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1 Introduction

In this paper we study long-time behavior for solutions of damped second order ordinary
differential equations

ü + g(u̇) +∇E(u) = 0, (SOP)

where E ∈ C2(Ω), Ω being an open connected subset of Rn and g : Rn → Rn is a C1-function
satisfying 〈g(v), v〉 ≥ 0 on Rn. This last condition means that the term g(u̇) in (SOP) has a
damping effect. It is easy to see that energy

E(u, u̇) =
1
2
‖u̇‖2 + E(u)

is nonincreasing along solutions. In fact, if u is a classical solution to (SOP), then

d
dt
E(u(t), u̇(t)) = −〈g(v), v〉 ≤ 0.

If u : [0,+∞) → Ω is a global solution and ϕ belongs to the ω-limit set of u, then
E(u(t), u̇(t)) → E(ϕ, 0) = E(ϕ) as t → +∞. In this paper, we derive the exact rate of conver-
gence of E(u(t), u̇(t)) to E(ϕ).

Our main assumption is the Kurdyka–Łojasiwicz gradient inequality (see [10])

Θ(|E(u)− E(ϕ)|) ≤ ‖∇E(u)‖. (KLI)
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For linear g, the optimal decay estimate was derived in [2]. For nonlinear g (typically satisfying
g′(0) = 0) some decay estimates were shown in [3,7,8]. Here we derive better decay estimates
under additional assumptions on E and we show that these estimates are optimal. We will
assume that E satisfies an inverse to (KLI) and some estimates on the second gradient and
that g has certain behavior near zero. The present result generalizes the one from [5, Theorem
20] where we worked with the Łojasiewicz gradient inequality, i.e. (KLI) with Θ(s) = s1−θ for
a constant θ ∈ (0, 1

2 ] (see [11]). It also generalizes the result by Haraux (see [9]) and Abdelli,
Anguiano, Haraux (see [1]). The present result applies e.g. to functions E and g having the
growth near origin as

sa lnr1(1/s) lnr2(ln(1/s)) . . . lnrk(ln . . . ln(1/s)) (1.1)

for some constants a, r1, . . . , rk. It also applies to functions E with a non-strict local minimum
in ϕ.

The paper is organized as follows. In Section 2 we present our notations, basic definitions
and the main result. Section 3 contains the proof of the main result.

2 Notations and the main result

By ‖ · ‖ and 〈·, ·〉 we denote the usual norm and scalar product on Rd. For nonnegative
functions f , g : G ⊂ Rd → R we write g(x) = O( f (x)) on G if there exists C > 0 such that
g(x) ≤ C f (x) for all x ∈ G. We say that g(x) = O( f (x)) for x → a if g(x) = O( f (x)) on a
neighborhood of a. If f (x) = O(g(x)) and g(x) = O( f (x)), we write f ∼ g.

We say that a function f : R+ → R+ satisfying f (0) = 0 and f (s) > 0 for s > 0

• is admissible if f is nondecreasing and there exists c > 0 such that s f ′±(s) ≤ c f (s) for all
s > 0,

• has property (K) if for every K > 0 there exists C(K) > 0 such that f (Ks) ≤ C(K) f (s)
holds for all s > 0,

• is C-sublinear if there exists C > 0 such that f (t + s) ≤ C( f (t) + f (s)) holds for all t,
s > 0.

It is easy to see that admissible functions are C-sublinear and have property (K) (for proof
see Appendix of [4]). Further, for nondecreasing functions property (K) is equivalent to
C-sublinearity. Moreover, every concave function f : R+ → R+ is admissible and satisfies
s f ′±(s) ≤ f (s).

Let us introduce the inverse Kurdyka–Łojasiewicz inequality

Θ1(|E(u)− E(ϕ)|) ≥ ‖∇E(u)‖ (IKLI)

and an inequality for the second gradient

‖∇2E(u)‖ ≤ Γ(‖∇E(u)‖). (2.1)

When we say that inequality (KLI) (resp. (IKLI), (2.1)) holds on a set U it means that the
inequality holds for all u ∈ U with a given fixed ϕ and Θ (resp. Θ1, Γ).
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By a solution to (SOP) we always mean a classical solution defined on [0,+∞). By R(u) =
{u(t) : t ≥ 0} we denote the range of u. We say that a solution is precompact if R(u) is
precompact in Ω (the domain of E). The ω-limit set of u is

ω(u) = {ϕ ∈ Ω : ∃tn ↗ +∞, u(tn)→ ϕ}.

By c, C, c̃, C̃ we denote generic constants, their values can change from line to line or from
expression to expression.

The main result of the present paper is the following.

Theorem 2.1. Let u be a precompact solution to (SOP) and ϕ ∈ ω(u). Let E(·) ≥ E(ϕ) on R(u)
and let E satisfy (KLI), (IKLI) and (2.1) on R(u) with admissible functions Θ, Θ1 and Γ, such that
Θ(s) ∼ Θ1(s) and Γ(Θ(s)) ∼ Θ(s)Θ′(s) for s→ 0+. Let g satisfies

〈g(v), v〉 ≥ ch(‖v‖)‖v‖2, ‖g(v)‖ ≤ Ch(‖v‖)‖v‖ (2.2)

with an admissible function h satisfying

Θ(s) ≥ c
√

s h(
√

s) (2.3)

for some c > 0 and all s ≥ 0. Let us denote

χ(s) = sh(
√

s), Φχ =
∫ 1

χ(s)
ds (2.4)

and assume that ψ(s) = s2h(s) is convex. Then

c(−Φχ)
−1(Ct) ≤ E(u(t), u̇(t))− E(ϕ, 0) ≤ C(−Φχ)

−1(ct)

for some c, C > 0 and all t large enough.

Let us first mention that if E(u) = ‖u‖p, p ≥ 2, then (KLI), (IKLI) hold with Θ(s) ∼
Θ1(s) = Cs1−θ , θ = 1

p and (2.1) holds with Γ(s) = Cs
1−2θ
1−θ . If h(s) = sα, α ∈ (0, 1), then

condition (2.3) becomes α ≥ 1− 2θ and (−Φχ)−1(ct) = Ct−
2
α . In this case, we obtain the same

result as [5, Theorem 20] and also [9].

Remark 2.2.

1. If (Φχ)−1 has property (K), then the statement of Theorem 2.1 can be written as
E(u(t), u̇(t))− E(ϕ) ∼ (−Φχ)−1(t).

2. We can see that the energy decay depends on h only. In particular, it is independent of Θ.

3. It is enough to assume that all the assumptions except 〈g(v), v〉 > 0 for all v 6= 0 hold on a
small neigborhood of zero, resp. a small neighborhood of ω(u).

4. It follows from (KLI) and [2, Proposition 2.8] that Θ(s) = O(
√

s). Hence, by (2.3) function
h must be bounded on a neighborhood of zero and Φχ(t) → −∞ as t → 0+. So, it is not
important which primitive function Φχ we take and we have (−Φχ)−1(t)→ 0 as t→ +∞.

5. Theorem 2.1 does not imply that u(t) → ϕ as t → +∞. In fact, in [6, Theorem 4] we
have shown that u(t) → ϕ if h is large enough, in particular if

∫ ε
0

1
Θ(s)h(Θ(s)) < +∞. If this

condition is not satisfied, it may happen that ω(u) contains more than one point.
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6. If ϕ is an asymptotically stable equilibrium for the gradient system u̇ +∇E(u) = 0 (e.g. if
E has a strict local minimum in ϕ and is convex on a neighborhood of ϕ) and (KLI), (IKLI)
hold on a neighborhood of ϕ, then by [5, Corollary 5] we have ‖x− ϕ‖ ∼ ΦΘ(E(x)− E(ϕ))

on a neighborhood of ϕ where ΦΘ(t) =
∫ t

0
1
Θ . In this case, for any solution starting in a

neighborhood of ϕ we have

c(−Φχ)
−1(Ct) ≤ ‖v(t)‖2 + Φ−1

Θ (‖u(t)− ϕ‖) ≤ C(−Φχ)
−1(ct)

and, especially,
‖u(t)− ϕ‖ ≤ ΦΘ(C(−Φχ)

−1(ct)),

so u(t)→ ϕ. We do not have the estimate for ‖u(t)− ϕ‖ from below since, at least in one-
dimensional case, the solution oscillates and u(tn) = ϕ for a sequence tn ↗ +∞ (see [9]).

Example 2.3. Let us consider E(u) = F(‖u‖) with a real function F having a strict local
minimum F(0) = 0 and satisfying on a right neighborhood of zero CF(s) ≥ sF′(s) ≥
(1 + ε)F(s) and sF′′(s) ∼ F′(s). Moreover, we assume that (F′)−1 has property (K). (It is
easy to show that any analytic function F(s) = ∑∞

k=2m aksk, a2m > 0 and any function of the
form (1.1) with a > 2, ri ∈ R or a = 2, r1 = · · · = rj−1 = 0, rj < 0, rj+1, . . . , rk ∈ R satisfy these
assumptions.) Then (KLI), (IKLI) holds with Θ(s) = C s

F−1(s) , since

Θ(E(u)) = Θ(F(‖u‖)) = C
F(‖u‖)
‖u‖ ∼ F′(‖u‖) = ‖∇E(u)‖.

Further, (2.1) holds with Γ(s) = C s
(F′)−1(s) since

‖∇2E(u)‖ ≤ CF′′(‖u‖) ∼ F′(‖u‖)
‖u‖ ∼ Γ(F′(‖u‖)) = Γ(‖∇E(u)‖),

where the first inequality is due to the fact that the diagonal resp. nondiagonal terms of
∇2E(u) are

F′′(‖u‖)
u2

i
‖u‖2 resp.

uiuj

‖u‖2

(
F′′(‖u‖)− F′(‖u‖)

‖u‖

)
,

so they are estimated by CF′′(‖u‖). Further, we have

Θ′(F(s)) =
d
ds Θ(F(s))

F′(s)
=

d
ds

F(s)
s

F′(s)
=

F′(s)s− F(s)
s2F′(s)

=
1
s

(
1− F(s)

sF′(s)

)
∼ 1

s
,

so
Θ(F(s))Θ′(F(s)) ∼ 1

s
Θ(F(s)) ∼ 1

s2 F(s)

and

Γ(Θ(F(s))) ∼ Θ(F(s))
(F′)−1(Θ(F(s)))

∼ F(s)

s(F′)−1( F(s)
s )
∼ F(s)

s(F′)−1(F′(s))
=

F(s)
s2 ,

hence Γ(Θ(s)) ∼ Θ(s)Θ′(s). Then, for any g satisfying (2.2) with a function h small enough
(such that (2.3) holds) Theorem 2.1 can be applied and we obtain the exact energy decay which
depends on h only and not on F. In particular, if h(s) = sα we have E(u(t), v(t)) ∼ t−

2
α and if

h is of the form (1.1), we have by [4, Lemmas 6.5, 6.6]

E(u(t), v(t)) ∼ t−
2
a ln−

r1
a (ln 1/t) . . . ln−

rk
a (ln . . . ln 1/t).

Let us mention that if h is equal to (1.1) and such that cs ≤ h(s) ≤ c near zero (i.e. a ∈ [0, 1]
and if a ∈ {0, 1} we have a sign condition on the first nonzero number ri), then ψ(s) = s2h(s)
is convex near zero.
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3 Proof of Theorem 2.1

Let us write v(t) instead of u̇(t) and E(t) instead of E(u(t), v(t)). We also often write u, v
instead of u(t), v(t).

First of all, since u is precompact {E(u(t)) : t ≥ 0} is bounded. Therefore, {E(t) : t ≥ 0}
is bounded, hence v is bounded and by (SOP) also ü = v̇ is bounded. Since

∫ t

0
〈g(v), v〉 = E(0)− E(t) ≤ K,

we have 〈g(v), v〉 ∈ L1((0,+∞)). Then boundedness of v̇ yields convergence of 〈g(v(t)), v(t)〉
to 0. Hence v(t) → 0 as t → +∞ and it follows that E(t) → E(ϕ, 0). So, we can assume
without loss of generality that E(ϕ) = 0, E(ϕ, 0) = 0.

In the rest of the proof we will work with

H(t) = E(t) + εB(E(u(t)))〈∇E(u(t)), v〉,

where

B(s) =

{
1

Θ(s)2 sh(
√

s) s > 0

0 s = 0

and ε > 0 is small enough. Let us mention that B can be unbounded in a neighborhood of
zero, but due to (2.3) we have Θ(s)B(s) ≤ C

√
s, hence H is continuous even in the points

where E(u(t)) = 0 and in these points we have H(t) = E(t). Let us denote M := {t ≥ 0 :
E(u(t)) > 0} and Mc = {t ≥ 0 : E(u(t)) = 0}.

We show that H(t) ∼ E(t). On Mc it is trivial. On M we apply (IKLI), Cauchy–Schwarz
and Young inequalities and Θ(s)B(s) ≤ C

√
s and we obtain

|εB(E(u))〈∇E(u(t)), v〉| ≤ εCB(E(u))Θ(E(u))‖v‖
≤ εCB(E(u))2Θ(E(u))2 + εC‖v‖2

≤ εCE(t),

hence
(1− εC)E(t) ≤ H(t) ≤ (1 + εC)E(t)

and taking ε > 0 small enough we obtain H(t) ∼ E(t).
The next step is to show that

0 ≤ −H′(t) ∼ h(‖v‖)‖v‖2 + E(u)h
(√

E(u)
)

. (3.1)

Let us first estimate B′(s). For any s > 0 we have

B′(s) =
B(s)

s

(
1 +

h′(
√

s)
√

s
h(
√

s)
− 2

sΘ′(s)
Θ(s)

)
∈
[

B(s)
s

(1− 2C),
B(s)

s
(1 + C)

]
,

where the equality follows by definition of B and the rest from admissibility of h and Θ (the
two fractions in round bracket are nonnegative and bounded above by a constant). Hence,
|sB′(s)| ≤ CB(s).
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Let t ∈ M. Let us compute H′(t) and use the fact that u solves (SOP) to get

H′(t) = − 〈g(v), v〉 − εB(E(u))‖∇E(u)‖2

+ εB′(E(u))〈∇E(u), v〉2

+ εB(E(u))〈∇2E(u)v, v〉
+ εB(E(u))〈∇E(u),−g(v)〉.

(3.2)

Due to (2.2) we have 〈g(v), v〉 ∼ h(‖v‖)‖v‖2 and by definition of B, (KLI) and (IKLI) we
immediately have B(E(u))‖∇E(u)‖2 ∼ E(u)h(

√
E(u)). So,

〈g(v), v〉+ εB(E(u))‖∇E(u)‖2 ∼ h(‖v‖)‖v‖2 + εCE(u)h
(√

E(u)
)

.

We show that the second, third and fourth lines of (3.2) are smaller than this term, then (3.1)
is proved.

The second line of (3.2) is less than

εC
B(E(u))

E(u)
Θ(E(u))2‖v‖2 ≤ εCh

(√
E(u)

)
‖v‖2.

Since Γ has property (K) and satisfies Γ(Θ(s)) ∼ Θ(s)Θ′(s) ≤ Cs−1Θ(s)2 and due to (IKLI)
and definition of B, the third line in (3.2) is less than

εCB(E(u))Γ(‖∇E(u)‖)‖v‖2 ≤ εCh
(√

E(u)
)
‖v‖2.

If E(u) ≤ 4C‖v‖2, then (h satisfies property (K)) we have h
(√

E(u)
)
‖v‖2 ≤ C̃h(‖v‖)‖v‖2 and

if E(u) ≥ 4C‖v‖2, then h
(√

E(u)
)
‖v‖2 ≤ 1

4C h
(√

E(u)
)
E(u). So, in either case we have that

lines two and three in (3.2) are less than

εCh(‖v‖)‖v‖2 +
1
4

εh
(√

E(u)
)

E(u),

so they are less than the first line in (3.2) since we can make εC small by taking ε small enough.
The last line in (3.2) is (by definition of B and (2.3)) less than

εCB(E(u))‖∇E‖h(‖v‖)‖v‖ ≤ εC
1

Θ(E(u))
E(u)h

(√
E(u)

)
h(‖v‖)‖v‖

≤ εC
√

E(u)h(‖v‖)‖v‖.

Applying the Young inequality ab ≤ ψ(a) + ψ̃(b) with ψ(s) = s2h(s) and the convex conjugate
ψ̃ we get

εC
√

E(u)h(‖v‖)‖v‖ ≤ 1
4

εψ

(√
E(u)

)
+ εCψ̃(‖v‖h(‖v‖))

≤ 1
4

εE(u)h
(√

E(u)
)
+ εCh(‖v‖)‖v‖2

since ψ̃(sh(s)) ≤ Cs2h(s) due to Lemma 3.1 below. Now, (3.1) is proven on M. If E(u(t))→ 0
for t→ t0, we can see that H′(t)→ −〈g(v(t0)), v(t0)〉 = E ′(t0) (due to the estimates above, all



Optimal decay for damped second order problems 7

terms on the right-hand side of (3.2) except the first one tend to zero). By continuity of H, we
have H′ = E ′ on Mc, in particular (3.1) holds on Mc.

We show that χ(H(t)) ∼ −H′(t). In fact,

χ(H(t)) ≤ χ(C(‖v‖2 + E(u))))

≤ C(χ(‖v‖2) + χ(E(u)))

= C
(

h(‖v‖)‖v‖2 + E(u)h
(√

E(u)
))

≤ −CH′(t),

where we applied monotonicity in the first line, C-sublinearity and property (K) in the second
line (χ has these properties by Lemma 3.2 below), definition of χ in the third line and (3.1)
in the last inequality. On the other hand, by Lemma 3.2 also the inverse inequalities in C-
sublinearity and property (K) are valid, so we have

χ(H(t)) ≥ χ(c(‖v‖2 + E(u))))

≥ c(χ(‖v‖2) + χ(E(u)))

= c
(

h(‖v‖)‖v‖2 + E(u)h
(√

E(u)
))

≥ −cH′(t),

so χ(H(t)) ∼ −H′(t) is proved.
Let T = sup{t ≥ 0 : H(t) > 0}. For any t ∈ (0, T) we have proved

− d
dt

Φχ(H(t)) = − H′(t)
χ(H(t))

∈ [c, C].

Integrating this relation from t0 to t we obtain

c(t− t0)−Φχ(H(t0)) ≤ −Φχ(H(t)) ≤ C(t− t0)−Φχ(H(t0)). (3.3)

If T < +∞, then we can see that −Φχ(H(t)) is bounded on (0, T), hence 0 < limt→T− H(t) =
H(T), contradiction. Therefore, T = +∞, (3.3) holds for all t > 0 and for t large enough we
have

c̃t ≤ c(t− t0)−Φχ(H(t0)) ≤ −Φχ(H(t)) ≤ C(t− t0)−Φχ(H(t0)) ≤ C̃t.

Hence
c(−Φχ)

−1(C̃t) ≤ H(t) ∼ E(u(t), v(t)) ≤ C(−Φχ)
−1(c̃t),

which completes the proof of Theorem 2.1.

Lemma 3.1. Let ψ(s) = s2h(s) and ψ̃(r) = sup{rs− ψ(s) : s ≥ 0} be the convex conjugate to ψ.
Then there exists C > 0 such that ψ̃(sh(s)) ≤ Cs2h(s) for all s ≥ 0.

Proof. Since ψ is convex, the one-sided derivatives ψ′±(s) = s2h′±(s)+ 2sh(s) are nondecreasing
functions and the interval [ψ′−(s), ψ′+(s)] is nonempty. Take s0 > 0 arbitrarily and take r ∈
[ψ′−(s0), ψ′+(s0)]. Then the function s 7→ rs − ψ(s) attains its maximum in s0, hence ψ̃(r) =

rs0 − s2
0h(s0). Since r ≥ ψ′−(s0) = s2

0h′−(s0) + 2s0h(s0) ≥ s0h(s0) and ψ̃ is increasing, we have
ψ̃(s0h(s0)) ≤ ψ̃(r) = rs0 − s2

0h(s0) ≤ ψ′+(s0)s0 − s2
0h(s0) = s3

0h′+(s0) + 2s2
0h(s0) − s2

0h(s0) ≤
(c + 2− 1)s2

0h(s0).
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Lemma 3.2. Function χ(s) = sh(
√

s) is C-sublinear and it has property (K). Moreover, χ(s + t) ≥
1
2 (χ(s) + χ(t)) for all s, t > 0 and for every c > 0 there exists c̃ > 0 such that χ(cs) ≥ c̃χ(s).

Proof. Since h has property (K), we have for a fixed K > 0

χ(Ks) = Ksh(
√

K
√

s) ≤ KsC(
√

K)h(
√

s) = KC(
√

K)χ(s).

So, χ has property (K) and since it is increasing, it is also C-sublinear. Since χ is increasing,
we also have χ(s + t) ≥ χ(s), χ(s + t) ≥ χ(t) and therefore χ(s + t) ≥ 1

2 (χ(s) + χ(t)). From
property (K) we have for any fixed c > 0

χ(s) = χ

(
1
c

cs
)
≤ C

(
1
c

)
χ(cs) =

1
c̃

χ(cs)

and the last property is proven.
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