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Abstract
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1 Introduction

In this paper we study the following problem

Dα
c x(t) ∈ F (t, x(t)) a.e. ([0, T ]), (1.1)

x(0) − k1x(T ) = c1, x′(0) − k2x
′(T ) = c2, (1.2)

where α ∈ (1, 2], Dα
c is the Caputo fractional derivative of order α, F :

[0, T ] × R → P(R) is a set-valued map and c1, c2, k1, k2 ∈ R, k1, k2 6= 1.
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The present paper is motivated by a recent paper of Ahmad and Ntouyas
([1]) where it is studied problem (1.1)-(1.2) and several existence results for
this problem are obtained using nonlinear alternative of Leray Schauder type
and some suitable theorems of fixed point theory. For motivation, examples
and recent developments on differential inclusions of fractional order (in par-
ticular, for problem (1.1)-(1.2)) we refer the reader to [1] and the references
therein.

The aim of our paper is twofold. On one hand, we show that Filippov’s
ideas ([5]) can be suitably adapted in order to obtain the existence of solutions
for problem (1.1)-(1.2). We recall that for a differential inclusion defined by
a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([5])
consists in proving the existence of a solution starting from a given almost
solution. Moreover, the result provides an estimate between the starting
almost solution and the solution of the differential inclusion.

On the other hand, following the approach in [10] we prove the arcwise
connectedness of the solution set of problem (1.1)-(1.2). The proof is based
on a result ([9, 10]) concerning the arcwise connectedness of the fixed point
set of a class of set-valued contractions.

The paper is organized as follows: in Section 2 we recall some preliminary
facts that we need in the sequel, Section 3 is devoted to the Filippov type
existence theorem and in Section 4 we obtain the arcwise connectedness of
the solution set.

2 Preliminaries

In what follows we denote by I the interval [0, T ], C(I,R) is the Banach space
of all continuous functions from I to R with the norm ||x||C = supt∈I |x(t)|
and L1(I,R) is the Banach space of integrable functions u(.) : I → R en-
dowed with the norm ||u||1 =

∫ T
0 |u(t)|dt.

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff
distance of the closed subsets A,B ⊂ X is defined by

D(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(x,B) = infy∈B d(x, y).

Definition 2.1. ([7]) a) The fractional integral of order α > 0 of a
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Lebesgue integrable function f : (0,∞) → R is defined by

Iαf(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the
(Euler’s) Gamma function defined by Γ(α) =

∫ ∞
0 tα−1e−tdt.

b) The Caputo fractional derivative of order α > 0 of a function f :
[0,∞) → R is defined by

Dα
c f(t) =

1

Γ(n− α)

∫ t

0
(t− s)−α+n−1f (n)(s)ds,

where n = [α] + 1. It is assumed implicitly that f is n times differentiable
whose n-th derivative is absolutely continuous.

We recall (e.g., [7]) that if α > 0 and f ∈ C(I,R) or f ∈ L∞(I,R) then
(Dα

c I
αf)(t) ≡ f(t).

A function x ∈ C(I,R) is called a solution of problem (1.1)-(1.2) if there
exists a function f ∈ L1(I,R) with f(t) ∈ F (t, x(t)), a.e. (I) such that
Dα

c x(t) = f(t) a.e. (I) and conditions (1.2) are satisfied.

Lemma 2.2. For a given integrable function f(.) : [0, T ] → R, the unique
solution of the boundary problem

Dα
c x(t) = f(t) a.e. ([0, T ]), x(0) − k1x(T ) = c1, x′(0) − k2x

′(T ) = c2

is given by

x(t) = Pc(t) +
∫ T

0
G(t, s)f(s)ds,

where, if c = (c1, c2) ∈ R2,

Pc(t) =
c2[k1T + (1 − k1)t]

(k1 − 1)(k2 − 1)
−

c1

k1 − 1
, t ∈ I

and the Green function is given by

G(t, s) =







(k1−1)(t−s)α−1−k1(T−s)α−1

(k1−1)Γ(α)
+ k2[k1T+(1−k1)t](T−s)α−2

(k1−1)(k2−1)Γ(α−1)
, 0 ≤ s ≤ t ≤ T,

−k1(T−s)α−1

(k1−1)Γ(α)
+ k2[k1T+(1−k1)t](T−s)α−2

(k1−1)(k2−1)Γ(α−1)
, 0 ≤ t ≤ s ≤ T.
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For the proof of Lemma 2.2, see [1].
Taking into account the definition of the Green’s function, using the fact

that Γ(α) = (α−1)Γ(α−1) and the inequality |k1T +(1−k1)t| ≤ (1+ |k1|)T
∀ t ∈ I we obtain that

|G(t, s)| ≤
T α−1

Γ(α)
(1 +

|k1|

|k1 − 1|
+

|k2|(1 + |k1|)(α− 1)

|(k1 − 1)(k2 − 1)|
) ∀ t, s ∈ I.

For simplicity we denote M := T α−1

Γ(α)
(1 + |k1|

|k1−1|
+ |k2|(1+|k1|)(α−1)

|(k1−1)(k2−1)|
).

Finally, if a = (a1, a2) ∈ R2 we put ||a|| = |a1| + |a2|.

3 A Filippov type existence result

First we recall a selection result which is a version of the celebrated Kura-
towski and Ryll-Nardzewski selection theorem ([8]).

Lemma 3.1. ([3]) Consider X a separable Banach space, B is the closed
unit ball in X, H : I → P(X) is a set-valued map with nonempty closed
values and g : I → X,L : I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t)∩(g(t)+L(t)B) has a measurable selection.

In the sequel we assume the following conditions on F .

Hypothesis 3.2. i) F : I × R → P(R) has nonempty closed values and
for every x ∈ R F (., x) is measurable.

ii) There exists L ∈ L1(I,R) such that for almost all t ∈ I, F (t, .) is
L(t)-Lipschitz in the sense that

D(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R.

We are now ready to prove the main result of this section.

Theorem 3.3. Assume that Hypothesis 3.2 is satisfied, assume that
M ||L||1 < 1 and let y ∈ C(I,R) be such that there exists q(.) ∈ L1(I,R)
with d(Dα

c y(t), F (t, y(t))) ≤ q(t) a.e. (I). Denote c̃1 = y(0) − k1y(T ), c̃2 =
y′(0) − k2y

′(T ).
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Then there exists x(.) ∈ C(I,R) a solution of problem (1.1)-(1.2) satis-
fying for all t ∈ I

|x(t) − y(t)| ≤
1

1 −M ||L||1
|Pc(t) − Pc̃(t)| +

M

1 −M ||L||1
||q||1. (3.1)

Proof. The set-valued map t→ F (t, y(t)) is measurable with closed values
and the hypothesis that d(Dα

c y(t), F (t, y(t))) ≤ q(t) a.e. (I) is equivalent to

F (t, y(t)) ∩ {Dα
c y(t) + q(t)[−1, 1]} 6= ∅ a.e. (I).

It follows from Lemma 3.1 that there exists a measurable selection f1(t) ∈
F (t, y(t)) a.e. (I) such that

|f1(t) −Dα
c y(t)| ≤ q(t) a.e. (I) (3.2)

Define x1(t) = Pc(t) +
∫ T
0 G(t, s)f1(s)ds and one has

|x1(t) − y(t)| = |Pc(t) − Pc̃(t) +
∫ T
0 G(t, s)(f1(s) −Dα

c y(s))ds| ≤
|Pc(t) − Pc̃(t)| +

∫ T
0 |G(t, s)|q(s)ds ≤ |Pc(t) − Pc̃(t)| +M ||q||1.

We claim that it is enough to construct the sequences xn(.) ∈ C(I,R),
fn(.) ∈ L1(I,R), n ≥ 1 with the following properties

xn(t) = Pc(t) +
∫ T

0
G(t, s)fn(s)ds, t ∈ I, (3.3)

fn(t) ∈ F (t, xn−1(t)) a.e. (I), n ≥ 1, (3.4)

|fn+1(t) − fn(t)| ≤ L(t)|xn(t) − xn−1(t)| a.e. (I), n ≥ 1. (3.5)

If this construction is realized then from (3.2)-(3.5) we have for almost
all t ∈ I

|xn+1(t) − xn(t)| ≤
∫ T

0
|G(t, t1)|.|fn+1(t1) − fn(t1)|dt1 ≤

M

∫ T

0
L(t1)|xn(t1) − xn−1(t1)|dt1 ≤ M

∫ T

0
L(t1)

∫ T

0
|G(t1, t2)|.

|fn(t2) − fn−1(t2)|dt2 ≤M2
∫ T

0
L(t1)

∫ T

0
L(t2)|xn−1(t2) − xn−2(t2)|dt2dt1

≤Mn
∫ T

0
L(t1)

∫ T

0
L(t2)...

∫ T

0
L(tn)|x1(tn) − y(tn)|dtn...dt1 ≤

EJQTDE, 2011 No. 45, p. 5



≤ (M ||L||1)
n(|Pc(t) − Pc̃(t)| +M ||q||1).

Therefore {xn}n∈N is a Cauchy sequence in the Banach space C(I,R),
hence converging uniformly to some x ∈ C(I,R). Therefore, by (3.5), for
almost all t ∈ I, the sequence {fn(t)}n∈N is Cauchy in R. Let f be the
pointwise limit of fn.

Moreover, one has

|xn(t) − y(t)| ≤ |x1(t) − y(t)| +
∑n−1

i=1 |xi+1(t) − xi(t)| ≤ |Pc(t) − Pc̃(t)|

+M ||q||1 +
∑n−1

i=1 (|Pc(t) − Pc̃(t)| +M ||q||1)(M ||L||1)
i = |Pc(t)−Pc̃(t)|+M ||q||1

1−M ||L||1
.

(3.6)
On the other hand, from (3.2), (3.5) and (3.6) we obtain for almost all

t ∈ I

|fn(t) −Dα
c y(t)| ≤

∑n−1
i=1 |fi+1(t) − fi(t)| + |f1(t) −Dα

c y(t)|

≤ L(t) |Pc(t)−Pc̃(t)|+M ||q||1
1−M ||L||1

+ q(t).

Hence the sequence fn is integrably bounded and therefore f ∈ L1(I,R).
Using Lebesque’s dominated convergence theorem and taking the limit in

(3.3), (3.4) we deduce that x is a solution of (1.1). Finally, passing to the
limit in (3.6) we obtained the desired estimate on x.

It remains to construct the sequences xn, fn with the properties in (3.3)-
(3.5). The construction will be done by induction.

Since the first step is already realized, assume that for some N ≥ 1 we
already constructed xn ∈ C(I,R) and fn ∈ L1(I,R), n = 1, 2, ...N satisfying
(3.3),(3.5) for n = 1, 2, ...N and (3.4) for n = 1, 2, ...N − 1. The set-valued
map t → F (t, xN(t)) is measurable. Moreover, the map t → L(t)|xN (t) −
xN−1(t)| is measurable. By the lipschitzianity of F (t, .) we have that for
almost all t ∈ I

F (t, xN(t)) ∩ {fN(t) + L(t)|xN (t) − xN−1(t)|[−1, 1]} 6= ∅.

From Lemma 3.1 there exists a measurable selection fN+1(.) of F (., xN(.))
such that

|fN+1(t) − fN (t)| ≤ L(t)|xN (t) − xN−1(t)| a.e. (I).

We define xN+1 as in (3.3) with n = N +1. Thus fN+1 satisfies (3.4) and
(3.5) and the proof is complete.

EJQTDE, 2011 No. 45, p. 6



Remark 3.4. Several remarks are in order.
i) If k1 = k2 = 0, Theorem 3.3 yields an existence result of Filippov type

for the Cauchy problem associated to fractional differential inclusion (1.1)
ii) A less powerful Filippov type existence result for problem (1.1)-(1.2)

may be obtained using fixed point techniques. More exactly, by applying
the set-valued contraction principle in the space of derivatives of trajectories
instead of the space of solutions (as usual, for example [1]) one may obtain
(see, for example, [4] for this technique) that for any ε > 0 there exists xε(.)
a solution of (1.1)-(1.2) satisfying for all t ∈ I

|xε(t) − y(t)| ≤
1

1 −M ||L||1
|Pc(t) − Pc̃(t)| +

M

1 −M ||L||1
||q||1 + ε. (3.7)

Obviously, the estimation in (3.1) is better than the one in (3.7).
iii) If the assumptions of of Theorem 3.3 are satisfied with y = 0, q = L,

then Theorem 3.3 improves Theorem 3.3 in [1], since in addition our result
provides an a priori estimate of the solution of the form

|x(t)| ≤
1

1 −M ||L||1
|Pc(t)| +

M

1 −M ||L||1
||q||1, ∀t ∈ I. (3.8)

4 Arcwise connectedness of the solution set

In this section we are concerned with the more general problem

Dα
c x(t) ∈ F (t, x(t), H(t, x(t))) a.e. ([0, T ]), (4.1)

x(0) − k1x(T ) = c1, x′(0) − k2x
′(T ) = c2, (4.2)

where F : I ×R × R → P(R) and H : I × R → P(R).
We assume that F and H are closed-valued multifunctions Lipschitzian

with respect to the second variable and F is contractive in the third variable.
Obviously, the right-hand side of the differential inclusion in (4.1) is in general
neither convex nor closed. We prove the arcwise connectedness of the solution
set to (4.1)-(4.2). When F does not depend on the last variable (4.1) reduces
to (1.1) and the result remains valid for problem (1.1)-(1.2).

Let Z be a metric space with the distance dZ . In what follows, when the
product Z = Z1×Z2 of metric spaces Zi, i = 1, 2, is considered, it is assumed
that Z is equipped with the distance dZ((z1, z2), (z

′
1, z

′
2)) =

∑2
i=1 dZi

(zi, z
′
i).
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Let X be a nonempty set and let F : X → P(Z) be a set-valued map
with nonempty closed values. The range of F is the set F (X) = ∪x∈XF (x).
The multifunction F is called Hausdorff continuous if for any x0 ∈ X and
every ǫ > 0 there exists δ > 0 such that x ∈ X, dX(x, x0) < δ implies
DZ(F (x), F (x0)) < ǫ.

Let (T,F , µ) be a finite, positive, nonatomic measure space and let (X,
|.|X) be a Banach space. We recall that a set A ∈ F is called atom of µ if
µ(A) 6= 0 and for any B ∈ F , B ⊂ A one has µ(B) = 0 or µ(B) = µ(A). µ is
called nonatomic measure if F does not contains atoms of µ. For example,
Lebesgue’s measure on a given interval in Rn is a nonatomic measure.

We denote by L1(T,X) the Banach space of all (equivalence classes of)
Bochner integrable functions u : T → X endowed with the norm

|u|L1(T,X) =
∫

T
|u(t)|Xdµ

A nonempty set K ⊂ L1(T,X) is called decomposable if, for every u, v ∈
K and every A ∈ F , one has

χA.u+ χT\A.v ∈ K

where χB, B ∈ F indicates the characteristic function of B.
Next we recall some preliminary results that are the main tools in the

proof of our result.
To simplify the notation we write E in place of L1(T,X).

Lemma 4.1. ([9]) Assume that φ : S × E → P(E) and ψ : S × E ×
E → P(E) are Hausdorff continuous multifunctions with nonempty, closed,
decomposable values, satisfying the following conditions

a) There exists L ∈ [0, 1) such that, for every s ∈ S and every u, u′ ∈ E,

DE(φ(s, u), φ(s, u′)) ≤ L|u− u′|E.

b) There exists M ∈ [0, 1) such that L+M < 1 and for every s ∈ S and
every (u, v), (u′, v′) ∈ E × E,

DE(ψ(s, u, v), ψ(s, u′, v′)) ≤M(|u− u′|E + |v − v′|E).

Set Fix(Γ(s, .)) = {u ∈ E; u ∈ Γ(s, u)}, where Γ(s, u) = ψ(s, u, φ(s, u)),
(s, u) ∈ S ×E. Then
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1) For every s ∈ S the set Fix(Γ(s, .)) is nonempty and arcwise connected.
2) For any si ∈ S, and any ui ∈ Fix(Γ(s, .)), i = 1, ..., p there exists a

continuous function γ : S → E such that γ(s) ∈ Fix(Γ(s, .)) for all s ∈ S

and γ(si) = ui, i = 1, ..., p.

Lemma 4.2. ([9]) Let U : T → P(X) and V : T × X → P(X) be two
nonempty closed-valued multifunctions satisfying the following conditions

a) U is measurable and there exists r ∈ L1(T ) such that DX(U(t), {0}) ≤
r(t) for almost all t ∈ T .

b) The multifunction t→ V (t, x) is measurable for every x ∈ X.
c) The multifunction x→ V (t, x) is Hausdorff continuous for all t ∈ T .
Let v : T → X be a measurable selection from t→ V (t, U(t)).
Then there exists a selection u ∈ L1(T,X) of U(.) such that v(t) ∈

V (t, u(t)), t ∈ T .

Hypothesis 4.3. Let F : I × R2 → P(R) and H : I × R → P(R)
be two set-valued maps with nonempty closed values, satisfying the following
assumptions

i) The set-valued maps t→ F (t, u, v) and t→ H(t, u) are measurable for
all u, v ∈ R.

ii) There exists l ∈ L1(I,R+) such that, for every u, u′ ∈ R,

D(H(t, u), H(t, u′)) ≤ l(t)|u− u′| a.e. (I).

iii) There exist m ∈ L1(I,R+) and θ ∈ [0, 1) such that, for every u, v, u′,
v′ ∈ R,

D(F (t, u, v), F (t, u′, v′)) ≤ m(t)|u− u′| + θ|v − v′| a.e.(I).

iv) There exist f, g ∈ L1(I,R+) such that

d(0, F (t, 0, 0)) ≤ f(t), d(0, H(t, 0)) ≤ g(t) a.e.(I).

For c = (c1, c2) ∈ R2 we denote by S(c) the solution set of (4.1)-(4.2).
In what follows N(t) := max{l(t), m(t)}, t ∈ I.

Theorem 4.4. Assume that Hypothesis 4.3. is satisfied and
2M

∫ T
0 N(s)ds+ θ < 1. Then

1) For every c ∈ R2, the solution set S(c) of (4.1)-(4.2) is nonempty and
arcwise connected in the space C(I,R).
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2) For any ci ∈ R2 and any ui ∈ S(ci), i = 1, ..., p, there exists a contin-
uous function s : R2 → C(I,R) such that s(c) ∈ S(c) for any c ∈ R2 and
s(ci) = ui, i = 1, ..., p.

3) The set S = ∪c∈R2S(c) is arcwise connected in C(I,R).

Proof. 1) For c ∈ R2 and u ∈ L1(I,R), set

uc(t) = Pc(t) +
∫ T

0
G(t, s)u(s)ds, t ∈ I.

We prove that the multifunctions φ : R2 × L1(I,R) → P(L1(I,R)) and
ψ : R2 × L1(I,R) × L1(I,R) → P(L1(I,R)) given by

φ(c, u) = {v ∈ L1(I,R); v(t) ∈ H(t, uc(t)) a.e. (I)},

ψ(c, u, v) = {w ∈ L1(I,R); w(t) ∈ F (t, uc(t), v(t)) a.e. (I)},

c ∈ R2, u, v ∈ L1(I,R) satisfy the hypotheses of Lemma 4.1.
Since uc is measurable and H satisfies Hypothesis 4.3 i) and ii), the mul-

tifunction t → H(t, uc(t)) is measurable and nonempty closed valued, hence
it has a measurable selection. Therefore due to Hypothesis 4.3 iv), the set
φ(c, u) is nonempty. The fact that the set φ(c, u) is closed and decomposable
follows by simple computation. In the same way we obtain that ψ(c, u, v) is
a nonempty closed decomposable set.

Pick (c, u), (c1, u1) ∈ R2 × L1(I,R) and choose v ∈ φ(c, u). For each
ε > 0 there exists v1 ∈ φ(c1, u1) such that, for every t ∈ I, one has

|v(t) − v1(t)| ≤ D(H(t, uc(t)), H(t, uc1(t))) +
ε

T
≤ N(t)[|Pc(t) − Pc1(t)|+

∫ T

0
|G(t, s)|.|u(s)− u1(s)|ds] +

ε

T
.

Hence there exists M0 ≥ 0 such that

||v − v1||1 ≤M0||c− c1||.
∫ T

0
N(t)dt+M

∫ T

0
N(t)dt||u− u1||1 + ε

for any ε > 0.
This implies

dL1(I,R)(v, φ(c1, u1)) ≤ M0||c− c1||.
∫ T

0
N(t)dt+M

∫ T

0
N(t)dt||u− u1||1
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for all v ∈ φ(c, u). Consequently,

DL1(I,R)(φ(c, u), φ(c1, u1)) ≤M0||c−c1||.
∫ T

0
N(t)dt+M

∫ T

0
N(t)dt||u−u1||1

which shows that φ is Hausdorff continuous and satisfies the assumptions of
Lemma 4.1.

Pick (c, u, v), (c1, u1, v1) ∈ R2 × L1(I,R) × L1(I,R) and choose w ∈
ψ(c, u, v). Then, as before, for each ε > 0 there exists w1 ∈ ψ(c1, u1, v1) such
that for every t ∈ I

|w(t) − w1(t)| ≤ D(F (t, uc(t), v(t)), F (t, uc1(t), v1(t))) +
ε

T
≤ N(t)|uc(t)−

uc1(t)| + θ|v(t) − v1(t)| +
ε

T
≤ N(t)[|Pc(t) − Pc1(t)| +

∫ 1

0
||G(t, s)||.|u(s)−

u1(s)|ds] + θ|v(t) − v1(t)| +
ε

T
≤ N(t)[M0||c− c1|| +M ||u− u1||1]

+θ|v(t) − v1(t)| +
ε

T
.

Hence

||w − w1||1 ≤M0||c− c1||.
∫ T

0
N(t)dt+M

∫ T

0
N(t)dt||u− u1||1

+θ||v − v1||1 + ε ≤M0||c− c1||.
∫ T

0
N(t)dt+

(M
∫ T

0
N(t)dt+ θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)) + ε.

As above, we deduce that

DL1(I,R)(ψ(c, u, v), ψ(c1, u1, v1)) ≤M0|c− c1|.
∫ T

0
N(t)dt+

(M
∫ T

0
N(t)dt+ θ)dL1(I,R)×L1(I,R)((u, v), (u1, v1)),

namely, the multifunction ψ is Hausdorff continuous and satisfies the hypoth-
esis of Lemma 4.1.

Define Γ(c, u) = ψ(c, u, φ(c, u)), (c, u) ∈ R2 × L1(I,R). According to
Lemma 4.1, the set Fix(Γ(c, .)) = {u ∈ L1(I,R); u ∈ Γ(c, u)} is nonempty
and arcwise connected in L1(I,R). Moreover, for fixed ci ∈ R2 and vi ∈
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Fix(Γ(ci, .)), i = 1, ..., p, there exists a continuous function γ : R2 → L1(I,
R) such that

γ(c) ∈ Fix(Γ(c, .)), ∀c ∈ R2, (4.3)

γ(ci) = vi, i = 1, ..., p. (4.4)

We shall prove that

Fix(Γ(c, .)) = {u ∈ L1(I,R); u(t) ∈ F (t, uc(t), H(t, uc(t))) a.e. (I)}.
(4.5)

Denote by A(c) the right-hand side of (4.5). If u ∈ Fix(Γ(c, .)) then there
is v ∈ φ(c, v) such that u ∈ ψ(c, u, v). Therefore, v(t) ∈ H(t, uc(t)) and

u(t) ∈ F (t, uc(t), v(t)) ⊂ F (t, uc(t), H(t, uc(t))) a.e. (I),

so that Fix(Γ(c, .)) ⊂ A(c).
Let now u ∈ A(c). By Lemma 4.2, there exists a selection v ∈ L1(I,R)

of the multifunction t→ H(t, uc(t))) satisfying

u(t) ∈ F (t, uc(t), v(t)) a.e. (I).

Hence, v ∈ φ(c, v), u ∈ ψ(c, u, v) and thus u ∈ Γ(c, u), which completes the
proof of (4.5).

We next note that the function T : L1(I,R) → C(I,R),

T (u)(t) :=
∫ T

0
G(t, s)u(s)ds, t ∈ I

is continuous and one has

S(c) = Pc(.) + T (Fix(Γ(c, .))), c ∈ R2. (4.6)

Since Fix(Γ(c, .)) is nonempty and arcwise connected in L1(I,R), the set
S(c) has the same properties in C(I,R).

2) Let ci ∈ R2 and let ui ∈ S(ci), i = 1, ..., p be fixed. By (4.6) there
exists vi ∈ Fix(Γ(ci, .)) such that

ui = Pci
(.) + T (vi), i = 1, ..., p.

If γ : R2 → L1(I,R) is a continuous function satisfying (4.3) and (4.4) we
define, for every c ∈ R,

s(c) = Pc(.) + T (γ(c)).
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Obviously, the function s : R2 → C(I,R) is continuous, s(c) ∈ S(c) for all
c ∈ R2, and

s(ci) = Pci
(.) + T (γ(ci)) = Pci

(.) + T (vi) = ui, i = 1, ..., p.

3) Let u1, u2 ∈ S = ∪c∈R2S(c) and choose ci ∈ R2, i = 1, 2 such that
ui ∈ S(ci), i = 1, 2. From the conclusion of 2) we deduce the existence of
a continuous function s : R2 → C(I,R) satisfying s(ci) = ui, i = 1, 2 and
s(c) ∈ S(c), c ∈ R2. Let h : [0, 1] → R be a continuous mapping such
that h(0) = c1 and h(1) = c2. Then the function s ◦ h : [0, 1] → C(I,R) is
continuous and verifies

s ◦ h(0) = u1, s ◦ h(1) = u2, s ◦ h(τ) ∈ S(h(τ)) ⊂ S, τ ∈ [0, 1].

Remark 4.5. We point out the fact that the results in Theorems 3.3 and
4.4 take care of a fractional differential inclusion with antiperiodic boundary
conditions for c1 = 0, c2 = 0, k1 = −1, k2 = −1 studied in [2].

Example 4.6. Consider the following problem

Dα
c x(t) =

1

2et+1(1 + |x(t)|)
a.e. ([0, T ]), (4.7)

x(0) − k1x(T ) = c1, x′(0) − k2x
′(T ) = c2, (4.8)

where T > 0 is chosen such that MT
e
< 1. In this case F (t, x) = { 1

2et+1(1+|x|)
}.

A straightforward computation shows that L(t) ≡ 1
2e

, d(0, F (t, 0)) = 1
2et+1 ≤

1
2e

.
Since MT

2e
< 1, by Theorem 3.3, we obtain the existence of a solution of

problem (4.7)-(4.8) which, according to (3.8), satisfies

|x(t)| ≤
2e

2e−MT
|Pc(t)| +

MT

2e−MT
∀t ∈ [0, T ].

For every c ∈ R2 denote by S(c) the solution set of (4.7)-(4.8). Since
2MT

2e
< 1, by Theorem 4.4, S(c) is arcwise connected in the space C(I,R).
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