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Abstract. In this work we study the pullback dynamics of a class of nonlocal non-
autonomous evolution equations for neural fields in a bounded smooth domain ()
in RN _

oru(t,x) = —u(t,x) + /IRN J(x,y)f(tu(t,y))dy, t > 1, x €Q,

u(t,x) =uc(x), x €Q,

with u(t,x) =0, t > 1, x € RN \Q), where the integrable function J : RN xRN 5 R
is continuously differentiable, [y J(x,¥)dy = [pnJ(x,y)dx = 1 and symmetric ie.,
J(x,y) = J(y,x) for any x,y € RN. Under suitable assumptions on the nonlinearity
f : R? - R, we prove existence, regularity and upper semicontinuity of pullback
attractors for the evolution process associated to this problem.
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1 Introduction

In this paper we study the pullback dynamics for a class of nonlocal non-autonomous evolu-
tion equations generated as continuum limits of computational models of neural fields theory.
In short, neural field equations are tissue level models that describe the spatiotemporal evo-
lution of coarse grained variables such as synaptic or firing rate activity in populations of
neurons, see e.g. [1-3,9,20,21,24,26,28,29].

1.1 Mathematical framework

To better present our results, we first introduce some terminology and notation. Let Q C RY
be a bounded smooth domain modelling the geometric configuration of the network, u :
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R x RN — R a function modelling the mean membrane potential, u(t, x) being the potential of
a patch of tissue located at position x € Q) at timet € Rand f : R x R — R a time dependent
transfer function. Let also the integrable function | : RN x RN — R be the connection
between locations, that is, J(x,y) is the strength, or weight, of the connections of neuronal
activity at location y on the activity of the neuron at location x. The strength of the connection
is supposed to be symmetric, that is J(x,y) = J(y,x), for any x,y € RY. We also adopt a
homogeneous and isotropic assumption for the layer so that, without loss of generality

/]RN J(x,y)dy = /]RN J(x,y)dx = 1.

We say that a neuron at a point x is active at time ¢ if f(t,u(t,x)) > 0.
We thus analyze the following non-autonomous theoretical model for networks of nerve
cells

oru(t,x) = —u(t,x +/ Kf(t,u(t,y)dy, t>1, x € Q),
(e x) = —ult, )+ [ KFCuty)dy -
u(t,x) =ur(x), x € Q,
with the “boundary” condition
u(t,x) =0, t>1, x e RN\Q, (1.2)

where the integral operator with symmetric kernel K is defined by
Ko(x) = [ J(xy)o(y)dy.
RN

for all v € LY(RN).

Also we will assume that f : R> — R is a sufficiently smooth function (some growth
conditions about f are also assumed, as presented along the Section 3).

We are interested in showing existence of the pullback attractor for the evolution process
associated to Cauchy problem (1.1)-(1.2) in an appropriated Banach space, as well as some
of its properties such as regularity and upper semicontinuity with respect to the functional
parameter f.

Our model is a generalization of the one analyzed by many authors, (e.g. [1,9,20,25,27,28]),
which takes the form

() = —u(t, )+ [ Ty ou)(ty)dy,

where the strength of the connection depends only on the distance between cells, that is,
J(x,y) = J(x —y) and the firing rate function is time-independent.

1.2 Outline of the paper

This paper is organized as follows. In Section 2 we recall some definitions from the theory of
evolution process (or non-autonomous dynamical systems).

In Section 3, assuming the growth conditions (3.7), (3.8), (3.11) and (3.14), below for the
nonlinearity f, we prove that (1.1)~(1.2) generates a C! flow in the phase space

X, = {u e LP(RN); u(x) =0, if x € IRN\Q} (1.3)
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with the induced norm, satisfying the “variation of constants formula”

t
e~ (x) +/ e UK F (s, u(s,))(x)ds, xe€Q,
u(t,x) = T
0, x € RN\ Q.
In Section 4, we prove existence of the pullback attractor in X, and establish some regu-
larity properties for it.

Finally, in section 5 we prove the upper semicontinuity of the pullback attractors with
respect to the function f.

2 Functional setting and background results

In this section we recall some definitions from the theory of evolution processes (or infinite-
dimensional non-autonomous dynamical systems); following [7], where full proofs and more
details can be found, (see also [8,15,16,22,23], and references therein).

Definition 2.1. Let X be a complete metric space and d : X x X — R be its metric. An
evolution process in X is a family of maps {S(t,7);t > 7,7 € R} (or simply S(-,-)) from X
into itself with the following properties:

e S(t,t) =1, forallt € R, where I : X — X is the identity map;
e S(t,T) =S(t,5)S(s,T), forall t > s > 1;
e themap {(t,7) € R% t > 1} x X 3 (t,7,x) — S(t,7)x € X is continuous.

Definition 2.2. A globally-defined solution (or simply a global solution) of the evolution
process {S(t,7);t > 7,7 € R} is a function ¢ : R — X such that for all + > T we have
S(t,7)é(t) = ¢(t). A global solution ¢ : R — X of the evolution process {S(t,7);t > 7,7 € R}
is backward-bounded if there is a T € R such that {(¢);t < 7} is a bounded subset of X.

Definition 2.3. The subset B of X pullback absorbs bounded subsets of X at time t € R under
{S(t,T);t > 7,7 € R} if there exists 1) = 1(t, D) with

S(t,T)D CB forany T < 15 < t.

The family {B(t);t € R} of subsets of X pullback absorbs bounded sets if B(t) pullback
absorbs bounded sets in X at time ¢, for each t € R.

Definition 2.4. The subset K of X pullback attracts bounded subsets of X under {S(t,7);
t > 1,7 € R} at time ¢ if, for each bounded subset C of X

lim dist(S(t,7)C,K) =0,

T——00

where dist(+, -) denotes the Hausdorff semi-distance:

disty (A, B) = supinf d(a,b).
acA beB
The family {K(t); t+ € R} of subsets of X pullback attracts bounded subsets of X under
{S(t,7);t > 1,7 € R} if K(t) pullback attracts bounded subsets of X at time ¢ under the
process {S(t,T);t > 1,7 € R}, for each t € R.
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We observe that the Hausdorff semi-distance between A and B, disty (A, B), measures how
far the set A is from being contained in the set B. For example, disty (A, B) = 0 if and only if
A is contained in the closure of the set B.

Now we remember the notion of an w-limit for processes; we will build our pullback
attractor as a union of w-limit sets.

Definition 2.5. The pullback omega-limit set at time t of a subset B of X is defined by

wy(B,t) =) |J S(t,7)B.

s<tt<s

or equivalently,

wy(B,t) := {y € X; there are sequences {7}, T < f, T, — —c0 k — oo,
and {x} in B, such that y = limy_, S(f, Tc)xx }.-

Now, we introduce the central concept of pullback attractor.

Definition 2.6 (Pullback attractor). A family {.A(t); t € R} of compact subsets of X is said to
be the pullback attractor for an evolution process {S(t,7);t > 7,7 € R} if it is invariant with
respect to S(-,-), i.e., S(t, 7). A(t) = A(t) for all t > 7, pullback attracts bounded subsets of X,
and is the minimal family of closed sets with property of pullback attraction, that is, if there
is another family of closed sets {C(t); t € R} which pullback attracts bounded subsets of X,
then A(t) C C(t), for all t € R.

Remark 2.7. The minimality requirement in the Definition 2.6 is an addition with respect to
the theory of attractors for semigroups and is necessary to ensure uniqueness (see [7]). It can
be dropped if we require that J,<; A(T) is bounded for any t € R. In this case, we also have
that each “section” A(t) of the pullback attractor A(-) of S(, -) satisfies

A(t) = {¢(t); ¢ : R — X s a global backwards bounded solution of S(t,7)}.

Definition 2.8. An evolution process {S(t,7);t > 7,7 € R} in a Banach space X is pull-
back asymptotically compact if, for each t € R, each sequence {7 }xen in (—oo, t] such that
T — —oo as k — oo, and each bounded sequence {zy }ren in X with {S(#, T¢)zk bxew bounded,
the sequence {S(f, T¢)zk }kew poOSsesses a convergent subsequence.

Definition 2.9. A family of continuous operators {S(t,7);t > 7,7 € R} (which need not be a
process) is called strongly compact if for each time t and each bounded B C X there exists a
Tg > 0 and a compact set K C X such that S(s,7)B C Kforall T <s <t withs — 7 > Tj.

The following two results will be used to prove the existence of the pullback attractor for
the evolution process generated by (1.1)-(1.2) in the Banach space X, (defined in (1.3)).

Theorem 2.10. Let X be a Banach space and | - |x : X — R be its norm. If an evolution process
{S(t,7);t > 1,7 € R} in X satisfies the properties

S(t,7) =T(t, T)+ U(t,T), t> T,

where U(t, T) is a strongly compact operator and there exists a non-increasing function k : [0, +00) x
[0, +00) — R with k(o,r) — 0as ¢ — +oo, and for all T < t and z € X with |z|x < 1,
|T(t,7)|x < k(t—1,7), then the process {S(t,T); t > T, T € R} is pullback asymptotically compact.
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Proof. See Theorem 2.37, Chapter 2 in [7]. O

Theorem 2.11. If an evolution process {S(t,T);t > T,7 € R} in a Banach space X is strongly
pullback bounded dissipative and pullback asymptotically compact, then {S(t,T);t > 7,7 € R}
possesses a compact pullback attractor { A(t); t € R}. Moreover, the union \J.<; A(T) is bounded for
each t € R, and each “section” A(t) of the pullback attractor is given by

A(t) = wy(B(#), 1),

where {B(t);t € R} is a family of bounded subsets of X which for each t € R pullback attracts
bounded subsets of X at time T, for any T < t.

Proof. See Theorem 2.23, Chapter 2 in [7]. O

The pullback attractor of strongly bounded dissipative process however, is always bounded
in the past. To be more precise, for every ¢t € R the union |J.; A(7) is bounded in X.

3 Well-posedness of the problem

In this section we show the global well-posedness of the problem (1.1)—=(1.2) in an appropriate
Banach space, under suitable growth condition on the nonlinearity f.
Consider, for any 1 < p < oo, the subspace X, of L¥(R") given by

X, = {u e LP(RY); u(x) =0, ifx € IRN\Q}

with the induced norm. The Banach space X, is canonically isometric to LP(Q)) and we
usually identify the two spaces, without further comment. We also use the same notation for
a function in RN and its restriction to Q) for simplicity, wherever we believe the intention is
clear from the context.

In order to obtain well-posedness of (1.1)—(1.2) in X,, we consider the Cauchy problem in
the Banach space X,

du
g Ut F(t,u), t > T, 3.1)
u(T) = Uy,
where the nonlinearity F : R x X, — X, is defined by
Kf(t,u(t,- , ifteR, xeQ,
E(t,u)(x) = f(tu(t-))(x), i X (32)
0, ift € R, x € RN\Q,
where the map K given by
Ko(x) := /]RN J(x,y)v(y)dy (3.3)

is well defined as a bounded linear operator in various function spaces, depending on the
properties assumed for J; for example, with | satisfying the hypotheses from introduction, K
is well defined in X, as shown below.

The following simple estimates will be useful in the sequel.
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Lemma 3.1. Let K be the map defined by (3.3) and ||]||; = sup,cq IJ(x,)[|rq) 1 < 7 < oo If
uell(Q),1<p<oo,then Ku € L®(Q)), and

[Ku(x)| < Tllgllullrqy forallx € Q, (3.4)
where 1 < g < oo is the conjugate exponent of p. Moreover,

1Kl ry < ITlallulley < llullrq)- (3.5)
Ifu € LY(Q), then Ku € LP(Q)), 1 < p < o0, and

[Kullrey < [Tpllull - (3.6)

Proof. Estimate (3.4) follows easily from Holder’s inequality. Estimate (3.5) follows from the
generalized Young's inequality (see [12]). The proof of (3.6) is similar to (3.5), but we include it

here for the sake of completeness. Suppose 1 < p < oo and let g be its the conjugate exponent.
Then, by Holder’s inequality

(| < [, |J<x,y>u<y>%u<y>3|dy]

<[ [ oriawias]” [ [ juwia]
<Vl | [ 1090t ay]

Raising both sides to the p-th power and integrating, we obtain

JIKuGP dx <l | [, [ el iutlaxdy

<l | [, )] [ 1P dxdy]

P
S!Iullzl i oy l17115

< HuHLl T

The inequality (3.6) then follows by taking p-th roots.
The case p = 1 is similar but easier, and the case p = oo is trivial. ]

Definition 3.2. If E is a normed space, and I C R is an interval, we say that a function
F : I x E — E is locally Lipschitz continuous (or simply locally Lipschitz) in the second variable
if, for any (to,x0) € I x E, there exists a constant C and a rectangle R = {(t,x) € I X E

|t —to] < by, ||x — x0|| < b2} such that, if (¢, x) and (¢, y) belong to R, then

IF(t,x) = F(t,y)|| < Cllx =y

Now we prove that the map F, given in (3.2), is well defined under appropriate growth
conditions on f and is locally Lipschitz continuous (see Proposition 3.3).
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Proposition 3.3. Suppose, in addition to the hypotheses of Lemma 3.1, that the function f satisfies the
growth condition

If(t,x)] < Ci()(1+|x|F), forany (t,x) € R xRV, (3.7)
with 1 < p < oo, where C1 : R — R is a locally bounded function. Then the function F given by (3.2)
is well defined in R x X,. If f(t,-) is locally bounded for any t € R, F is well defined in R x L*((2).

Additionally, if f is continuous in the first variable,then F is also continuous in the first variable.
If there exists a strictly positive function C; : R — R such that

F(6) = (L) < Co) A+ x4 |y ) x —yl, forany (x,y) € RY xRY, t € R, (3.8)

then, for any 1 < p < oo the function F is locally Lipschitz continuous in the second variable If p = oo,
this is true if f is locally Lipschitz in the second variable.

Proof. Initially, suppose 1 < p < oo. Let u € LP(Q)). We will use, henceforth, the notation
f(t,u) for the function f(t,u)(x) = f(t,u(x)). We have, for each t € R, from (3.7)

1t )l o) < /Q Cr(B) (1 + |u(x)[P)dx
< a() (101 + 1ullyq) ) -
From estimates (3.6) and (3.9), it follows that
IE(t w)llra) < IKf(Eu)l| )
< GO E W) L)
<Ol (100 + 1l )

(3.9)

showing that F is well defined.
If f(t,x) is also continuous in ¢, then for any (f,u) € R x X, we have

1F (6 u) = F(E+ I o / F(u(x)) — F(t+ I u(x))|dx (3.10)

for a small & € R. From (3.7), the mtegrand is bounded by 2C(1 + |u(x)|?), where C is a
bound for C(t) in a neighborhood of t and goes to 0 as h — 0. Therefore, by Lebesgue’s
dominated convergence theorem, || f(t,u) — f(t + h,u)|/11(q) — 0 as h — 0. Thus

[ECt+h,u) = F(t,u) || o) < IIK(f(tJrh/u) — )l
< TplfCE+Ru) = f(E )l

which goes to 0 as h — 0, proving the continuity of F in t.
Suppose now that

f(tx) = f(ty)] < Co() (1 + [P~ + [y |x —yl,
for some 1 < p < oo, where C; : R — R is a strictly positive function. Then, for u and v
belonging to LF(Q)) we get

1f(tu) = f(E0)[lra) < /Q Co(8) (1 + [ulP " + o]~ |u — o d x

- 1 1
< Cy(t) /0(1+|u|r’—1+\vyv—1)mxy [/Q\u—v]pdxr

< Co(t) _||1||U1(Q) + ([P 1oy + W—le(Q)} 4 —ollrr ()

o [ [
SCAO|ow+nwamfwwwmﬂuu—wmm>
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where g is the conjugate exponent of p.
Using (3.6) once again and the hypothesis on f, it follows that

[E(t,u) = E(£,0) o) < IK(f(Eu) = f(£0) )
< Tllpllf(E ) = f(80) L)

1 v v
< Oy [100F + ey + NollEy | 6 = lur(cr,
showing that F is Lipschitz in bounded sets of L”(Q)) as claimed.

If p = 1, the proof is similar, but simpler. Suppose finally that [|u||;~() < R, [|v][r~(q) < R
and let M be the Lipschitz constant of f in the interval [-R, R] C R. Then

£(tu(x) — F(t,0(x))] < Mu(x) — o(x)|, forany x € O,
and this allows us to conclude that
1 (1) = f(£,0) 2y < Ml[u = 0] 1(r)-
Thus, by (3.5) we have that
IE(tu) = F(t,0)|[1=(0) < IK(f(t, 1) = f(£,0)) || r2(r)
< M|[Jllxl[u = vl[1=(c0),
and this completes the proof. O

From Proposition 3.3, and well known results, it follows that the initial value problem (3.1)
has a unique local solution for any initial condition in X,. For the global existence, we need
the following result (see [18, Theorem 5.6.1]).

Theorem 3.4. Let X be a Banach space, and suppose that G : [ty, +00) x X — X is continuous and
Gt )|l < g(t ([ull),  forall (t,u) € [to, +-00) x X,

where g : [tg, +00) X [0,+00) — [0, 400) is continuous and g(t,r) is non decreasing in r > 0, for
each t € [tg, +o0). Then, if the maximal solution r(t; o, ro) of the scalar initial value problem

I ottr), t>t
{dtg )y 0,
r(to) = ro,

exists throughout [tg, +00), the maximal interval of existence of any solution u(t; to, yo) of the initial

value problem
du =G(tu), t>t
{ Zt 4 7 0’

M(i’o) = Uy,
also contains [ty, +00).

Corollary 3.5. Suppose, in addition to the hypotheses of Proposition 3.3, that f satisfies the dissipative
condition

lim sup f(t%) < ki, (3.11)

|x| =00 |x|
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for some constant ky € R, independent of t. Then the problem (3.1) has a unique globally defined
solution for any initial condition in X, which is given, for t > T, by the “variation of constants
formula”

t
u(t,x) = e Dy (x) —I—/ e (s, u(s, x))ds, t>1, x € RY,
T

that is,

e~ (=7, (x) +/te(t5)Kf(s u(s, ) (x)ds, t>1, xeQ
u(t, x) = T . Sy o= ’ (3.12)

0, t>1, x € RN\ Q.

Proof. From Proposition 3.3, it follows that the right-hand-side of (3.1) is Lipschitz continuous
in bounded sets of X and, therefore, the Cauchy problem (3.1) is well posed in X,, with a
unique local solution u(t, x), given by (3.12) (see [10]).

From condition (3.11) it follows that

|f(t,x)| <ka(t) +ki]x|, forany (tx) € R xRV, (3.13)

where k; : R — R is a continuous and strictly positive function.
If 1 < p < oo, we obtain from (3.5) and (3.13) the following estimate

IKf (8 )y < IFCE ) [[r ()
< k()P + k|l e )
For p = oo, we obtain by the same arguments (or by making p — o0), that
IKf (8 )Ly < ka(8) +Ka [l L= ()
Now defining the function
g [to,00) x Rt — RT, (t,7) — g(t, 1) = |[QYPka(t) + (kg + 1)r

it follows that problem (3.1) satisfies the hypothesis of Theorem 3.4 and the global existence
follows immediately. The variation of constants formula can be verified by direct derivation.
O

The result below can be found in [19].

Proposition 3.6. Let Y and Z be normed linear spaces, F : Y — Z a map and suppose that the
Gateaux derivative of F, DF : Y — L(Y,Z) exists and is continuous at y € Y. Then the Fréchet
derivative F' of F exists and is continuous at y.

Proposition 3.7. Suppose, in addition to the hypotheses of Corollary 3.5 that the function f is contin-
uously differentiable in the second variable and 0, f satisfies the growth condition

102f (t,x)] < C1(t)(1+ |x|P7Y), forany (t,x) € R x RY, (3.14)

if 1 < p < oo. Then F(t,-) is continuously Fréchet differentiable on X, with derivative given by

DF(t, u)o(x) := {é«azf(t,u)v)(x), ii%\ﬂ



10 F D. M. Bezerra, A. L. Pereira and S. H. da Silva

Proof. From a simple computation, using the fact f is continuously differentiable in the second
variable, it follows that the Gateaux’s derivative of F(t,-) is given by

K(o2f (t,u)v)(x), x€Q,

DF(t,u)v(x) := {0 r e RMQ

where (92 f (t,u)v)(x) := 02f (t,u(x)) - v(x). The operator DyF(t, u) is clearly a linear operator
in X,.

Suppose 1 < p < co and g is the conjugate exponent of p. Then, for u € LP(Q2) we have
that

[02f (£, u) ||l Lacq) < {/Q[Cl(t)(1+ \u‘i’l)]qu}q

< C1(t)|Q|% + C1(t) {/Q |u|7"dx}{17
— ) (10l + ul,

= () (100 + ull, @) - (3.15)

From Holder’s inequality and (3.15), it follows that

1 _
192 (t,u) - lla(y < Cr(EYIQIT + ([l o[l (-
Now from estimate (3.6) we concluded that
IDE(t,u) - vllpa) < [K(92f (£, 1)) [ 1)
< G Tllpllozf (¢ u)ol| 1)
1 _
< Ol + ]y 1ol

showing that DF(t,u) is a bounded operator. In the case p = co, we have that |d,f (¢, u)| is
bounded by Cy(t), for each u € L*(Q)). Therefore

102f (£, u)0l[12(0) < Ca(B)[[0]] ()
and thus, from (3.5), we obtain
IDE(t,u) - 0|l o) < [[K(92f (£, u)0) [[1(r)
< [Jllll92f (£, u) ol 1)
< ()l lloll=(q)

showing the boundedness of DF(t,u) also in this case.
Suppose now that u; and u; and v belong to L”(Q)), 1 < p < co. From (3.6) and Holder’s
inequality, it follows that

[(DE(t,u1) = DE(t,u2))vl|r ) < [IK[(92f (8, u1) = 92f (£, u2))0)]l|r ()
< ITlp Nl (02f (1) = 92f (£, u2))ll1(q)
< ITllpll02f (£, u1) = 02 f (£, u2) sy 10l Lo ()
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Thus to prove continuity of the derivative, we only have to show that

102 (8, u1) = 0af (£, u2) || Loy — O

as [|u1 — ual|rr(q) — 0. Now, from the growth condition we obtain

92 (8 12) (x) = Baf (£ u2) ()7 < [Co(D)(2+ |1 (1) + 2 (x) [P~ ))"

and a computation similar to (3.15) above shows that the right-hand side is integrable. The
result then follows from Lebesgue’s convergence theorem.
In the case p = oo, we obtain from (3.5)

[(DE(t, u1) = DE(t, u2) )v[| Lo () < [[K[(02f (£, u1) = 92f (£, u2))0)]|[1(r)
< ITlIl92f (8 ur) = Q2 f (£, ua) | () [0l L ()

and the continuity of DF follows from the continuity of d,f (¢, u).
Therefore, it follows from Proposition 3.6 above that F(t,-) is Fréchet differentiable with
continuous derivative in X,,. O

Remark 3.8. Since, under the hypotheses of the Proposition 3.7 the right-hand side of (3.1) is
continuous in t and C! in the second variable, the process generated by (3.1) in X, is C! with
respect to initial conditions, (see [10] and [13]).

From the results above, we have that, for each t € R and u; € Xp, the unique solution
of (3.1) with initial condition u, exists for all + > 7 and this solution (f,7,x) +— u(t,x) =
u(t; T, x, ur) (defined by (3.12)) gives rise to a family of nonlinear C! flow on X, given by

S(t, T)uc(x) :=u(t, x), t>teR

4 Existence and regularity of the pullback attractor for 1 < p < oo

We prove the existence of a pullback attractor {.A(t);t € R} in X, for the evolution process
{S(t,7);t>1,T€ R} when1 < p < 0.

Lemma 4.1. Suppose that the hypotheses of Proposition 3.7 hold with the constant ki in (3.11) sat-
isfying k1 < 1. Then the ball of LP(Q)), 1 < p < oo, centered at the origin with radius Rs(t)
defined by
1 1
Rs(t) = 1—7k1(1 +0)k2 (1) |27, (4.1)
which we denote by B(0, Rs(t)), where ki and ky are derived from (3.13) and & is any positive constant,
pullback absorbs bounded subsets of X, at time t € R with respect to the process S(-,-) generated

by (3.1).

Proof. If u(t, x) is the solution of (3.1) with initial condition u; then, for 1 < p < oo

c‘lit/n |u(t, x)[Pdx = /QP|M(f/x)|p’1sgn(u(t,x))ut(t,x)dx

4.2)
- —p/0|u|”(t,x)dx+p/ﬂ\u(t,x)\p_lsgn(u(t,x))Kf(t,u(t,x))dx.
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Using Holder’s inequality, estimate (3.5) and condition (3.11), we obtain

/Q lu(t, )P sen(u(t, ) KF (1, u(t, x))dx

<(/, |u<t,x>w<P-1>dx)3 (/, IKf(t,u(t,x))l”dxy

(4.3)
<(/, rutxrpdx) £t (e, sy
_ 1
< e, My (krllett, Moy + k() )
where g is the conjugate exponent of p.
Hence, combining (4.2) with (4.3) we concluded that
d 1 1
i1y < =pllut L o) + Prallut 5 o) + pka(O101 4t )l 1yq)
ka(1)[ 7
= pllu(t, )| T4k 4+
pH ( )HLPQ 1 Hu(t,)HLp(Q)
Lete =1 —ky > 0. Then, while
1
[t Mir@) 2 (1 +0) (k2 2(1)]Q7),
we have
Ty < Pt My (e 1
dep
= —1+5||”(tr‘)||lzp(n)
Therefore, while
1
Ju(t, oy = 1= (14 kel O,
we have
dep
lult My < & T el
_ um R, TH (4.4)

Q)

From this, the result follows easily for 1 < p < oo, and this complete the proof of the lemma.
Ul

Theorem 4.2. In addition to the conditions of Lemma 4.1, suppose that

T2y = sup |9 (x, ) || Loy < oo
xeQ)
Then there exists a pullback attractor { A(t);t € R} for the process {S(t,T);t > T, T € R} generated
by (3.1) in X = LP(Q)) and the ‘section” A(t) of the pullback attractor A(-) of S(-,-) is contained in
the ball centered at the origin with radius Rs(t) defined in (4.1), in L (Q), for any § > 0, t € R and
1< p<oo.
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Proof. We have proved that for each initial value u(7,x) € X and initial time 7 € R, (3.1)
possesses a unique solution, which we now write as

S(t,T)u(t,x) = T(t, T)u(t, x) + U(t, )u(T, x),
where from (3.12) we have that
T(t, T)u(t,x) :=e " Du(t,x),
and ,
U(t, t)u(t, x) := /T e~ =SIKf(s,u(s, x))ds.

Now, using Theorem 2.10 (or Theorem 2.37, Chapter 2 in [7]), we prove that S(-,-) is
pullback asymptotically compact. For this, suppose u € B, where B is a bounded subset of
Xp. We may suppose that B is contained in the ball centered at the origin of radius r > 0.
Then

| T(t, T)ullpiy < e —(t-1), t>T.

From (4.4), we have that |lu(t,-)||r(q) < M, for t > T, where

1
M:max{r 2k2()|0|p} > 0.

Hence, using (3.9), we obtain

1)y < COAQL+ 1] )
< Gi(8)(1Qf + MP).
From estimate (3.6) (applied to J, in the place of ]) it follows that

[0xKf (t, 1)l r ) < ITxllLroy ILF (8 )l 1)
< GO el ) (12 + MP).
Thus, we get

t
J0:U(t, Duliny < [ e oK F(s,u(s, ) (s
< GOl (0] +MP).

Therefore, for t > T and any u € B, the value of ||0,U(t, T)u||1» () is bounded by a constant
(independent of u € B). It follows that U(t, T)u belongs to a ball of W' (Q) for all u € B.
From Sobolev’s Embedding Theorem, it follows that U(f,T) is a compact operator, for any
t>T.

Therefore it follows from Lemma 4.1 and Theorem 2.11 (or Theorem 2.23, Chapter 2 in [7]),
that the pullback attractor {.A(t);t € R} exists and each “section’ A(t) of the pullback attractor
A(-) is the pullback w-limit set of any bounded subset of X, containing the ball centered at
the origin with radius R;, defined in (4.1), for any 6 > 0. From this, since the ball centered at
the origin with radius R; pullback absorbs bounded subsets of Xy, it also follows that the set
A(t) is contained in the ball centered at the origin of radius

(4.5)

1
ka(1)|Qf
1—k
inLP(Q)), forany t € R, 1 < p < oo. d
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Theorem 4.3. Assume the same conditions as in Theorem 4.2. Then there exists a bounded set of
WLP(Q), 1 < p < oo containing the ‘section” A(t) of the pullback attractor A(-) of S(-, ).

Proof. From Theorem 4.2, we obtain that .A(f) is contained in the ball centered at the origin
and radius .
ka2 (8)[Of
1-k
in LP(Q)). Now, if u(t, x) is a solution of (3.1) such that u(7,x) € A(t) for all t € R, then

u(t,x) = /_too e K F (s, u(s, x))ds,

where the equality above is in the sense of L¥ (RYN).
Proceeding as in the proof of the Theorem 4.2 (see estimate (4.5)), we obtain

t
Jute(t, Murcoy < [ e INBKF (s, (5, us(oyds

t
< [ Wl lf s s, Dllxods

< Ci()[xllzr o) (1O + MP),

where now M = w
—M
It follows that A(t) = S(t,T).A(T) is in a bounded set of W7 (Q), as claimed. O

5 Upper semicontinuity of the pullback attractors for1 < p < o0

In this section we will consider a sequence { fu } ,cNu{e} Of nonlinearities, fy : R? — R satisfy-
ing the hypotheses of the Lemma 4.1 with f, being locally Lipschitz continuous in the second
variable with Lipschitz constant L, such that
¢ :=limsup L, < co. (5.1)
n—o00
Let {S,(t,7);t > 7,7 € R} be the sequence of processes associated with the family of prob-
lems

Ottty (t,x) = —uu(t,x) + Kfy(t,u(t,x)), t > 1, x € Q,
(5.2)
un(T,x) = u(x), x € Q,
with
u,(t,x) =0, t>1, xc RN\Q. (5.3)

In this section {A,(t);t € R} denotes the pullback attractor for the process S,(:,-) for
neNU/{co}.

Theorem 5.1. Let { fu },emu(eo} be a sequence of nonlinearities fy : R? — R satisfying the hypotheses
of the Lemma 4.1. Moreover assume that

fu(t,-) converges to fo(t,-) in Xp, as n — 0.

If S, (-, -) denotes the process generates by the problem (5.2)—(5.3) for n € N U {co}. Then we have
that
Su(t, T)ur converges to Seo(t, T)ur in Xp, as n — oo,

uniformly for t € [T, T], forany T > 7.
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Proof. Let T > 7 and u,(t,x) = S,(t, T)uc(x) be the solution of the problem (5.2)-(5.3) for
t € [t,T], given by (3.12). Then

/:e(ts)K(fn(s,un(s,x)) — foo(S, Uoo(s,X)))ds, x €Q,

un(t,x) — oo (£, x) = {
0, x € RN\ Q.

It follows from Jensen’s inequality and (3.5) that

Jin(t, ) = st Mlariy < € MR, n(5,)) = fols (5,0 s
< [ e Il mnls, ) — fols (s, ) s
< [ e I s mnls, 1) — folos (s, ) s
[ I falss(5,) = fos e, D

Let B a bounded subset of X, such that u,(t,-) € B for all n and t € [t, T]. Using (5.1), we
have for n sufficiently large

t
e Ml ma(,2)) = ol s, D s
t
<[ e s, ) = (s Nluppds, (54

Now, for any € > 0, we obtain

/:e“” | fn(5, oo (s, -)) = foo (5, oo, ) [ Locydls <&, (5.5)

if n is sufficiently large.
Combining (5.4) with (5.5) we conclude that

[[1n(t, ) = ttoo (£, ) | Lr(er) < €+€/ s, ) = tteo(s, )iy,
for n sufficiently large and then, by Gronwall’s inequality we get

[un(t, ) — veo(t, )|l o <se
for t € [t, T] and n sulfficiently large. 0

For each value of the parameter n € IN we recall that Su(+,+) is the evolution process
associated to problem (5.2)—(5.3). Now we prove the main result of this section.

Theorem 5.2. Under same hypotheses of Theorem 5.1 the family of pullback attractors { A, (t);t €
R}nENU{oo} is upper-semicontinuous in oo.

Proof. Note that, using the invariance of attractors, for each t > 7, we have

distyy (A, (1), Ao (t))
< distrg (Su(t, T) An(T), Seo(t, T) An (7)) + distir(Seo (£, T) A (T), Seo(t, T) Awo (T))

= sup dist(Sy(t, T)an, Seo(t, T)an) + disty(Seo(t, T)Au(T), A (t))-
ap €A (7)
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For each € > 0, by the Theorem 5.1 there exists n,, € IN such that

sup  dist(S(t, T)an, Seo(t, T)atn) < &,
a,€An(T) 2

for all n > ng,, by the definition of pullback attractor, and Theorem 4.2, there exists n,, € IN
such that

S
~N7
TeR 2

disty (Seo(t, T) An(T), Ass(t)) < disty (Soo(t,l') U An(T),Aoo(t)> <

for all n > ng,, and therefore, for n > max{n,, ne, } we get

distry (A (1), Aw(t)) < .
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