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Abstract. This paper presents a detailed analysis on the dynamics of a delayed two-
coupled oscillator. Linear stability of the model is investigated by analyzing the asso-
ciated characteristic transcendental equation. By means of the equivariant Hopf bifur-
cation theorem, we not only investigate the effect of time delay on the spatio-temporal
patterns of periodic solutions emanating from the trivial equilibrium, but also derive
the formula to determine the direction and stability of Hopf bifurcation. Moreover, we
illustrate our results by numerical simulations.
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1 Introduction

Synchronization phenomena are common in nature (see Nijmeijer and Rodriguez-Angeles
[26] and references therein). An important avenue of study in synchronization focuses on
coupled oscillators. One classical example is the Kuramoto model [22], which assumes full
connectivity of the network. By using a combination of the Lyapunov functional method, ma-
trix inequality techniques and properties of Kronecker product, Alofi et al. [1] investigated a
so-called power-rate synchronization problem for the collective dynamics among genetic os-
cillators with unbounded time-varying delay. Wang et al. [27] investigated the synchronization
of coupled Duffing-type oscillators. By means of the residue harmonic balance method, Xiao
et al. [29] investigated the approximations to the periodic oscillations of the fractional order
van der Pol equation.

The study of the dynamical behavior of oscillating systems is a central issue in physics and
in mathematics. These systems provide basic and general results that found major applications
not only in physics, but also in all the other branches of science. The harmonic oscillator is the
simplest, and more fundamental theoretical model of oscillatory phenomena. Damped and
forced oscillators provide, also, very fundamental results in physics and engineering.

BCorresponding author. Email: shangjguo@hnu.edu.cn

http://www.math.u-szeged.hu/ejqtde/


2 Y. N. P. Marthange, S. Li and S. Guo

In this paper, we study the existence and stability of periodic orbits in a delayed two-
coupled harmonic oscillator modelled by the following system of delay differential equations

üi(t) + ui(t) + εu̇i(t) = ε f (ui+1(t− τ)), (1.1)

where f ∈ C1(R; R) with f (0) = 0, τ ≥ 0 and ε > 0 are constants, and as well as in all
subsequent expressions, the index i is taken to modulo 2, so that, for instance, x3 = x1. We
also assume that each oscillator has no self-feedback and signal transmission is delayed due
to the finite switching speed of oscillator. It can be seen that in system (1.1) the growth rate
of one oscillator depends on the feedback from the other. Such a network has been found in
a variety of neural structures and even in chemistry and electrical engineering. Despite the
low number of units, two-oscillator networks with delay often display the same dynamical
behaviors as large networks and, can thus be used as prototypes for us to understand the
dynamics of large networks with delayed feedback (see, for example, [8, 14–16, 20, 21]).

Here, we emphasize the importance of temporal delays in the coupling between cells, since
in many chemical and biological oscillators (cells coupled via membrane transport of ions),
the time needed for transport of processing of chemical components or signals may be of
considerable length. Since we have symmetric coupling of identical oscillators, (1.1) has the
reflection symmetry of interchange of two oscillators. Although model (1.1) is a little simple,
it allows us to have a depth analysis and then to gain insight into possible mechanisms behind
the observed behavior.

It is easy to see that every continuous ψ = (ψ1, ψ2)T : [−τ, 0] → R2 uniquely determines
a solution uψ = (uψ

1 , uψ
2 )

T : [−τ, ∞) → R2 of (1.1) with uψ|[−τ,0] = ψ. Clearly, if ψ1 = ψ2 then
the uniquely determined solution satisfies uψ

1 = uψ
2 in [−τ, ∞) and can be characterized by the

scalar delay differential equation

ü(t) + u(t) + εu̇(t) = ε f (u(t− τ)), (1.2)

Such solutions are said to be synchronous. Equation (1.2) has been used to model a variety of
other biological and physical phenomena, and studied by many researchers (see, for example,
[24,25]). More precisely, the local stability analysis has been discussed by a lot of investigators
[3–6, 9, 10, 23] and complex dynamics including limit cycles and tori are also obtained by
Campbell [7], Hou and Guo [19], Zhang and Guo [30, 31]. The existence of nonconstant
periodic solutions of (1.2) has been proved in [2].

Our goal in this paper is to study the existence and stability of periodic orbits of (1.1).
The plan for this paper is as follows. In Section 2, we consider the linear stability of the
trivial solution (1.1). Section 3 is devoted to the spatio-temporal patterns of Hopf bifurcated
periodic solutions when the the trivial solution lose its stability. In Section 4, we discuss
the bifurcation direction and stability of periodic solutions emerging from from the trivial
solution. In Section 5, we illustrate our results with some numerical simulations. Finally,
some conclusions are made in Section 6.

2 Properties of bifurcated periodic solutions

Let C([−τ, 0], R2) denote the Banach space of continuous mapping from [−τ, 0] into R2

equipped with the supremum norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)| for φ ∈ C([−τ, 0], R2). In
what follows, if σ ∈ R, A ≥ 0 and x : [σ − 1, σ + A] → R2 is a continuous mapping,
then xt ∈ C([−τ, 0], R2), t ∈ [σ, σ + A], is defined by xt(θ) = x(t + θ) for −τ ≤ θ ≤ 0. For
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any two integers a and b, define N(a) = {a, a + 1, . . . }, N(a, b) = {a, a + 1, . . . , b} when a ≤ b.
N = N(0).

The linearization of (1.1) at the origin leads to

üi(t) + ui(t) + εu̇i(t) = εαui+1(t− τ), i (mod 2). (2.1)

where α = f ′(0). It is well-known that the associated characteristic equation of (2.1) takes the
form

det ∆(τ, λ) = 0,

where the characteristic matrix ∆(τ, λ) is given by

∆(τ, λ) = (λ2 + 1 + ελ)Id− αεMe−λτ, λ ∈ C

with Id denoting the identity matrix and

M =

[
0 1
1 0

]
.

By an easy computation, we have

det ∆(τ, λ) = (λ2 + 1 + ελ)2 − (αε)2e−2λτ.

Hence, by factoring the right side of the above equality, we can obtain

det ∆(τ, λ) = [λ2 + 1 + ελ− εα exp{−λτ}][λ2 + 1 + ελ + εα exp{−λτ}]. (2.2)

Thus, λ ∈ C is a zero of det ∆(τ, λ) if and only if there exists a j ∈ {0, 1} such that

pj(τ, λ) , λ2 + ελ + 1− (−1)jεα exp{−λτ} = 0. (2.3)

We know that ±iω (ω > 0) are a pair of purely imaginary zeros of pj(τ, ·) if and only if ω

satisfies {
1−ω2 = (−1)jεα cos (τω) ,

−ω = (−1)jα sin (τω) .
(2.4)

It follows from (2.4) that
ω4 + (ε2 − 2)ω2 + 1− ε2α2 = 0. (2.5)

The number of positive solutions to (2.5) may be zero, one, or two, which is determined by
the signs of (ε2 + 4α2 − 4) and (ε|α| − 1). In fact, the curves ε2 + 4α2 = 4 and ε|α| = 1 divide
the right half (ε, α)-plane into six regions:

D1 =
{
(ε, α) ∈ R+ ×R : ε2 + 4α2 < 4

}
,

D+
2 =

{
(ε, α) ∈ R+ ×R : εα > 1

}
,

D−2 =
{
(ε, α) ∈ R+ ×R : εα < −1

}
,

D+
3 =

{
(ε, α) ∈ R+ ×R :

√
1− ε2

4
< α <

1
ε

, ε <
√

2

}
,

D−3 =

{
(ε, α) ∈ R+ ×R :

√
1− ε2

4
< −α <

1
ε

, ε <
√

2

}
,

D4 =
{
(ε, α) ∈ R+ ×R : ε2 + 4α2 > 4, ε|α| < 1, ε >

√
2
}

.
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More precisely, equation (2.5) has two positive solutions ω = β± when (ε, α) ∈ D+
3 ∪ D−3 , has

exactly one positive solution ω = ω+ when (ε, α) ∈ D+
2 ∪ D−2 , and has no positive solution

when (ε, α) ∈ D1 ∪ D4, where

β± =

√
1− ε2

2
± ε

√
α2 − 1 +

ε2

4
.

Thus, the Hopf bifurcation values of τ±j,k are given as follows:

τ+
j,k =



1
β+

(arcsin β+

|α| + 2kπ) if (−1)jα ≤ −1,
1

β+
(π − arcsin β+

|α| + 2kπ) if − 1 ≤ (−1)jα < 0,
1

β+
(2π − arcsin β+

|α| + 2kπ) if 0 < (−1)jα ≤ 1,
1

β+
(π + arcsin β+

|α| + 2kπ) if (−1)jα > 1,

τ−j,k =

{
1

β−
(π − arcsin β−

|α| + 2kπ) if (−1)jα < 0,
1

β−
(2π − arcsin β−

|α| + 2kπ) if (−1)jα > 0,

for k ∈N0 and j ∈ {0, 1}. Thus, we have the following results about the zeros of pj(τ, λ).

Lemma 2.1. If (ε, α) ∈ D1 ∪ D4, then for each j and τ ≥ 0, pj(τ, ·) has only zero points λ satisfying
Re λ < 0 and has no purely imaginary zero point.

Proof. It follows from (ε, α) ∈ D1 ∪ D4 that ε|α| < 1. We first notice the fact that there exist
at most a finite number of zeros of pj(τ, λ) in right half-plane for each j ∈ {0, 1}. Indeed, for
any zero λ of pj(τ, λ),

|λ2 + ελ + 1| = ε|α| exp{−τ Re λ}.

This implies that there is a real number η such that all zeros of pj(τ, λ) satisfy Re λ < η.
Clearly, pj(τ, λ) is an entire function. Hence, there can only be a finite number of zeros of
pj(τ, λ) in any compact set. Namely, there exist only a finite number of zeros in any vertical
strip in the complex plane. We can regard λ as the continuous function of τ according to the
implicit function theorem. Notice that

pj(0, λ) = λ2 + ελ + 1− (−1)jεα = 0,

which has exactly two zero points with negative real parts. Recall the fact that all zeros of
pj(τ, λ) are simple and continuously depend on τ, then there exists a critical value τ0 such
that pj(τ, λ) has only zero points with negative real parts if τ ∈ [0, τ0), and that as τ increases
and passes through τ0, the zero points with positive real parts may appear. Thus, pj(τ0, λ)

has a pair of purely imaginary zero points ±iω, where ω > 0 is a solution to (2.5). In view of
(ε, α) ∈ D1 ∪ D4, we see that τ0 = ∞. This completes the proof.

Lemma 2.2. Assume that ε|α| > 1, i.e., (ε, α) ∈ D+
2 ∪ D−2 .

(i) pj(τ, ·) has a pair of simple imaginary zero ±iβ+ at and only at τ = τ+
j,k > 0, k ∈N.

(ii) For each fixed pair (j, k) ∈ {0, 1} ×N0 such that τ+
j,k > 0, there exist δ1

j,k > 0 and C1-mapping
λj,k : (τ+

j,k − δ1
j,k, τ+

j,k + δ1
j,k) → C such that λj,k(τ

+
j,k) = iβ+ and λj,k(τ) is a zero of pj(τ, λ) for

all τ ∈ (τ+
j,k − δ1

j,k, τ+
j,k + δ1

j,k). Moreover, d
dτ Re{λj,k(τ)}|τ=τ+

j,k
> 0.
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(iii) For each fixed (ε, α) ∈ D+
2 , p0(τ, λ) has exactly one zero point with positive real parts when

τ ∈ [0, τ+
0,0), and exactly 2k + 3 zero points with positive real parts τ ∈ (τ+

0,k, τ+
0,k+1); p1(τ, λ)

has only zero points with negative real parts when τ ∈ [0, τ+
1,0), and exactly 2k + 2 zero points

with positive real parts τ ∈ (τ+
1,k, τ+

1,k+1).

(iv) For each fixed (ε, α) ∈ D−2 , p1(τ, λ) has exactly one zero point with positive real parts when
τ ∈ [0, τ+

1,0), and exactly 2k + 3 zero points with positive real parts τ ∈ (τ+
1,k, τ+

1,k+1); p0(τ, λ)

has only zero points with negative real parts when τ ∈ [0, τ+
0,0), and exactly 2k + 2 zero points

with positive real parts τ ∈ (τ+
0,k, τ+

0,k+1).

Proof. (i) Let λ = iv be a zero of pj(τ, λ). Then, we get v = β+, then 1− β2
+= (−1)jεα cos (τβ+)

and β+ = (−1)jα sin (τβ+). Namely, τ = τ+
j,k for some j and k.

(ii) The existence of δ1
j,k and the mapping λj,k follow from the implicit function theorem.

We now differentiate the equality pj(τ, λ) = 0 with respect to τ to get

d
dτ

Re
{

λj,k(τ)
}
|τ+

j,k
= −Re

{
λj,k(τ

+
j,k)(λ

2
j,k(τ

+
j,k)− ελj,k(τ

+
j,k) + 1)

2λj,k(τ
+
j,k)− ε + τ+

j,k(λ
2
j,k(τ

+
j,k)− ελj,k(τ

+
j,k) + 1)

}

=
β2
+(ε

2 + 2β2
+ − 2)[

τ+
j,k(1− β2

+)− ε
]2

+ β2
+(2− ετ+

j,k)
2

=
εβ2

+

√
ε2 + 4α2 − 4[

τ+
j,k(1− β2

+)− ε
]2

+ β2
+(2− ετ+

j,k)
2
> 0.

This completes the proof.
(iii) Using a similar argument as that in the proof of Lemma 2.1, we can regard λ as the

continuous function of τ according to the implicit function theorem. If τ = 0 and (ε, α) ∈ D+
2

(respectively, (ε, α) ∈ D−2 ), then p0(τ, λ) (respectively, p1(τ, λ)) has exactly one zero point
with positive real parts but p1(τ, λ) (respectively, p0(τ, λ)) has only zero points with negative
real parts. Recall the fact that all zeros of pj(τ, λ) are simple and continuously depend on
τ, then there exists a critical value τj,0 such that the number of zero points of pj(τ, λ) with
positive real parts keeps the same if τ ∈ [0, τ0). It follows from conclusions (i) and (ii) that as
τ increases and passes through τ0, only one zero point of pj(τ, λ), denoted by λ∗(τ), varies
from a complex number with a negative real part to a purely imaginary number and then to
a complex number with a positive real part. In fact, the proof of conclusion (i) yields that
τ0 = τ+

j,0 > 0.
We can repeat the same analysis to conclude that there exists next critical value τj,1 such

that the number of zero points of pj(τ, λ) with positive real parts keeps the same if τ ∈
(τ+

j,0, τj,1), and that as τ increases and passes through τj,1, a new zero point of pj(τ, λ) varies
from a complex number with a negative real part to a purely imaginary number and then to
a complex number with a positive real part. Similarly, it follows from the proof of conclusion
(i) that τj,1 = τ+

j,1.

By induction, we can draw the conclusion that the number of zeros of pj(τ, λ) with positive
real parts increases as τ increases. This completes the proof.
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Lemma 2.3. Assume that (ε, α) ∈ D+
3 ∪ D−3 .

(i) pj(τ, ·) has a pair of simple imaginary zeros ±iβ± at and only at τ = τ±j,k > 0, k ∈N.

(ii) For each fixed pair (j, k) ∈ {0, 1} ×N0 such that τ+
j,k > 0, there exist δ1

j,k > 0 and C1-mapping
λj,k : (τ+

j,k − δ1
j,k, τ+

j,k + δ1
j,k) → C such that λj,k(τ

+
j,k) = iβ+ and λj,k(τ) is a zero of pj(τ, λ) for

all τ ∈ (τ+
j,k − δ1

j,k, τ+
j,k + δ1

j,k). Moreover, d
dτ Re{λj,k(τ)}|τ=τ+

j,k
> 0.

(iii) For each fixed pair (j, k) ∈ {0, 1} ×N0 such that τ−j,k > 0, there exist δ1
j,k > 0 and C1-mapping

λj,k : (τ−j,k − δ1
j,k, τ−j,k + δ1

j,k) → C such that λj,k(τ
−
j,k) = iβ− and λj,k(τ) is a zero of pj(τ, λ) for

all τ ∈ (τ−j,k − δ1
j,k, τ−j,k + δ1

j,k). Moreover, d
dτ Re{λj,k(τ)}|τ=τ−j,k

< 0.

(iv) For each fixed j ∈ {0, 1}, there exists a nonnegative integer mj such that pj(τ, λ) has exactly
one pair of zeros with positive real parts when τ+

j,k−1 < τ < τ−j,k−1 with τ±j,−1 = 0, and all zeros
of pj(τ, λ) have negative real parts when τ−j,k−1 < τ < τ+

j,k with τ−j,−1 = 0, k = 0, 1, 2, . . . , mj,
and pj(τ, λ) has only zeros with negative real parts when τ > τ+

0,mj
.

Proof. Using a similar argument as that in the proof of Lemma 2.2, we can prove conclusions
(i)–(iii). We now prove conclusion (iv). First we notice the fact that

τ+
0,0 =

2π − arcsin β+

α

β+
<

2π − arcsin β−
α

β−
= τ−0,0,

when 0 < α ≤ 1, and

τ+
0,0 =

π + arcsin β+

α

β+
<

2π − arcsin β−
α

β−
= τ−0,0,

when α > 1,

τ+
0,0 =

π − arcsin β+

α

β+
<

π − arcsin β−
α

β−
= τ−0,0,

when −1 < α ≤ 0, and

τ+
0,0 =

arcsin β+

α

β+
<

π − arcsin β−
α

β−
= τ−0,0,

when α < −1. Then we have τ+
j,0 < τ−j,0, j = 0, 1. It follows from τ±j,k+1− τ±j,k =

2π
β±

and β+ > β−
that

τ+
j,k+1 − τ+

j,k < τ−j,k+1 − τ−j,k.

Thus, there exists an nonnegative integer mj such that

τ+
j,0 < τ−j,0 < τ+

j,1 < τ−j,1 < · · · < τ+
j,mj

< τ+
j,mj+1 < τ−j,mj

.

Lemma 2.4.

(i) For any fixed (ε, α) ∈ D1 ∪ D4 and τ ≥ 0, all solutions λ to the characteristic equation
det ∆(τ, λ) = 0 satisfy Reλ < 0. Furthermore, no Hopf bifurcation occurs at the origin.

(ii) For any fixed (ε, α) ∈ D+
2 ∪ D−2 and τ ≥ 0, the characteristic equation det ∆(τ, λ) = 0 has at

least one solution λ satisfying Reλ > 0. Furthermore, system (1.1) undergoes Hopf bifurcation
at the origin near τ = τ+

j,k, j ∈ {0, 1}, k ∈N0.
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(iii) For any fixed (ε, α) ∈ D+
3 ∪ D−3 and τ ≥ 0, all solutions λ to the characteristic equation

det ∆(τ, λ) = 0 satisfy Reλ < 0 when τ ∈ [∪m0
k=0(τ

−
0,k−1, τ+

0,k)] ∩ [∪m1
k=0(τ

−
1,k−1, τ+

1,k)]. Further-
more, system (1.1) undergoes Hopf bifurcation at the origin near τ = τ±j,k, j ∈ {0, 1}, k ∈ N0,
where m0 and m1 are given in Lemma 2.3.

It follows from the above lemma that we have the following results on the linear stability
of the equilibrium x∗ = 0 of system (1.1).

Theorem 2.5.

(i) If (ε, α) ∈ D1 ∪ D4 and τ ≥ 0, then the equilibrium x∗ = 0 of system (1.1) is stable for all
τ ≥ 0.

(ii) If (ε, α) ∈ D+
2 ∪ D−2 , then the equilibrium x∗ = 0 of system (1.1) is unstable for all τ ≥ 0.

(iii) If (ε, α) ∈ D+
3 ∪ D−3 , then the equilibrium x∗ = 0 of system (1.1) is stable for all τ ∈

[∪m0
k=0(τ

−
0,k−1, τ+

0,k)] ∩ [∪m1
k=0(τ

−
1,k−1, τ+

1,k)], where m0 and m1 are given in Lemma 2.3.

3 Spatio-temporal patterns of periodic solutions

Throughout this section, we always assume that (ε, α) ∈ D+
2 ∪ D−2 ∪ D+

3 ∪ D−3 . Lemmas 2.2
and 2.3, together with the Hopf theorem (see, pp. 332 in [18]), imply that a Hopf bifurcation
for (1.1) occurs at each τ = τ±j,k > 0. Namely, in every neighborhood of (x∗ = 0, τ∗ = τ±j,k)

there is a unique branch of periodic solutions xj,k(t, τ) with xj,k(t, τ) → 0 as τ → τ±j,k. The

period Pj,k(γ, τ) of xj,k(t, τ) satisfies that Pj,k(γ, τ)→ 2π/β± as τ → τ±j,k.
In what follows, we aim to analyze the spatio-temporal patterns of these bifurcated peri-

odic solutions. It is well-known that the symmetry of a system is important in determining
the patterns of oscillation that it can support. To explore the possible (spatial) symmetry of
the system (1.1), we need to introduce two compact Lie groups. One is the cycle group S1,
the other is Z2, the cyclic group of order 2 (the order of a finite group is the number of the
elements it contains). Clearly, we have

Lemma 3.1. Denote by ρ the generator of the cyclic subgroup Z2. Define the action of Z2 on R2 by

ρ · (x1, x2) = (x2, x1) for all (x1, x2) ∈ R2.

Then system (1.1) is Z2-equivariant.

Proof. Define a mapping F: C([−τ, 0], R2)→ R2 by

(F(φ))i = −φi(0) + εφ̇i(0) + ε f (φi+1(−τ))

for φ ∈ C([−τ, 0], R2) and i (mod 2). Then

(F(ρ · φ))i = − (ρ · φ)i(0) + ε(ρ · φ̇)i(0) + ε f ((ρ · φ)i+1(−τ))

= − φi+1(0) + εφ̇i+1(0) + ε f (φi(−τ))

= (ρ · F(φ))i

for φ ∈ C([−τ, 0], R2) and i (mod 2). Namely, F is Z2-equivariant. This completes the
proof.
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Let ω0 = β±, ω = 2π
ω0

and Pω the Banach space of continuous ω-periodic mappings
x : R→ R2. Z2 × S1 acts on Pω by

(δ, eiθ) · x(t) = δ · x(t + θ), eiθ ∈ S1, x ∈ Pω, δ ∈ Z2,

Let SPω denote the subspace of Pω consisting of all ω-periodic solutions of (1.1) with τ = τj,k.
Then

SPω =
{

x1ε1 + x2ε2 : x1, x2 ∈ R
}

,

where ε1 and ε2 are 2-dimensional vector functions defined on R with the m-th components
defined by ε1

m(t) = cos(ω0t + (m− 1)jπ) and ε2
m(t) = sin(ω0t + (m− 1)jπ) for t ∈ R respec-

tively. Note that for all t ∈ R and m ∈ {1, 2},

(ρ · ε1(t))m = ε1
m+1(t) = cos(ω0t + mjπ)

= cos(ω0t + (m− 1)jπ + jπ)

= ε1
m

(
t +

jπ
ω0

)
,

(ρ · ε2(t))m = ε2
m+1(t) = sin(ω0t + mjπ)

= sin(ω0t + (m− 1)jπ + jπ)

= ε2
m

(
t +

jπ
ω0

)
.

Then we have

ρ · ε1 = ε1
(

t +
j
2

ω

)
, ρ · ε2 = ε2

(
t +

j
2

ω

)
. (3.1)

It has been verified in [28] that, under usual non-resonance and transversality conditions, for
every subgroup Σ ≤ Z2 × S1 such that the Σ-fixed-point subspace of SPω (i.e., Fix(Σ, SPω) =

{x ∈ SPω : γx = x for all γ ∈ Σ}) is of dimension 2, symmetric delay differential equations
has a bifurcation of periodic solutions whose spatial-temporal symmetry can be completely
characterized by Σ.

Here, we consider the following subgroup of Z3× S1 to describe the symmetry of periodic
solution of system (1.1) (see [13] for more details):

Σ = 〈(ρ, e−i j
2 ω)〉.

The two equations in (3.1) imply that the Σ-fixed-point set of SPω is itself, i.e., Fix(Σ, SPω) =

SPω. Thus, the general symmetric local Hopf bifurcation theorem (Theorem 2.1 in [28]) enables
us we obtain the following result on the existence of smooth local Hopf bifurcations of wave
solutions.

Theorem 3.2. Assume that (ε, α) ∈ D+
2 ∪ D−2 ∪ D+

3 ∪ D−3 . Then near each τ±j,k > 0, there exists a
branch of small-amplitude periodic solutions of (1.1) emerging from the trivial solution x = 0. More
precisely, there exist εj,k > 0 and δj,k > 0 such that for each θ ∈ [0, 2π], α ∈ (0, ε

j,k
± ), system (1.1) with

τ = τ±j,k + τ j,k(α, θ) has a periodic solution xj,k = xj,k(t; α, θ) with period ω j,k = ω j,k(α, θ) such that

xj,k
i (t) = xj,k

i+1

(
t− jω j,k

2

)
, i = 0, 1 (3.2)
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xj,k
i (t; α, θ) = α

[
cos θε1

i (t) + sin θε2
i (t)

]
+ o(|α|)

= α cos (ω0t + (i− 1)jπ − θ) + o(|α|)

as α → 0. The mapping (xj,k, τ j,k, ω j,k) : (0, εj,k)× [0, 2π] → C(R, R3)×R×R is continuously
differentiable and

ω j,k(0, θ) =
2π

ω0
, τ j,k(0, θ) = 0.

Furthermore, if |τ− τj,k| < δj,k and |ω− 2π
β j,k
| < δj,k then every ω-periodic solution of (1.1) satisfying

xi(t) = xi+1(t− jω j,k), and supt∈R |x(t)| < δj,k must be given by xj,k(t; α, θ) for some α ∈ (0, εj,k)

and θ ∈ [0, 2π).

We call the above periodic solutions discrete waves. They are also called synchronous oscil-
lations (if j = 0) or phase-locked oscillations (if j 6= 0) as each neuron oscillates just like others
except not necessarily in phase with each other.

4 Properties of bifurcated periodic solutions

Theorem 3.2 means that in every neighborhood of (x∗ = 0, τ∗ = τ±j,k) there is a unique branch
of periodic solutions with the spatio-temporal pattern (3.2). In order to be able to analyze
the Hopf bifurcation in more detail, we compute the reduced system on the center manifold
associated with the pair of conjugate complex, purely imaginary solutions Λ = {iω0,−iω0}
of the characteristic equation, where ω0 = β±. By this reduction we can determine the Hopf
bifurcation direction, i.e., to answer the question of whether the bifurcating branch of peri-
odic solution exists locally for all τ > τ±j,k (supercritical bifurcation) or τ < τ±j,k (subcritical
bifurcation). Throughout this section, we always assume that the function f satisfies

(P1). f ∈ C2(R, R), u f (u) 6= 0 when u 6= 0.

To simplify the presentation, we first note that with the transformation

(w1, w2, w3, w4) = (u1, u̇1, u2, u̇2),

we can rewrite (1.1) as the following system of delay differential equations

ẇ1(t) = w2(t),

ẇ2(t) = − w1(t)− εw2(t) + ε f (w3(t− τ)),

ẇ3(t) = w4(t),

ẇ4(t) = − w3(t)− εw4(t) + ε f (w1(t− τ)).

(4.1)

Recall that the characteristic matrix ∆∗(τ, λ) of the linearization of (4.1) is given by

∆∗(τ, λ) =


λ −1 0 0
1 λ + ε −αεe−λτ 0
0 0 λ −1

−αεe−λτ 0 1 λ + ε

 , λ ∈ C,

then
det ∆∗(τ±j,k,±iω0) = 0
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for all j ∈ {0, 1} and k ∈N0. In particular,

∆∗(τ±j,k, iω0)vj = 0, ∆∗(τ±j,k,−iω0)vj = 0. (4.2)

where vj = (1, iω0, (−1)j, (−1)jiω0)T. According to Theorem 3.2, near each τ = τ±j,k, there ex-
ists a branch of small-amplitude periodic solutions of (4.1) bifurcated from the trivial solution
u = 0. The spatio-temporal pattern of the bifurcated periodic solution takes the form

uj,k
i (t) = uj,k

i+1

(
t− jω

2

)
, i (mod 2),

where ω represents its period and is sufficiently near to 2π/ω0. Our purpose is to compute the
reduced system of (4.1) on the center manifold associated with the pair of conjugate complex,
purely imaginary solutions Λ = {iω0,−iω0} of the characteristic equation.

Let us give the Taylor expansion of the right hand side of (4.1). Then we can rewrite (4.1)
as

ẋ(t) = Lτxt + G(xt, τ) (4.3)

with

Lτ ϕ = (ϕ2(0),−ϕ1(0)− εϕ2(0) + εαϕ3(−τ), ϕ4(0),−ϕ3(0)− εϕ4(0) + εαϕ1(−τ))T

and

G(ϕ, τ) =
ε f ′′(0)

2
(0, ϕ2

3(−τ), 0, ϕ2
1(−τ))T

+
ε f ′′′(0)

6
(0, ϕ3

3(−τ), 0, ϕ3
1(−τ))T + o(|(0, ϕ3

3(−τ), 0, ϕ3
1(−τ))T|)

for all ϕ = (ϕ1, ϕ2, ϕ3, ϕ4)
T ∈ C([−τ±j,k, 0], R4). By the Riesz representation theorem, there

exists an 4× 4 matrix-valued function η(·, τ) : [−τ, 0] → R4 whose components each have
bounded variation and are such that

Lτ ϕ =
∫ 0

−τ
dη(θ, µ)ϕ(θ) for ϕ ∈ C([−τ, 0], R4).

Next, we define for ϕ ∈ C1([−τ, 0], R4),

Aτ ϕ =

{
dϕ/dθ, if θ ∈ [−τ, 0),∫ 0
−τ dη(ξ, τ)ϕ(ξ) = Lτ ϕ, if θ = 0.

(4.4)

Let ϕj(θ) be the eigenvector for Aτ±j,k
associated with iω0; namely,

Aτ±j,k
ϕj(θ) = iω0ϕj(θ). (4.5)

In view of (4.2), we can choose ϕj(θ) = vjeiω0θ for θ ∈ [−τ±j,k, 0]. So, the center space at τ = τ±j,k
and in complex coordinates is X = span{ϕj, ϕj}. Hence, Φ = (ϕj, ϕj) is a basis for the center
space X. The adjoint operator A∗

τ±j,k
is defined by

A∗
τ±j,k

ψ =

−dψ/dξ, if ξ ∈ (0, τ±j,k],∫ 0
−τ±j,k

ψ(−t)dη(t, τ±j,k), if ξ = 0.
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Note that the domains of Aτ±j,k
andA∗

τ±j,k
are C1([−τ±j,k, 0], R4) and C1([0, τ±j,k], R4∗), respectively,

where for convenience in computation we shall allow functions with range C4 instead of R4.
It follows from (4.5) that ±iω0 are also eigenvalues for A∗

τ±j,k
, and there is a nonzero row-vector

function ψ∗j (ξ), ξ ∈ [0, τ±j,k] such that

A∗
τ±j,k

ψj = −iω0ψj.

Then, Ψ = (ψj, ψj)
T is a basis for the adjoint space X∗. In order to construct coordinates to

describe the center manifold Cτ±j,k
near to the origin, we need an inner product as follows:

〈ψ, ϕ〉 = ψ(0)ϕ(0)−
∫ 0

θ=−τ±j,k

∫ θ

ξ=0
ψ(ξ − θ)dη(θ, τ±j,k)ϕ(ξ)dξ (4.6)

for ψ ∈ C([0, τ±j,k], R4∗) and ϕ ∈ C([−τ±j,k, 0], R4). Then, as usual,

〈ψ, Aτ±j,k
ϕ〉 = 〈A∗

τ±j,k
ψ, ϕ〉

for (ϕ, ψ) ∈ Dom(Aτ±j,k
) × Dom(A∗

τ±j,k
). We normalize ψj by the condition 〈ψj, ϕj〉 = 1 and

〈ψj, ϕj〉 = 0. By direct computation, we obtain that

ψj(ξ) = ujeiω0ξ ,

where uj = Dj(−iω0 + ε, 1, (−1)j+1(iω0 − ε), (−1)j) and

Dj =
1
2

[
2iω0 − ε + (−1)jεατ±j,ke−iω0τ±j,k

]−1
.

Let Q = {ϕ ∈ C1([−τ±j,k, 0], R4)) | (Ψ, ϕ) = 0}, then C([−τ±j,k, 0], R4) = X
⊕

Q. So Eq. (4.3) can
be written in the following abstract form

dUt

dt
= AτUt + X0G(Ut, τ), (4.7)

where

X0(θ) =

{
0, θ ∈ [−τ, 0),

Id4, θ = 0.

Then by using the decomposition

Ut = 2 Re{z(t)ϕj}+ yt, z(t) ∈ C, yt ∈ Q1 := Q
⋂

C1([−τ±j,k, 0], R4),

we decompose (4.3) as

ż = iω0z + ujG∗(2 Re{zϕj}+ y, τ),

ẏ = Aτ±j,k
y + [X0 −ΦΨ(0)]G∗(2 Re{zϕj}+ y, τ),

(4.8)

where z ∈ C, y ∈ Q1, and G∗(xt, τ) = Lτxt − Lτ±j,k
xt + G(xt, τ).

As the formulas to be developed for the bifurcation direction and stability are all relative
to τ = τ±j,k only, we set τ = τ±j,k in (4.8) and obtain a center manifold y = W(z, z̄) with the
range in Q. The flow of (4.8) on the center manifold can be written as

Ut = Φ · (z(t), z̄(t))T + W(z(t), z̄(t)),
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where
ż(t) = iω0z(t) + g(j)(z, z̄), (4.9)

with
g(j)(z, z̄) = ujG∗(2Re{zϕj}+ W(z, z̄), τ)

= g(j)
20

z2

2
+ g(j)

11 zz̄ + g(j)
02

z̄2

2
+ g(j)

21
z2z̄
2

+ · · · .

Hence we have
g(j)

20 = [1 + (−1)j]Djε f ′′(0)e−2iω0τ±j,k ,

g(j)
11 = [1 + (−1)j]Djε f ′′(0),

g(j)
02 = [1 + (−1)j]Djε f ′′(0)e−2iω0τ±j,k ,

and

g(j)
21 = (−1)jDjε f ′′′(0)e−iω0τ±j,k

+
1
2

Djε f ′′(0)
[
W20,3(−τ±j,k)e

iω0τ±j,k + 2W11,3(−τ±j,k)e
−iω0τ±j,k

]
+

(−1)j

2
Djε f ′′(0)

[
W20,1(−τ±j,k)e

iω0τ±j,k + 2W11,1(−τ±j,k)e
−iω0τ±j,k

]
.

(4.10)

So in order to compute g(j)
21 , we need to compute W11 = (W11,1, W11,2, W11,3, W11,4) and W20 =

(W20,1, W20,2, W20,3, W20,4).
Since W(z(t), z̄(t)) satisfies

Ẇ = ẋt − ϕj ż(t)− ϕ̄j ˙̄z(t)

= Aτ±j,k
xt + X0G(xt, τ±j,k)− ϕj ż(t)− ϕ̄j ˙̄z(t)

= Aτ±j,k
W + X0G(xt, τ±j,k)− ϕjg(z, z̄)− ϕ̄j ḡ(z, z̄)

= Aτ±j,k
W + H20

z2

2
+ H11zz̄ + H02

z̄2

2
+ · · ·

(4.11)

then by using the chain rule

Ẇ =
∂W(z, z̄)

∂z
ż +

∂W(z, z̄)
∂z̄

˙̄z,

we have {
(2iω0 −Aτn,λ)W20 = H20

−Aτn,λW11 = H11.
(4.12)

Note that

−ϕj(θ)g(z, z̄)− ϕ̄j(θ)ḡ(z, z̄) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · ·

for −τ±j,k ≤ θ < 0, then we have

H20(θ) = −ϕj(θ)g(j)
20 − ϕ̄j(θ)ḡ02,

H11(θ) = −ϕj(θ)g(j)
11 − ϕ̄j(θ)ḡ11

(4.13)
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for −τ±j,k ≤ θ < 0. It follows that

W20(θ) =
ig(j)

20
ω0

ϕj(θ) +
iḡ02

3ω0
ϕ̄j(θ) + Ee2iω0θ , (4.14)

and

W11(θ) = −
ig(j)

11
ω0

ϕj(θ) +
iḡ11

ω0
ϕ̄j(θ) + F. (4.15)

Note that
H20(0) = −[ϕj(0)g(j)

20 + ϕ̄j(0)ḡ02] + ε f ′′(0)e−2iω0τ±j,k(0, 1, 0, 1)T.

It follows from (4.11) and (4.12) and the definition of Aτn,λ that

(2iω0 −Aτ±j,k
)Ee2iω0θ |θ=0 = f ′′(0)e−2iω0τ±j,k(0, 1, 0, 1)T.

Namely,

∆∗(τ±j,k, 2iω0)E = − f ′′(0)e−2iω0τ±j,k(0, 1, 0, 1)T. (4.16)

As we know, 2iωλ is not the eigenvalue of Aτn,λ and hence

E = − f ′′(0)e−2iω0τ±j,k [∆∗(τ±j,k, 2iω0)]
−1(0, 1, 0, 1)T. (4.17)

Similarly, 0 is not the eigenvalue of Aτn,λ and hence

F = − f ′′(0)[∆∗(τ±j,k, 0)]−1(0, 1, 0, 1)T. (4.18)

It is well known that the following quantities determine the direction and stability of
bifurcating periodic orbits (see [11, 12, 17]):

C1(0) =
i

2ω0
(g(j)

11 g(j)
20 − 2|g(j)

11 |
2 −
|g(j)

02 |2
3

) +
g(j)

21
2

,

µ2 = − Re(C1(0))
Re(λ′(τ±j,k))

,

β2 = 2 Re(C1(0)),

T2 = −
Im(C1(0)) + µ2 Im(λ′(τ±j,k))

τ±j,k
.

We have the following results:

(i) µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (respectively, µ2 < 0),
then the bifurcating periodic solutions exist for τ > τ±j,k (respectively, τ < τ±j,k) and the
bifurcation is called forward (respectively, backward);

(ii) β2 determines the stability of bifurcating periodic solutions: the bifurcating periodic so-
lutions are orbitally asymptotically stable (respectively, unstable) on the center manifold
if β2 < 0 (respectively, β2 > 0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period increases (re-
spectively, decreases) if T2 > 0 (respectively, T2 < 0).
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If we further assume the following:

(H). f ′(0) = α, f ′′(0) = 0 and f ′′′(0) 6= 0,

then E = F = 0, g(j)
20 = g(j)

11 = g(j)
02 = 0, and

g(j)
21 = (−1)jDjε f ′′′(0)e−iω0τ±j,k .

Namely, sign Re{g(j)
21 } = sign{ f ′(0) f ′′′(0)}. Therefore, we have the following corollary.

Corollary 4.1. Under the assumption (H), system (1.1) undergoes a Hopf bifurcation at τ = τ±j,k,
j ∈ {0, 1}, k ∈ N0. The direction of Hopf bifurcation is determined by sign{ f ′(0) f ′′′(0)}. More
precisely, the Hopf bifurcation at τ = τ+

j,k is subcritical (respectively, supercritical) if f ′(0) f ′′′(0) > 0
(respectively, < 0), while the Hopf bifurcation at τ = τ−j,k is supercritical (respectively, subcritical) if
f ′(0) f ′′′(0) > 0 (respectively, < 0).

5 Numerical simulations

In this section, we will give some numerical simulations to illustrate our theoretical results.
We consider the following system{

ü0(t) = −u0(t)− εu̇0(t) + ε tanh(u1(t− τ))

ü1(t) = −u1(t)− εu̇1(t) + ε tanh(u0(t− τ)).
(5.1)

It is easy to check that α = 1, β+ = 1 and τ+
j,k = (1.5 + 2k− j)π, j ∈ {0, 1}, k ∈ N0. We

first consider system (5.1) with ε = 3(
√

2− 1). Note that (3(
√

2− 1), 1) ∈ D+
2 . It follows

from Lemmas 2.2 and 2.4 that the trivial equilibrium is unstable and system (5.1) undergoes
Hopf bifurcation at the origin near τ = τ+

j,k, j ∈ {0, 1}, k ∈ N0. If τ = 1.5π, as shown in
Figure 5.1, the trivial equilibrium is unstable and the trajectory starting from sufficiently close
to the trivial equilibrium will be away from a neighborhood of trivial equilibrium.
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Figure 5.1: Simulations of system (5.1) with ε = 3(
√

2− 1) and τ = 1.5π illus-
trate that the trivial equilibrium is unstable.

Consider system (5.1) with ε = 1.5(
√

2− 1). Note that (1.5(
√

2− 1), 1) ∈ D+
3 , β− = 0.7836,

and τ−j,k = 1.2762(1.7134 + 2k− j)π, j ∈ {0, 1}, k ∈N0. It follows from Lemma 2.3 that system
(5.1) undergoes Hopf bifurcation at the origin near τ = τ±j,k, k ∈N0, j ∈ {0, 1}. Note that

τ+
1,0 = 0.5π, τ−1,0 ≈ 0.9104π, τ+

0,0 = 1.5π, τ−0,0 ≈ 2.1866π,

τ+
1,1 = 2.5π, τ−1,1 ≈ 3.4628π, τ+

0,1 = 3.5π, τ−0,1 ≈ 4.7390π.
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Theorem 2.5 means that the trivial equilibrium of system (5.1) with ε = 1.5(
√

2− 1) is stable
when τ ∈ [0, τ+

1,0) ∪ (τ−1,0, τ+
0,0) ∪ (τ−0,0, τ+

1,1) ∪ (τ−1,1, τ+
0,1), and is unstable when τ ∈ (τ+

1,0, τ−1,0) ∪
(τ+

0,0, τ−0,0) ∪ (τ+
1,1, τ−1,1) ∪ (τ+

0,1, τ−0,1). It follows from 0 < 0.3π < τ+
1,0, τ−1,0π < π < τ+

0,0, and
τ+

1,1 < 3π < τ−1,1 that the trivial equilibrium is stable when either τ = 0.3π or τ = π (see
Figure 5.2), but is unstable when τ = 3π (see Figure 5.3). As τ increases and crosses the
critical values τ+

1,0 and τ+
1,1 (respectively, τ+

0,0 and τ+
0,1), the trivial equilibrium loses its stability

and a synchronous (phased-locked) periodic solution bifurcating from the trivial equilibrium,
as depicted in Figures 5.4 and 5.5.
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Figure 5.2: Simulations of system (5.1) with ε = 1.5(
√

2− 1) and (i) τ = 0.3π,
(ii) τ = π illustrate that trivial equilibrium is stable.
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Figure 5.3: Simulations of system (5.1) with ε = 1.5(
√

2− 1) and τ = 3π illus-
trate that trivial equilibrium is unstable.

In what follows, we take f (x) = − tanh(x) and consider the following system{
ü0(t) = −u0(t)− εu̇0(t)− ε tanh(u1(t− τ)),

ü1(t) = −u1(t)− εu̇1(t)− ε tanh(u0(t− τ)).
(5.2)

Now, we have α = f ′(0) = −1, β+ = 1 and τ+
j,k = ( 1

2 + 2k + j)π, j ∈ {0, 1}, k ∈ N0. Consider
system (5.2) with ε = 3(

√
2− 1). Note that (3(

√
2− 1),−1) ∈ D−2 . It follows from Lemmas 2.2

and 2.4 that the trivial equilibrium is unstable and system (5.2) undergoes Hopf bifurcation at
the origin near τ = τ+

j,k, j ∈ {0, 1}, k ∈ N0. Figure 5.6 presents that the trivial equilibrium of
system (5.2) with ε = 3(

√
2− 1) and τ = π is unstable, the trajectory starting from sufficiently

close to the trivial equilibrium will be away from a neighborhood of the trivial equilibrium,
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Figure 5.4: Simulations of system (5.1) with ε = 1.5(
√

2 − 1) and τ = 0.5π

illustrate that trivial equilibrium is unstable.
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Figure 5.5: Simulations of system (5.1) with ε = 1.5(
√

2 − 1) and τ = 3.5π

illustrate that a periodic solution appears via Hopf bifurcation.
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Figure 5.6: Simulations of system (5.2) with ε = 3(
√

2− 1) and τ = π illustrate
that the trivial equilibrium is unstable.

solutions of system (5.2) form some interesting spatial-temporal patterns. In Figure 5.7, we
see a periodic solution emerging from the origin.

Finally, consider system (5.2) with ε = 1.5(
√

2 − 1). Note that (1.5(
√

2 − 1),−1) ∈
D−3 , β− = 0.7836, and τ−j,k = 1.2762(0.7134 + 2k + j)π, j ∈ {0, 1}, k ∈ N0. It follows from
Lemma 2.3 that system (5.2) undergoes Hopf bifurcation at the origin near τ = τ±j,k, k ∈ N0,
j ∈ {0, 1}. Note that

τ+
0,0 = 0.5π, τ−0,0 ≈ 0.9104π, τ+

1,0 = 1.5π, τ−1,0 ≈ 2.1866π,

τ+
0,1 = 2.5π, τ−0,1 ≈ 3.4628π, τ+

1,1 = 3.5π, τ−1,1 ≈ 4.7390π.
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Figure 5.7: Simulations of system (5.2) with ε = 3(
√

2− 1) and τ = 2.5π.

Theorem 2.5 means that the trivial equilibrium of system (5.2) with ε = 1.5(
√

2− 1) is stable
when τ ∈ [0, τ+

0,0) ∪ (τ−0,0, τ+
1,0) ∪ (τ−1,0, τ+

0,1) ∪ (τ−0,1, τ+
1,1), and is unstable when τ ∈ (τ+

0,0, τ−0,0) ∪
(τ+

1,0, τ−1,0) ∪ (τ+
0,1, τ−0,1) ∪ (τ+

1,1, τ−1,1). As shown in Figures 5.8 and 5.9, the trivial equilibrium
is stable when τ = 1.3π and is unstable when τ = 2π. A Hopf bifurcation occurs when
τ = 3.5π, the origin loses its stability and a synchronous periodic solution is bifurcating from
the origin, as depicted in Figure 5.10.
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Figure 5.8: Simulations of system (5.2) with ε = 1.5(
√

2 − 1) and τ = 1.3π

illustrate that trivial equilibrium is stable.
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Figure 5.9: Simulations of system (5.2) with ε = 1.5(
√

2− 1) and τ = 2π illus-
trate that trivial equilibrium is unstable.
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Figure 5.10: Simulations of system (5.2) with ε = 1.5(
√

2 − 1) and τ = 3.5π

illustrate that a periodic solution appears via Hopf bifurcation.

6 Conclusion

The goal of this paper is to study the existence and stability of periodic orbits of delay dif-
ferential equations. To achieve this, a novel model based on a delayed two-coupled harmonic
oscillator is proposed. The local Hopf bifurcations and the spatio-temporal patterns of Hopf
bifurcating periodic orbits are also investigated. Numerical simulations are adopted to vali-
date the theoretical results. By using different suitable parameters and coefficient numbers,
the simulation results reveal that the bifurcating periodic solutions are orbitally asymptotically
stable.
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