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Abstract

In this paper, we investigate the existence, multiplicity and uniqueness of positive
solutions for the following system of nth-order nonlinear boundary value problems



















u(n)(t) + f(t, u(t), v(t)) = 0, 0 < t < 1,

v(n)(t) + g(t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = u′(0) = . . . = u(n−2)(0) = u(1) = 0,

v(0) = v′(0) = . . . = v(n−2)(0) = v(1) = 0.

Based on a priori estimates achieved by using Jensen’s integral inequality, we use
fixed point index theory to establish our main results. Our assumptions on the non-
linearities are mostly formulated in terms of spectral radii of associated linear integral
operators. In addition, concave and convex functions are utilized to characterize cou-
pling behaviors of f and g, so that we can treat the three cases: the first with both
superlinear, the second with both sublinear, and the last with one superlinear and the
other sublinear.
Key words: Boundary value problem; Positive solution; Fixed point index; Jensen
inequality; Concave and convex function.
MSC(2000): 34B10; 34B18; 34A34; 45G15; 45M20

1 Introduction

In this paper we study the existence, multiplicity and uniqueness of positive solutions for

the following system of nth-order nonlinear boundary value problems























u(n)(t) + f(t, u(t), v(t)) = 0, 0 < t < 1,

v(n)(t) + g(t, u(t), v(t)) = 0, 0 < t < 1,

u(0) = u′(0) = . . . = u(n−2)(0) = u(1) = 0,

v(0) = v′(0) = . . . = v(n−2)(0) = v(1) = 0,

(1.1)
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where n ≥ 2, f, g ∈ C([0, 1] × R
+ × R

+,R+) (R+ := [0,∞)).

The solvability of systems for nonlinear boundary value problems of second order

ordinary differential equations has received a great deal of attention in the literature. For

more details of recent development in the direction, we refer the reader to [1, 5, 10, 14–

18, 21–26, 33, 34, 36, 39, 42] and references cited therein. A considerable number of these

problems can be formulated as systems of integral equations by virtue of some suitable

Green’s functions. Therefore, it seems natural that many authors pay more attention to

the systems for nonlinear integral equations, see for example [2,3,7,12,19,35,41]. Yang [35]

considered the following system of Hammerstein integral equations

{

u(x) =
∫

G
k(x, y)f(y, u(y), v(y))dy,

v(x) =
∫

G
k(x, y)g(y, u(y), v(y))dy.

(1.2)

where G ⊂ R
n is a bounded closed domain, k ∈ C(G × G,R+), and f, g ∈ C(G × R

+ ×

R
+,R+). By using fixed point index theory, he obtained some existence and multiplicity

results of positive solutions for the system (1.2) where assumptions imposed on the non-

linearities f and g are formulated in terms of spectral radii of some related linear integral

operators.

To the best of our knowledge, only a few papers deal with systems with high-order

nonlinear boundary value problems, see for example [4, 6, 11, 13, 20, 27–31, 37, 38, 40, 43].

Based on a priori estimates achieved by Jensen’s integral inequality, we use fixed point

index theory to establish our main results. Our assumptions on the nonlinearities are

mostly formulated in terms of spectral radii of associated linear integral operators. It is

of interest to note that our nonlinearities are allowed to grow in distinct manners. Our

work is motivated by [35], but our main results extend and improve the corresponding

ones in [35].

The remainder of this paper is organized as follows. Section 2 provides some prelimi-

nary results required in the proofs of our main results. Section 3 is devoted to the existence,

multiplicity and uniqueness of the positive solutions for the problem (1.1), respectively.

2 Preliminaries

We can obtain the system (1.1) which is equivalent to the system of nonlinear Hammerstein

integral equations, (see [32])

{

u(t) =
∫ 1
0 G(t, s)f(s, u(s), v(s))ds,

v(t) =
∫ 1
0 G(t, s)g(s, u(s), v(s))ds,

(2.1)
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where

G(t, s) :=
1

(n− 1)!







(1 − s)n−1tn−1, 0 ≤ t ≤ s ≤ 1,

(1 − s)n−1tn−1 − (t− s)n−1, 0 ≤ s ≤ t ≤ 1.
(2.2)

Lemma 2.1( [32]) G(t, s) has the following properties

(i) 0 ≤ G(t, s) ≤ y(s), ∀t, s ∈ [0, 1], where y(s) := s(1−s)n−1

(n−2)! ;

(ii) G(t, s) ≥ γ(t)y(s), ∀t, s ∈ [0, 1], where γ(t) := 1
n−1 min{tn−1, (1 − t)tn−2}.

Combining (i) and (ii), we can easily see

G(t, s) ≥ γ(t)G(τ, s),∀t, s, τ ∈ [0, 1] (2.3)

and γ(t) is positive on [0, 1]. Let

E := C[0, 1], ‖u‖ := max
t∈[0,1]

|u(t)|, P := {u ∈ E : u(t) ≥ 0,∀t ∈ [0, 1]}.

Then (E, ‖ · ‖) is a real Banach space and P a cone on E. We denote Bρ := {u ∈

E : ‖u‖ < ρ} for ρ > 0 in the sequel. The norm on E × E is defined by ‖(u, v)‖ :=

max{‖u‖, ‖v‖}, (u, v) ∈ E×E. Note E×E is a real Banach space under the above norm,

and P × P is a positive cone on E × E. Let

K := max
t,s∈[0,1]

G(t, s) > 0, K1 := max
t∈[0,1]

∫ 1

0
G(t, s)ds > 0.

Define the operators Ai(i = 1, 2) and A by

A1(u, v)(t) :=

∫ 1

0
G(t, s)f(s, u(s), v(s))ds,

A2(u, v)(t) :=

∫ 1

0
G(t, s)g(s, u(s), v(s))ds,

A(u, v)(t) := (A1(u, v), A2(u, v))(t).

Now Ai : P×P → P (i = 1, 2) and A : P×P → P×P are completely continuous operators.

Note that (u, v) ∈ P × P is called a positive solution of (1.1) provided (u, v) ∈ P × P

solves (1.1) and (u, v) 6= 0. Clearly, (u, v) ∈ P × P is a positive solution of (1.1) if and

only if (u, v) ∈ (P × P ) \ {0} is a fixed point of A.

We also denote the linear integral operator L by

(Lu)(t) :=

∫ 1

0
G(t, s)u(s)ds.

Then L : E → E is a completely continuous positive linear operator. We can easily prove

the spectral radius of L, denoted by r(L), is positive. Now the well-known Krein-Rutman
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theorem [9] asserts that there exist two functions ϕ ∈ P \ {0} and ψ ∈ L(0, 1)\{0} with

ψ(x) ≥ 0 for which

∫ 1

0
G(t, s)ϕ(s)ds = r(L)ϕ(t),

∫ 1

0
G(t, s)ψ(t)dt = r(L)ψ(s),

∫ 1

0
ψ(t)dt = 1. (2.4)

Put

P0 :=

{

u ∈ P :

∫ 1

0
ψ(t)u(t)dt ≥ ω‖u‖

}

, (2.5)

where ψ(t) is determined by (2.4) and ω :=
∫ 1
0 γ(t)ψ(t)dt > 0. Clearly, P0 is also a cone

on E. The following is a result that is of vital importance in our proofs and can be proved

as Lemma 4 in [35].

Lemma 2.2 L(P ) ⊂ P0.

Lemma 2.3 ( [8]) Suppose Ω ⊂ E is a bounded open set and A : Ω ∩ P → P is a

completely continuous operator. If there exists u0 ∈ P \{0} such that u−Au 6= νu0,∀ν ≥

0, u ∈ ∂Ω ∩ P , then i(A,Ω ∩ P,P ) = 0.

Lemma 2.4 ( [8]) Let Ω ⊂ E be a bounded open set with 0 ∈ Ω. Suppose A :

Ω∩P → P is a completely continuous operator. If u 6= νAu,∀u ∈ ∂Ω∩P, 0 ≤ ν ≤ 1, then

i(A,Ω ∩ P,P ) = 1.

Lemma 2.5 If p : R
+ → R

+ is concave, then p is nondecreasing. In addition, if there

exist 0 ≤ x1 < x2 such that p(x1) = p(x2), then

p(x) ≡ p(x1) = p(x2),∀x ≥ x1. (2.6)

Moreover, the following inequality holds:

p(a+ b) ≤ p(a) + p(b), ∀a, b ∈ R
+. (2.7)

Proof. For any x2 > x1 ≥ 0, the concavity of p implies

p(x) ≤ p(x2) +
p(x2) − p(x1)

x2 − x1
(x− x2),∀x > x2 (2.8)

and thus p(x1) ≤ p(x2) by nonnegativity of p. In addition, if p(x1) = p(x2), then (2.6)

holds, as is seen from (2.8). The proof of (2.7) can be found in [35, Lemma 5]. The proof

is completed.

Lemma 2.6 Let

w0(t) :=

∫ 1

0
G(t, s)ds =

tn−1 − tn

n!
.

Then for each w ∈ P\{0}, there are positive numbers bw ≥ aw such that

aww0(t) ≤

∫ 1

0
G(t, s)w(s)ds ≤ bww0(t), t ∈ [0, 1].
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Let λ1 := 1
r(L) . We now list our hypotheses.

(H1) There exist p, q ∈ C(R+,R+) such that

(1) p is concave on R
+.

(2) f(t, u, v) ≥ p(v) − c, g(t, u, v) ≥ q(u) − c, ∀(t, u, v) ∈ [0, 1] × R
+ × R

+.

(3) p(Kq(u)) ≥ µ1λ
2
1Ku− c, µ1 > 1,∀u ∈ R

+.

(H2) There exist ξ, η ∈ C(R+,R+) and a sufficiently small constant r > 0 such that

(1) ξ is convex and strictly increasing on R
+.

(2) f(t, u, v) ≤ ξ(v), g(t, u, v) ≤ η(u), ∀(t, u, v) ∈ [0, 1] × [0, r] × [0, r].

(3) ξ(Kη(u)) ≤ µ2Kλ
2
1u, µ2 < 1,∀u ∈ [0, r].

(H3) There exist p, q ∈ C(R+,R+) and a sufficiently small constant r > 0 such that

(1) p is concave on R
+.

(2) f(t, u, v) ≥ p(v), g(t, u, v) ≥ q(u), ∀(t, u, v) ∈ [0, 1] × [0, r] × [0, r].

(3) p(Kq(u)) ≥ µ3Kλ
2
1u, µ3 > 1,∀u ∈ [0, r].

(H4) There exist ξ, η ∈ C(R+,R+) such that

(1) ξ is convex and strictly increasing on R
+.

(2) f(t, u, v) ≤ ξ(v), g(t, u, v) ≤ η(u), ∀(t, u, v) ∈ [0, 1] × R
+ × R

+.

(3) ξ(Kη(u)) ≤ µ4Kλ
2
1u+ c, µ4 < 1,∀u ∈ R

+.

(H5) There is N > 0 such that the inequalities f(t, u, v) < N
K1
, g(t, u, v) < N

K1
hold

whenever u, v ∈ [0, N ] and t ∈ [0, 1].

(H6) There are ρ > 0 and σ ∈ (0, 1
2) such that the inequality f(t, u, v) > 2n−1(n+1)!

n−1 ρ,

g(t, u, v) >
2n−1(n+1)!

n−1 ρ hold whenever u, v ∈ [θρ, ρ] and t ∈ [σ, 1 − σ], where θ =

min{γ(σ), γ(1 − σ)}.

(H7) f(t, u, v) and g(t, u, v) are increasing in u, v, that is, the inequalities f(t, u1, v1) ≤

f(t, u2, v2) and g(t, u1, v1) ≤ g(t, u2, v2) hold for (u1, v1) ∈ R
+ and (u2, v2) ∈ R

+ satisfying

u1 ≤ u2 and v1 ≤ v2.

(H8) f(t, λu, λv) > λf(t, u, v) and g(t, λu, λv) > λg(t, u, v) for each λ ∈ (0, 1), u, v ∈

R
+, and t ∈ [0, 1].

3 Main Results

We adopt the convention in the sequel that c1, c2, . . . stand for different positive constants.

Theorem 3.1 Suppose that (H1), (H2) are satisfied, then (1.1) has at least one positive

solution.
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Proof. By (2) of (H1) and the definition of Ai (i = 1, 2), we have

A1(u, v)(t) ≥

∫ 1

0
G(t, s)p(v(s))ds − c1, A2(u, v)(t) ≥

∫ 1

0
G(t, s)q(u(s))ds − c1, (3.1)

for all (t, u, v) ∈ [0, 1] × R
+ × R

+. We claim the set

M1 := {(u, v) ∈ P × P : (u, v) = A(u, v) + ν(ϕ,ϕ), ν ≥ 0} (3.2)

is bounded, where ϕ is defined by (2.4). Indeed, if (u, v) ∈ M1, then u ≥ A1(u, v) and

v ≥ A2(u, v). In view of (3.1), we get

u(t) ≥

∫ 1

0
G(t, s)p(v(s))ds − c1, v(t) ≥

∫ 1

0
G(t, s)q(u(s))ds − c1. (3.3)

By the concavity of p and the second inequality of (3.3), together with Jensen’s inequality,

we obtain

p(v(t)) ≥ p(v(t) + c1) − p(c1) ≥ p

(
∫ 1

0
G(t, s)q(u(s))ds

)

− p(c1)

≥

∫ 1

0
p(G(t, s)q(u(s)))ds − p(c1) ≥ K−1

∫ 1

0
G(t, s)p(Kq(u(s)))ds − p(c1).

(3.4)

Substitute this into the first inequality of (3.3) and use (3) of (H1) to obtain

u(t) ≥

∫ 1

0
G(t, s)

[

K−1

∫ 1

0
G(s, τ)

[

µ1λ
2
1Ku(τ) − c

]

dτ − p(c1)

]

ds− c1

≥ µ1λ
2
1

∫ 1

0

∫ 1

0
G(t, s)G(s, τ)u(τ)dτds − c2.

Multiply both sides of the above by ψ(t) and integrate over [0,1] and use (2.4) to obtain

∫ 1

0
u(t)ψ(t)dt ≥ µ1

∫ 1

0
u(t)ψ(t)dt− c2.

Consequently,
∫ 1
0 u(t)ψ(t)dt ≤ c2

µ1−1 . By Lemma 2.2 and (2.5), we obtain

‖u‖ ≤
c2

ω(µ1 − 1)
,∀(u, v) ∈ M1. (3.5)

Multiply both sides of the first inequality of (3.3) by ψ(t) and integrate over [0,1] and use

(2.4) to obtain

‖u‖ ≥

∫ 1

0
u(t)ψ(t)dt ≥ λ−1

1

∫ 1

0
p(v(t))ψ(t)dt − c1.

Therefore,
∫ 1
0 p(v(t))ψ(t)dt ≤ λ1(‖u‖ + c1). Without loss of generality, we may assume

v 6≡ 0, then ‖v‖ > 0. From (2.5), we obtain

‖v‖ ≤
1

ω

∫ 1

0
v(t)ψ(t)dt ≤

‖v‖

ωp(‖v‖)

∫ 1

0
ψ(t)

v(t)

‖v‖
p(‖v‖)dt ≤

‖v‖

ωp(‖v‖)

∫ 1

0
ψ(t)p(v(t))dt.
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Consequently,

p(‖v‖) ≤
1

ω

∫ 1

0
ψ(t)p(v(t))dt ≤ λ1ω

−1(‖u‖ + c1).

By (3) of (H1), we have limz→∞ p(z) = ∞, and thus there exists c3 > 0 such that ‖v‖ ≤

c3,∀(u, v) ∈ M1. Combining this and (3.5), we find M1 is bounded in P × P , as claimed.

Taking R > supM1, then we have

(u, v) 6= A(u, v) + ν(ϕ,ϕ),∀(u, v) ∈ ∂BR ∩ (P × P ), ν ≥ 0.

Lemma 2.3 implies

i(A,BR ∩ (P × P ), P × P ) = 0. (3.6)

On the other hand, by (2) of (H2), we find

A1(u, v)(t) ≤

∫ 1

0
G(t, s)ξ(v(s))ds, A2(u, v)(t) ≤

∫ 1

0
G(t, s)η(u(s))ds, (3.7)

for any (t, u, v) ∈ [0, 1] × [0, r] × [0, r]. Now we show

(u, v) 6= νA(u, v),∀(u, v) ∈ ∂Br ∩ (P × P ), ν ∈ [0, 1]. (3.8)

If the claim is false, there exist (u1, v1) ∈ ∂Br ∩(P ×P ) and ν1 ∈ [0, 1] such that (u1, v1) =

ν1A(u1, v1). Therefore, u1 ≤ A1(u1, v1) and v1 ≤ A2(u1, v1). In view of (3.7), we have

u1(t) ≤

∫ 1

0
G(t, s)ξ(v1(s))ds, v1(t) ≤

∫ 1

0
G(t, s)η(u1(s))ds.

Consequently, the convexity of ξ and Jensen’s inequality imply

ξ(v1(t)) ≤ ξ

(
∫ 1

0
G(t, s)η(u1(s))ds

)

≤ K−1

∫ 1

0
G(t, s)ξ(Kη(u1(s)))ds. (3.9)

Therefore,

u1(t) ≤ K−1

∫ 1

0

∫ 1

0
G(t, s)G(s, τ)ξ(Kη(u1(τ)))dτds.

Multiply both sides of the above by ψ(t) and integrate over [0,1] and use (2.4) and (3) of

(H2) to obtain
∫ 1

0
u1(t)ψ(t)dt ≤ µ2

∫ 1

0
u1(t)ψ(t)dt.

Since µ2 < 1, from which we find
∫ 1
0 u1(t)ψ(t)dt = 0, thus u1 = 0. We have from (3.9)

and (3) of (H2)

ξ(v1(t)) ≤ K−1

∫ 1

0
G(t, s)ξ(Kη(u1(s)))ds ≤ µ2λ

2
1

∫ 1

0
G(t, s)u1(s)ds = 0.
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Since ξ is strictly increasing, then v1 = 0, which is a contradiction to (u1, v1) ∈ ∂Br ∩

(P × P ). Hence, (3.8) is true. So, we have from Lemma 2.4 that

i(A,Br ∩ (P × P ), P × P ) = 1. (3.10)

Combining (3.6) and (3.10) gives

i(A, (BR\Br) ∩ (P × P ), P × P ) = 0 − 1 = −1.

Therefore the operator A has at least one fixed point on (BR\Br)∩ (P ×P ). Equivalently,

(1.1) has at least one positive solution. This completes the proof.

Theorem 3.2 Suppose that (H3), (H4) are satisfied, then (1.1) has at least one positive

solution.

Proof. By (2) of (H3), we find

A1(u, v) ≥

∫ 1

0
G(t, s)p(v(s))ds, A2(u, v) ≥

∫ 1

0
G(t, s)q(u(s))ds, (3.11)

for any (t, u, v) ∈ [0, 1] × [0, r] × [0, r]. Let

M2 := {(u, v) ∈ Br ∩ (P × P ) : (u, v) = A(u, v) + ν(ϕ,ϕ), ν ≥ 0} (3.12)

where ϕ is defined by (2.4). We shall prove M2 ⊂ {0}. Indeed, if (u, v) ∈ M2, then

u ≥ A1(u, v) and v ≥ A2(u, v). In view of (3.11), we get

u(t) ≥

∫ 1

0
G(t, s)p(v(s))ds, v(t) ≥

∫ 1

0
G(t, s)q(u(s))ds. (3.13)

By the concavity of p and the second inequality of (3.13), together with Jensen’s inequality,

we obtain

p(v(t)) ≥ p

(
∫ 1

0
G(t, s)q(u(s))ds

)

≥ K−1

∫ 1

0
G(t, s)p(Kq(u(s)))ds (3.14)

From the first inequality of (3.13), we have

u(t) ≥ K−1

∫ 1

0

∫ 1

0
G(t, s)G(s, τ)p(Kq(u(τ)))dτds.

Multiply both sides of the above by ψ(t) and integrate over [0,1] and use (2.4) and (3) of

(H3) to obtain
∫ 1

0
u(t)ψ(t)dt ≥ µ3

∫ 1

0
u(t)ψ(t)dt. (3.15)

Since µ3 > 1, thus we obtain
∫ 1
0 u(t)ψ(t)dt = 0, then u ≡ 0. Also, We have from (3.13)

that
∫ 1
0 G(t, s)p(v(s))ds = 0, then p(v(t)) = 0. We find from Lemma 2.5 that v ≡ 0. As a

result, M2 ⊂ {0} holds. Lemma 2.3 implies

i(A,Br ∩ (P × P ), P × P ) = 0. (3.16)
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On the other hand, by (2) of (H4), we find

A1(u, v) ≤

∫ 1

0
G(t, s)ξ(v(s))ds, A2(u, v) ≤

∫ 1

0
G(t, s)η(u(s))ds, (3.17)

for all (t, u, v) ∈ [0, 1] × R
+ × R

+. We shall show there exists an adequately big positive

number R > 0 such that the following claim holds.

(u, v) 6= νA(u, v),∀(u, v) ∈ ∂BR ∩ (P × P ), ν ∈ [0, 1]. (3.18)

If the claim is false, there exist (u1, v1) ∈ ∂BR ∩ (P × P ) and ν1 ∈ [0, 1] such that

(u1, v1) = ν1A(u1, v1). Therefore, u1 ≤ A1(u1, v1) and v1 ≤ A2(u1, v1). In view of (3.17),

we have

u1(t) ≤

∫ 1

0
G(t, s)ξ(v1(s))ds, v1(t) ≤

∫ 1

0
G(t, s)η(u1(s))ds.

Subsequently, Jensen’s inequality implies

ξ(v1(t)) ≤ ξ

(
∫ 1

0
G(t, s)η(u1(s))ds

)

≤ K−1

∫ 1

0
G(t, s)ξ(Kη(u1(s)))ds. (3.19)

Therefore,

u1(t) ≤ K−1

∫ 1

0

∫ 1

0
G(t, s)G(s, τ)ξ(Kη(u1(τ)))dτds.

Multiply both sides of the above by ψ(t) and integrate over [0,1] and use (2.4) and (3) of

(H4) to obtain
∫ 1

0
u1(t)ψ(t)dt ≤ µ4

∫ 1

0
u1(t)ψ(t)dt+ c4.

Therefore,
∫ 1
0 u1(t)ψ(t)dt ≤ c4

1−µ4
. From (2.5), we get

‖u1‖ ≤
c4

ω(1 − µ4)
. (3.20)

By (3.19) and (3) of (H4), we obtain

ξ(v1(t)) ≤ µ4λ
2
1

∫ 1

0
G(t, s)u1(s)dt+ c5 ≤ µ4λ

2
1‖u1‖K1 + c5.

Since ξ is strictly increasing, then there exists c6 > 0 such that ‖v1‖ ≤ c6. Taking

R > max
{

c6,
c4

ω(1−µ4)

}

, which is a contradiction to (u1, v1) ∈ ∂BR ∩ (P ×P ). As a result,

(3.18) is true. So, we have from Lemma 2.4 that

i(A,BR ∩ (P × P ), P × P ) = 1. (3.21)

Combining (3.16) and (3.21) gives

i(A, (BR\Br) ∩ (P × P ), P × P ) = 1 − 0 = 1.
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Therefore the operator A has at least one fixed point on (BR\Br)∩ (P ×P ). Equivalently,

(1.1) has at least one positive solution. This completes the proof.

Theorem 3.3 Suppose that (H1), (H3) and (H5) are satisfied, then (1.1) has at least

two positive solutions.

Proof. By (H5), we have

A1(u, v)(t) <

∫ 1

0

N

K1
G(t, s)ds ≤ N,A2(u, v)(t) <

∫ 1

0

N

K1
G(t, s)ds ≤ N,

for any (t, u, v) ∈ [0, 1] × ∂BN × ∂BN , from which we obtain

‖A(u, v)‖ < ‖(u, v)‖, ∀(u, v) ∈ ∂BN ∩ (P × P ).

This leads to

(u, v) 6= νA(u, v),∀(u, v) ∈ ∂BN ∩ (P × P ), ν ∈ [0, 1]. (3.22)

Now Lemma 2.4 implies

i(A,BN ∩ (P × P ), P × P ) = 1. (3.23)

On the other hand, by (H1) and (H3) (see the proofs of Theorems 3.1 and 3.2), we may

take R > N and r ∈ (0, N) so that (3.6) and (3.16) hold. Combining (3.6), (3.16) and

(3.23), we conclude

i(A, (BR\BN ) ∩ (P × P ), P × P ) = 0 − 1 = −1,

i(A, (BN\Br) ∩ (P × P ), P × P ) = 1 − 0 = 1.

Consequently, A has at least two fixed points in (BR\BN )∩(P×P ) and (BN\Br)∩(P×P ),

respectively. Equivalently, (1.1) has at least two positive solutions (u1, v1) ∈ (P ×P )\{0}

and (u2, v2) ∈ (P × P )\{0}. This completes the proof.

Theorem 3.4 Suppose that (H2), (H4) and (H6) are satisfied, then (1.1) has at least

two positive solutions.

Proof. By (H6), we have

‖A1(u, v)‖ = max0≤t≤1A1(u, v)(t) ≥ maxt∈[σ,1−σ]A1(u, v)(t)

= maxt∈[σ,1−σ]

∫ 1
0 G(t, s)f(s, u(s), v(s))ds

≥ maxt∈[σ,1−σ]

∫ 1
0 γ(t)y(s)f(s, u(s), v(s))ds

>
(

1
2

)n−1 ∫ 1
0 y(s)

2n−1(n+1)!
n−1 ρds = ‖u‖,∀u ∈ ∂Bρ ∩ (P × P ).

Similarly, ‖A2(u, v)‖ > ‖v‖, ∀v ∈ ∂Bρ ∩ (P × P ). Consequently,

‖A(u, v)‖ > ‖(u, v)‖,∀(u, v) ∈ ∂Bρ ∩ (P × P ).
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This yields

(u, v) 6= A(u, v) + ν(ϕ,ϕ),∀(u, v) ∈ ∂Bρ ∩ (P × P ), ν ≥ 0.

Lemma 2.3 gives

i(A,Bρ ∩ (P × P ), P × P ) = 0. (3.24)

On the other hand, by (H2) and (H4) (see the proofs of Theorems 3.1 and 3.2), we may

take R > ρ and r ∈ (0, ρ) so that (3.10) and (3.21) hold. Combining (3.10), (3.21) and

(3.24), we conclude

i(A, (BR\Bρ) ∩ (P × P ), P × P ) = 1 − 0 = 1,

i(A, (Bρ\Br) ∩ (P × P ), P × P ) = 0 − 1 = −1.

Consequently, A has at least two fixed points in (BR\Bρ)∩(P×P ) and (Bρ\Br)∩(P×P ),

respectively. Equivalently, (1.1) has at least two positive solutions (u1, v1) ∈ (P ×P )\{0}

and (u2, v2) ∈ (P × P )\{0}. This completes the proof.

Theorem 3.5 If (H3), (H4), (H7) and (H8) hold, then (1.1) has exactly one positive

solution.

Proof. We first show the problem (1.1) has at most one positive solution. Indeed, if

(u1, v1) and (u2, v2) are two positive solutions of (1.1), then for i = 1, 2, we get

ui(t) =

∫ 1

0
G(t, s)f(s, ui(s), vi(s))ds, vi(t) =

∫ 1

0
G(t, s)g(s, ui(s), vi(s))ds.

Lemma 2.6 implies that eight positive numbers bi ≥ ai (i = 1, 2, 3, 4) such that a1w0 ≤

u1 ≤ b1w0, a2w0 ≤ u2 ≤ b2w0, a3w0 ≤ v1 ≤ b3w0 and a4w0 ≤ v2 ≤ b4w0. Therefore

u2 ≥ a2

b1
u1 and v2 ≥ a4

b3
v1. Let

µ0 := sup{µ > 0 : u2 ≥ µu1, v2 ≥ µv1}.

We obtain by µ0 > 0 that u2 ≥ µ0u1 and v2 ≥ µ0v1. We claim that µ0 ≥ 1. Suppose the

contrary. Then µ0 < 1 and

u2(t) ≥

∫ 1

0
G(t, s)f(s, µ0u1(s), µ0v1(s))ds, v2(t) ≥

∫ 1

0
G(t, s)g(s, µ0u1(s), µ0v1(s))ds.

Let

h1(t) := f(t, µ0u1(t), µ0v1(t)) − µ0f(t, u1(t), v1(t)),

and

h2(t) := g(t, µ0u1(t), µ0v1(t)) − µ0g(t, u1(t), v1(t)).
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(H8) implies hi ∈ P\{0} (i = 1, 2). By Lemma 2.6, there are two positive numbers εi such

that
∫ 1

0
G(t, s)hi(s)ds ≥ εiw0(t).

Therefore,

u2(t) ≥

∫ 1

0
G(t, s)h1(s)ds+ µ0u1(t) ≥

ε1

b1
u1(t) + µ0u1(t),

and

v2(t) ≥

∫ 1

0
G(t, s)h2(s)ds+ µ0v1(t) ≥

ε2

b3
v1(t) + µ0v1(t),

contradicting the definition of µ0. As a result of this, we have µ0 ≥ 1, and thus u2 ≥ u1.

Similarly u1 ≥ u2. Therefore u1 = u2. Similarly v1 = v2. Thus (1.1) has at most one

positive solution. Combining this and Theorem 3.2, we find (1.1) has exactly one positive

solution. This completes the proof.
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