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1 Introduction

In the paper [7], Besov generalized spaces of the form

(nj <l‘ (1.1)

1<p<00,1<0 <00 (i=01...,n),I'=(j,...0;), ] 20,1} >01L>0,(j#i=
1,2,...,n), are introduced and studied. In the paper [13], the generalized spaces of Besov—

Morrey type
ﬂ L3l (G A), (1.2)
with the finite norm .
Hf”mn £<ll;l>a/r = 1; ||f“£<zllgr,,y-r(c’)‘) ’ (13)
6! ¥
mt Al K o
" B /ho |a7 (w6,2) D pr,-,a,m dn e
st 6N T ) o BTk 7 ‘

¥ Corresponding author. Emails: aygun.orucova@imm.az (Aygun T. Orujova), aliknajafov@gmail.com (Alik M.
Najafov).


http://www.math.u-szeged.hu/ejqtde/

2 A. M. Najafov and A. T. Orujova

o </a> i T
1Al = IF e %Jc)zsup{ / [H T ] f}, 15)

xeG

where 1 < p' < 0,1 < 6 < oo, m € N", k' € NI, a € [0,1], » € (0,00)", T € [1,00],
I = (li,...,l,’;), l]Q >0, lf > 0, l]i >0, (j#i=1,2,...,n) are introduced, differential and
difference-differential properties of functions from there spaces, determined in n-dimensional
domains and satisfying the flexible horn condition are studied. In the case I = (0,...,0),
I'=(0,...,1;...,0), p=p, =0 space (1.1) coincides with the space Bl »(G) studied in [2],
the space (1 2) coincides with the space B! p,0,0,% (G) studied in [9], wh1le in the case a = 0,
T = oo it coincides with space (1.1). Note that consideration of such a space enables to study
higher order differential equations of general form. In other words, the obtained imbedding
theorems in the form of Sobolev type inequality in spaces (1.1) and (1.2) enable to estimate
higher order generalized derivatives than in the case of spaces B;,Q(G) and B; 0.0, (G).

Example 1.1. Let us consider an equation of the form

()3~|—u()2+u()1+u§y)—|—u3(c)+u—f(x), (1.6)

in our case the solution of this equation is sought in the space LZOO

ﬂL (3:1) ﬂL (14 One can
look for the solution of equation (1.6) in the space W(6 3) (B£623)) but then this solution will
require additional derivatives, in other words, in our case the solution belongs to a wider

class.

In this paper we study the existence, uniqueness and smoothness of one class of higher or-
der partial differential equations. Earlier, a problem of smoothness of another kind equations
was studied in [1,3-6,8,10-12].

Note that in this paper, as in the papers [9,12], unlike the previous papers for |a| = I,
(i=1,2,...,n) f, belongs to a wider class. Furthermore, as in the papers [5,6,8,10-12,14,15]
here the coefficients do not require smoothness.

2 Main results

At first we give two theorems proved in the paper [13].

Theorem 2.1 ([13]). Let the open set G C IR" satisfy the flexible A-horn condition [2], A =
(A, An), A >0, (G=12,...,n),1<p <p<oo,l<b <oo (i=0,1,2,...,0);
v=(v,Vv,..., ), vj > 0 be entire (Gj=12,...,n);

) y>0(j=12...,n)
) vzl (j#ij=12...n), vu<Il(j=ii=12..,n);

(G,\) and

L — 1 _ . 7. <l'>
1 S Tl S Tz S 0o, ¥ = (X, c maX]:].,...,ﬂ T]/f S ﬂ ﬁ 19’&2%1’

:Z l]’)\]—v])\]—()\]—%]a]) <;z_1>:| >0 (121,,1’1)

j=1 P
Then DV : E;l;,a%T (G,A) = Lpp s (G). Precisely, for f € NiZg fl;,a%T (G, A) in the

domain G there exists the generalized derivative DY f, for which the the following inequalities are valid:
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ID*fll,c < ClZT” Il oy (2.1)

p’G’a»{T]
and
||va|| boc < Collfll ﬂ L () (P <p<oo). (2.2)

l bia L,
In particular, y'® = Y [Z;Aj —viAj— (A — %]a]) 21 >0, (i=1,...,n), then D' f is continuous
on G and

sup [D'f (x |<c12Tﬂl°||f||L<lz - (2.3)

xeG le'a,trl

where T is an arbitrary number from (0, min (1, To)], b = (b1, ba, ..., by), bj any numbers and satisfy
the conditions

0<b <1, for u® >0
0<b;<1, for u'® =0, (2.4)
wp (1-a)) 0
0 < b; <u+—, for ' <0
P (A - ay)

but with s replaced by 3, C1 and Cy are constants independent of f, moreover Cy is independent also
of T.

Let v be an n-dimensional vector.

Theorem 2.2 ([13]). Let the conditions of Theorem 2.1 be fulfilled. Then for ' >0 (i = 1,2,...,n)
the derivative DV f satisfies on G the Holder condition in the metrics L, with the exponent o, more
exactly,

HA (’)/’ )DVprG < C Hf”m” L<l’> (G,/\) ”Y|U’ (25)

ph0ha,,T

here o is any number satisfying the inequalities:

0<o<1,  for 0 >1,
Ao

0<o<1,  for®0 =1, (2.6)
)\0
0<co _@ for—<1,
Ao’

where py = min ]/ti (i=12,...,n), Ao =maxA; (j=1,2,...,n), while C is a constant indepen-
dent of f and |7y|.
In particular, if y®* >0 (i=1,2,...,n), then

0.0
sup A (3,6) DF (9] < C ISy o g 1117 @7)
xXe ’9’11VT !

oV satisfies the same conditions that o satisfies, but with ' replaced by u'"°

Let us consider the Dirichlet problem for a higher order partial differential equation, i.e.
consider a problem of the form

Y. D%(aw(x)DPu(x)) = ), D*fu(x), (2.8)
la| <[], |a|<|l’|
“5‘<‘11| i=1,2,...,n

i=1,2,...,n
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DV”’BG = (PV‘Z)G/ (2.9)
where it is assumed that G is a bounded n-dimensional domain with piecewise-smooth
boundary 8G, v = (vy,...,v,), where |v| < |li|, i = 1,2,...,n while & = (ay,..., &),

| =y +a2+...+an, = (B1,...,Bu); aj, Bj > 0 are integer (j = 1,n). We assume that the
coefficients a,5(x) are bounded measurable functions in the domain G, a,5(x) = ag.(x) and
for { € R"

Yo (—D)Magp(x)Eis > Co Y. [&f?,  Co=const >0, (2.10)
la|<[F), <]

BI<Ir| =12
i=1,2,...,n

we also assume that f, € Ly(G), forall &« = (ayq,...,ay).

The function u € N, L2<li>(G) is called a generalized solution of problem (2.8)—(2.9) in
the domain G, if D'u — ¢, € N, Ii2<mi>(G), when |m' +v| < |I'|,(i=1,2,...,n) and for any
function ¢(x) € N, i2<11> (G) the following integral identity is valid:

) /aaﬁ(x)Dﬁu(x)D“ﬂ(x)dx: ‘“‘/fD"‘ (2.11)
la|<pi|, 7C \a\<\ll
1B,
i=1,2,..n

The space N, i2<li>(G) is completion of C°(G) in the metric N, L2<li>(G). Prove that
there exists a unique generalized solution of problems (2.8) and (2.9). Consider for ¢, ¢ €
* o Ly">(G) the bilinear functional

Fg9) = ¥ (-0" [ ap(x)DPp(x) D*p(x)dx
| <|1'],

| \ \l’\
— Ial/wa x)dx — \5\/fﬁD[5¢
|a|<|l’ |ﬁ|<|l’

= 1(¢,9) = (fu ) — (fp, ¢),

where

I(¢/¢) = I( ) - ||¢Hﬂ" L<1’>(G)

The variational problem is stated as follows: it is required to find the function ¢ €
N o L2<ll>(G), I = (I,.... 1), li >0, j=1,...,n are entire, that gives the least value to
the integral F(¢) and is unique. Equation (2.8) is the Euler equation for the considered varia-
tional problem.

F(¢,¢) = F(¢) = 1(¢) — (fa + fp, ¢)

>1(¢)— Y, (=)™ (/ |fa !de+/ D% 2dx>

|a\<\zf
_ a;ﬁ(—l)ﬁ </G |fﬁ|2dx+/c |Dﬁ4>(x)]2dx)

2 19llng 16 = APl 150 () =4 =~
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Then means that F(¢) is lower bounded on N, L2<li>(G). Show that there exists ¢y €
Ny L;"> (G) such that F(¢p) = min vty 15 () EF(¢).
Fix some sequence ¢, € o L5~ (G) such that limy,_c F(¢) = k and let ¢ > 0. Choose
me so that for m > m. and y = 0,1,2,... would hold F(¢u1,) < k+e Then noting
Hpman + om) € NI L5">(G), we have F(w) > k. Further, by direct calculations
we show that I(#2=") < 4¢  From the ellipticity condition (2.10) it follows that

[ cpmHﬂ.n:O Lsi> () < 2,/&. It means that the sequence {¢»} in fundamental in the

(PEﬂ?:o L2<Zi>(G) F(()b) Il’ldeed, let k — min

space Ny Ly (G). Therefore, because of completeness in the space (i, L2<li>(G) there
exists the function ¢ € Ny Ly~ (G) such that limy_co || ¢m — 4)0"0?:0 L (G) = 0. By [7, The-
orem 1], it is proved that |F(¢m) — F(¢o)| < Cllpm — (POHHLO L5 Gy and hence it follows that
k = limy e F(¢m) = F(¢o). Show that the function delivering minimum to the functions
F(¢) in the space '_o L;" > (G) is unique and satisfies

D'ulac = ¢vlac-

Indeed, ¢ € NI, L2<li>(G) and F(¢o) = k, we have:

p—¢o\ 1 1 ¢+ ¢o k k.
0§1<2> _2F(¢)+2F(¢0)—F<2> <s+5-k=0,

I(¢ — o) =0,

then again by the ellipticity condition (2.10), ||¢m 290, hence it follows that

I9n =90l 15
¢ coincides with ¢y as an element of '_, L5~ (G). By Theorem 1 in [7] we have:

o A P I
m— oo, |v| < |lI'| (i=1,2,...,n),as
ID*¢mlac — Pvlacllp,c) = O
m—s oo, [v| < || (i=1,2,...,n), therefore
ID"¢olac — Pvlac |,y = O

lv| < |I|(i = 1,2,...,n). Taking into account the conditions (% F(¢o + Ap)),_, = 0, show
that the function ¢9 € N/, L5'~(G), minimizing the integral F(¢), satisfies the following
equation:

(o, ¢) = (fu ) = 0. (2.12)

Now prove that the function ¢y € N, Ly’ > (G), minimizing the integral F(¢) is the solution
(generalized) of problem (2.8)—(2.9). For that we suppose that lla//g(X) are bounded in absolute
value in the domain G together with its derivatives and the function f, has derivatives be-
longing to the space L,(G). Denote by ©(t) some monotonically decreasing function on the
interval 1 <t < 1, and possessing the following properties:

®<;+o> =1, ©(1-0)=-1;
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o) (; _|_0> =0(1-0)=0 foranys > 0.

The function
{@WL l<i<i,

0, —co<t<3, 1<t<o0

is infinitely differentiable and finite over the whole axis. Let 7 > 0 and G, = {y : p(y, R"\G) >
7}, x be an arbitrary point of domain G and r = p(x,y). Following S. L. Sobolev [16] we

introduce the function
W) =(—)-(—
¥ hy hy |-

For 0 < hy < hy <. Obviously,  is infinitely differentiable finite function with support
of annular domain 4 < r < . Therefore, y € N/ L5">(G), and D®)¢p|s¢ = 0 for any s > 0.
Then from the expression (2. 12) by definition of the generalized derivative it follows that,

/Gw <hr1> $p(x)dx = /Gw <hr2> $(x)dx,
(£) -0 oo (G)) - (). v

The function w (- ) possesses all the properties of a kernel. Then for the function (po (the
solution of the variational problem) we can construct the Sobolev averaging ¢g,(x), i = 1,2
over the ball i;, (i =1,2) centered at the point x:

_ 1 |z — x| .
Pop(x) = ol /n w ( ? ) $o(z)dz, i=1,2.

Then we can rewrite equality (2.12) in the form ¢y, (x) = ¢, (x). Consequently, for h < 5

where

Pon(x) = ¢o(x).

As the average function ¢ (x) is continuous and has any order continuous derivatives,
then ¢o(x) also possesses these properties. Making integration in parts in the equality
I(¢on, ) — (fo, ) = 0, in the limiting case

/ Y, plx ( zx,/%(x)Dﬁ(PO(x)) - D“fa(x)] dx = 0.

| <|1'],

Bl

i=1,2,..n

Hence, by arbitrariness of the function (x) it follows

Yy D (aa,ﬁ(x)p%o(x)) Y D*fu(x).

| <[FF], la|<|FF],
|/3|<|11| i=1,2,..n
i=12,..

Thus the solution of the variational problem from the class N}, L2<li> (G) is also the solu-
tion of problem (2.8)-(2.9) and this solution is unique.
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Assume also that f, € Ly, ..(G) for |a| = |I] (i=1,2,...,n),0<d <1, d=const, b <d,
xo0 € Gy; G4 is a subdomain of the domain G such that

Gy = {x": \x”—x;| >dY, ¥ €9G, j=1,2,...,n},

and
Hb(XO —{x ’ X]0‘>b/\ j=12,.. }

Theorem 2.3. If %' < (A1) (i =1,2,...,n), then any generalized solution of equation (2.8) from
" o Ly">(G) is continuous in G and satisfies the Holder condition in any subdomain compactly
imbedded into G.

Proof. Let at first all a,5(x) = 0, except the ones for which |a| = || = |I'| (i = 1,2,...,n)
and the left hand side equals zero. For any ®(x) € IT,(xp), such that ©® = 1 in the vicinity of
dI1,(xp) any polynomial

P(x)= ) Cux"
la|= \l'|
i=1,2,..

and for arbitrary solution u(x) from the variational principle it follows that

/Hb(xw Z (— 1)|0¢\a,%ﬁ(x)D/g (©(x)(u(x) — P(x))) D* (©(x) (u(x) — P(x))) dx

l2|=11= 1],
i=1,2,...n
E/H : Y. (=1)™Maus(x)DF ((u(x) — P(x))) D* ((u(x) — P(x))) dx
b(x0 )= \m |z'|
=A(u(x)—P( )er(XO))r (2.13)

moreover, 6 (x) =1—[]", w](bef ),x € G, where w; (t) € C* (R) is such that wj () = 1 for
[t| < Z_Af,w]- (t) =0for |t| > 1,0 < wj(t) < 1. It is seen that 6 (x) = 0 in H% (x0) ,0(x)=1
in the vicinity of 0IT,(xo), and the coefficients P (x) are chosen so that

u—mop(x))x*dx = 0.
/(nb<xo>>\(n%<xo>)( p(x)

By means of (2.1) and (2.2) we get

A (u(x) = P(x), Ty (x0))
< A (u(x) = P();T1, (x0) \ (114 (x0)) )
—l—/ Z p2el -2l pe (u(x) — P(x))* dx
% |1x|<|l"|
94 (u(x) = P(x), 1y (x0) \ (T1; (x0) ) ) . (2.14)

As A (u(x) — p(x),G) = A (u(x),G), then in view of (2.14) by induction we get

A <u(x),H2;,k (x0)> < <1 — ;)kA (u(x),IT, (x0)) -
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Let0<(5<2k,C:1—%,then

S o
Alu(), 15 () < () A6 = (3) A6 @)

for any 6 < b, and consequently,

1 2 1
/ [17‘: uzdx] s dn < C/ dbl < 00
0 1T (x0) n 0 plm20

From 0 < ¢ = (sr,a) < 1, it follows that u(x) € Ly, ..1(Gg) C Lo .7 (G;) and from the
condition of Theorem 2.3 it follows that y; > 0, ptjo >0 (i =1,2,...,n), i.e. the conditions of
Theorems 2.1 and 2.2 are fulfilled. Thus, by Theorem 2.1, u(x) is continuous, by Theorem 2.2,
u(x) satisfies the Holder condition on G.

Let a,5 = 0, except 4,4, for which |a| = |f] = |I/|, and the right hand sides of equa-
tion (2.8) be nonzero. Let u;,,, be a generalized solution of this equation in IT; (xp) from

Ny Ly"> (I, (x0)). Existence of such a solution is proved by the functional method. Put in
(2.11) ¥ = uy 5, then from (2.10) we get

/() Y (D )Pdx < Y 12 NSNS / Sadx < ao,
Hb X0

Ja|= ul\ Ja|= \l’l Mp(xo) Ja|= ul My(xo)
i=1,2,.. i=1,2,.. i=1,2,..

if
r= min {2\li|—2\oc|,(%,a)}>0,

|| =1,
i=1,2,...n

here C; and r are independent of u and xy.
Hence it follows that
A (up,, Iy (x0)) < C1b (2.16)

As U = u — uy , is the solution of homogeneous equation (2.8) then the following inequality
is valid for it:

-0
A (1,11 (x0)) < G2 <i> A(u,G). (217)
From inequalities (2.16) and (2.17) we get

A (Ll, Hb (X())) S C3A (ﬁ, Hb (Xo)) + C3A (uh,xO,Hb (x0)>

5\ 5\
S C4 (b> A (l’_l/ G) + CSbr S C6 <b> 7

1 3 1
/ <17g uzdx> i d—q < C/ dbl < 00
0 IT, (x0) n 0 pl—20

Here using Theorems 2.1 and 2.2 we get that u(x) is continuous and satisfies the Holder
condition on Gj.

Finally, we consider equations (2.8) where there are nonzero coefficients at minor deriva-
tives of the solution. Then we take these terms to the right hand side of the equation and in
this case we get the desired result. O

and hence we get
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