V ′

q(t0) : E → R is continuous, we can find σ > 0 satisfying

V ′
q(t0)

(

A(t0)q(t0) + λw0 −
p(t0)‖V ′

q(t0)‖φ(q(t0))

m

)

≤ −2σ,
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for all w0 ∈ F (t0, q(t0)). In [a, b]\Jm the multimap t ⊸ A(t)q(t)+λF0(t, q(t))−
p(t)‖V ′

q(t)
‖φ(q(t))

m
is u.s.c.; therefore

Φ : [a, b] \ Jm ⊸ R,

t ⊸ {V ′
q(t)

(

A(t)q(t) + λw − p(t)‖V ′

q(t)
‖φ(q(t))

m

)

: w ∈ F0(t, q(t))}

is u.s.c. When h is sufficiently small, we have then Φ(t) ⊂ (−∞,−σ] implying

V ′
q(t)

(

A(t)q(t) + λg0(t) −
p(t)‖V ′

q(t)
‖φ(q(t))

m

)

< 0 on all [t0−h, t0]\Jm. Recalling

(14) we then obtain 0 ≤ Γm + Λm < 0, a contradiction.
Since every problem (Pm), with m sufficiently large, satisfies all the assump-
tions of Theorem 2.3, it has a solution xm such that xm(t) ∈ K for all
t ∈ [a, b].
STEP 3. Conclusions. There exists {fm}m ⊂ L1([a, b], E) with fm(t) ∈
F0(t, xm(t)) for a.a. t ∈ [a, b] such that, when putting hm(t) := fm(t) −
p(t)(χJm(t) + 1

m
)φ̂(xm(t)), we obtain

x′
m(t) = A(t)xm(t) + hm(t), for a.a. t ∈ [a, b] (20)

and
xm(t) = U(t, a) (M − U(b, a))−1 ∫ b

a
U(b, s)hm(s) ds

+
∫ t

a
U(t, s)hm(s) ds.

(21)

If t 6∈ J there is m0, depending on t, satisfying t 6∈ Jm for all m > m0 and
according to (ii) we have that

γ ({hm(t)}m) ≤ g(t)γ ({xm(t)}m)

+γ
(

{p(t)(χJm(t) + 1
m

)φ̂(xm(t)) : m = 1, 2, ..., m0} ∪ {0}
)

≤ g(t) sup
t∈[a,b]

γ ({xm(t)}m) ,

(22)
with supt∈[a,b] γ({xm(t)}m) < +∞ for the boundedness of K. The sequence

{hm}m is integrably bounded; indeed xm(t) ∈ K for all t ∈ [a, b] and m ∈ N

and this yields

‖hm(t)‖ ≤ νK(t) + 2p(t) sup
x∈Bε

∂K

‖φ̂(x)‖, for a.a. t ∈ [a, b].

Consequently, since τ(J) = 0, from (7) and (21) we have that

γ ({xm(t)}m) ≤ D̃ sup
t∈[a,b]

γ ({xm(t)}m) ‖g‖1.
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According to (12) and the definition of D̃, we then obtain that γ ({xm(t)}m) =
0, implying the relative compactness of {xm(t)}m and from (22) also of
{hm(t)} for a.a. t ∈ [a, b]. Moreover it follows that condition (20) implies

‖x′
m(t)‖ ≤ ‖A(t)‖‖K‖ + νK(t) + 2p(t) sup

x∈Bε
∂K

‖φ̂(x)‖

and {x′
m(t)}m is relatively compact for a.a. t ∈ [a, b] and all m ∈ N. Accord-

ing to a classical compactness result (see e.g. [1, Lemma 1.30]) there is x ∈
C([a, b], E) with x′ defined for a.a. t and a subsequence of {xm}m, again de-
noted as the sequence, such that xm → x in C([a, b], E) and x′

m ⇀ x′ weakly
in L1([a, b], E). Since p(t)(χJm(t) + 1

m
)φ̂(xm(t)) → 0, as m → ∞, for a.a. t,

we have that also x′
m + p(t)(χJm(t) + 1

m
)φ̂(xm) ⇀ x′ weakly in L1([a, b], E)

and since x′
m(t) + p(t)(χJm(t) + 1

m
)φ̂(xm(t)) ∈ A(t)xm(t) + F0(t, xm(t)) for

a.a. t ∈ [a, b], we can apply a classical closure theorem (see e.g. [8, Lemma
5.1.1]) to have that x is a solution of (1) with x(t) ∈ K for all t ∈ [a, b] and
the proof is complete.

Remark 3.1 Notice that condition (9) implies the γ− regularity of F required
in assumption (ii) of Theorem 3.1.

The following example deals with an anti-periodic problem in R. Thanks
to its very simple nature we are able to complete all its computations. We
show, in particular, the existence of a unique solution in the interval (−1, 1).
This solution can not be detected either by means of any result in [2] or
by [4, Theorem 3.4]. Indeed, the nonlinearity is not globally u.s.c. and the
required transversality fails to be satisfied here. Instead, according to the
very general transversality condition (V4), the solution can be obtained by
means of Theorem 3.1. The example hence motivates our analysis.

Example 3.1 Consider the antiperiodic value problem

{

x′ = α(t)
√

|x − 1|, t ∈ [0, 1]

x(1) = −x(0)
(23)

where α ∈ L1([0, 1]) satisfies α(t) > 0 for a.a. t and ‖α‖1 < 2
√

2. Problem
(23) can be rewritten as (1) with E = R, A ≡ 0, F (t, x) = α(t)

√

|x − 1| and

M = −I. Define γ(t) =
∫ t

0
α(s)ds. Given c ∈ R, we put tc = 1 if c ≤ −1

2
‖α‖1,

tc equal to the unique solution of the equation 1
2
γ(t)+c = 0 if −1

2
‖α‖1 < c < 0

and tc = 0 if c ≥ 0. It is then easy to prove that all strictly increasing solutions
of the equation in (23) belong to the family of functions xc : R → R defined as
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xc(t) = 1− [1
2
γ(t)+c]2 if t ≤ tc and xc(t) = 1+[1

2
γ(t)+c]2 if t > tc, for some

c ∈ R. Consider the nonempty, open, bounded, convex and symmetric with
respect to the origin subset K = (−1, 1) of R. Then K is neither positively nor
negatively invariant for the equation in (23). In fact, for −1

2
‖α‖1 < c < 0, xc

satisfies xc(0) ∈ K and xc(1) /∈ K, while if −1
2
‖α‖1 −

√
2 < c < −

√
2, xc

satisfies xc(0) /∈ K and xc(1) ∈ K. It is easy to see that problem (23) has
a unique solution which is the function xĉ(t) = 1 − [1

2
γ(t) + ĉ]2, with ĉ =

−‖α‖1+
√

16−‖α‖2
1

4
, and xĉ(t) ∈ K for all t. We remark that it is possible to

detect xĉ by means of Theorem 3.1. In fact, the evolution operator associated
to A is U ≡ I, hence condition (i) holds. Moreover F is a Carathéodory
single valued map, thus it is almost continuous and satisfies (ii) with g ≡ 0.
Consider the function V (x) = |x|2 − 1. Trivially V ′ is Lipschitzian in R

and (V1)-(V2)-(V3) hold for δ = 1. Finally, according to the positivity of
α almost everywhere, V ′

x(λF (t, x)) ≤ 0 for a.a. t, every x = ±1 ∈ ∂K and
λ ∈ (0, 1). On the other hand, it is not possible to apply [2, Theorem 5.2]
to the same aim, since the transversality required there implies the positive
invariance of K, which is not satisfied here. The transversality condition
in [4, Theorem 3.4] is strictly localized on ∂K, but it is not satisifed here
as well. In order to apply such result, in fact, we would need to show that
V ′

1(λF (t, 1)) < 0 for all λ ∈ (0, 1) and a.a. t ∈ [0, 1]. This is not possible
since every C1− function V : R → R satisfies V ′

1(λF (t, 1)) = 0 for a.a. t
and λ ∈ (0, 1).
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sions in Hilbert spaces: sharp existence conditions and applications, J.
Appl. An. 16 (2010), n. 2, 237–258.

[5] R. Bader and W. Kryszewski, On the solution sets of differential in-
clusions and the periodic problem in Banach spaces, Nonlinear Anal. 54
(2003), no. 4, 707–754.

EJQTDE, 2011 No. 47, p. 17



[6] K. Deimling, Multivalued differential equations, W. de Gruyter, Berlin,
(1992).

[7] R.G. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differ-
ential Equations., Lect. Notes in Math. Vol 568, Springer, Berlin, 1977.

[8] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued
Maps and Semilinear Differential Inclusions in Banach Space, W. de
Gruyter, Berlin, (2001).

[9] A. Pazy, Semigroups of linear operators and applications to partial dif-
ferential equations, Applied Mathematical Sciences 44, Springer-Verlag,
New York, (1983).

[10] T. Rzezuchowski, Scorza-Dragoni type theorem for upper semicontinuous
multivalued functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. 28 (1980),
no. 1-2, 61–66.

[11] W. Zygmunt A note concerning the Scorza-Dragoni’s type property of
the compact multivalued multifunction, Rend. Accad. Naz. Sci. XL Mem.
Mat. (5) 13 (1989), n. 1, 31-33.

(Received December 6, 2010)

EJQTDE, 2011 No. 47, p. 18


