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1 Introduction

In this paper we study long-time behavior for solutions of damped second order ordinary
differential equations
ii+g(u) + VE(u) =0, (SOP)

where E € C2(Q), Q) being an open connected subset of R" and ¢ : R” — R" is a C!-function
satisfying (¢(v),v) > 0 on R". This last condition means that the term g(it) in (SOP) has a
damping effect. It is easy to see that energy

() = |l + E(u)

is nonincreasing along solutions. In fact, if u is a classical solution to (SOP), then

LE(w(t), (1)) = ~{g(v),0) <0

If u: [0,+c0) — Q is a global solution and ¢ belongs to the w-limit set of u, then
E(u(t),u(t)) — E(¢,0) = E(¢) as t — +oo. In this paper, we derive the exact rate of conver-
gence of E(u(t),u(t)) to E(¢).

Our main assumption is the Kurdyka—t.ojasiwicz gradient inequality (see [10])

O(|E(u) — E(9)]) < [VE(u)]|. (KLID)
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2 T. Bdrta

For linear g, the optimal decay estimate was derived in [2]. For nonlinear g (typically satisfying
¢’(0) = 0) some decay estimates were shown in [3,7,8]. Here we derive better decay estimates
under additional assumptions on E and we show that these estimates are optimal. We will
assume that E satisfies an inverse to (KLI) and some estimates on the second gradient and
that ¢ has certain behavior near zero. The present result generalizes the one from [5, Theorem
20] where we worked with the Lojasiewicz gradient inequality, i.e. (KLI) with @(s) = s'~? for
a constant 0 € (0, %] (see [11]). It also generalizes the result by Haraux (see [9]) and Abdelli,
Anguiano, Haraux (see [1]). The present result applies e.g. to functions E and g having the
growth near origin as

s?In"(1/s) In”?(In(1/s)) ... In"*(In...In(1/s)) (1.1)

for some constants 4, rq, ..., r¢. It also applies to functions E with a non-strict local minimum
in ¢.

The paper is organized as follows. In Section 2 we present our notations, basic definitions
and the main result. Section 3 contains the proof of the main result.

2 Notations and the main result

By | - || and (-,-) we denote the usual norm and scalar product on R?. For nonnegative
functions f, ¢ : G C R? — R we write ¢(x) = O(f(x)) on G if there exists C > 0 such that
g(x) < Cf(x) for all x € G. We say that g(x) = O(f(x)) for x — a if g(x) = O(f(x)) on a
neighborhood of a. If f(x) = O(g(x)) and g(x) = O(f(x)), we write f ~ g.

We say that a function f : Ry — R satisfying f(0) =0 and f(s) > 0fors >0

e is admissible if f is nondecreasing and there exists ¢ > 0 such that sf/ (s) < c¢f(s) for all
s >0,

e has property (K) if for every K > 0 there exists C(K) > 0 such that f(Ks) < C(K)f(s)
holds for all s > 0,

e is C-sublinear if there exists C > 0 such that f(t +s) < C(f(t) + f(s)) holds for all ¢,
s > 0.

It is easy to see that admissible functions are C-sublinear and have property (K) (for proof
see Appendix of [4]). Further, for nondecreasing functions property (K) is equivalent to
C-sublinearity. Moreover, every concave function f : Ry — R; is admissible and satisfies

sfi(s) < f(s).
Let us introduce the inverse Kurdyka-}t.ojasiewicz inequality
O1(|E(u) —E(e)]) = [VE(u)|| (IKLD)
and an inequality for the second gradient

IV2E(u)|| < T(IVE()])- (2.1)

When we say that inequality (KLI) (resp. (IKLI), (2.1)) holds on a set U it means that the
inequality holds for all u € U with a given fixed ¢ and © (resp. @4, I).



Optimal decay for damped second order problems 3

By a solution to (SOP) we always mean a classical solution defined on [0, +o0). By R(u) =
{u(t) : t > 0} we denote the range of u. We say that a solution is precompact if R(u) is
precompact in () (the domain of E). The w-limit set of u is

wu)={pecQ: 3It, ~+oo, u(t,) = ¢}.

Byc, C, ¢, C we denote generic constants, their values can change from line to line or from
expression to expression.
The main result of the present paper is the following.

Theorem 2.1. Let u be a precompact solution to (SOP) and ¢ € w(u). Let E(-) > E(¢) on R(u)
and let E satisfy (KLI), (IKLI) and (2.1) on R(u) with admissible functions ®, ©1 and T, such that
O(s) ~ O1(s) and T (O(s)) ~ O(s)O'(s) for s — 0+. Let g satisfies

(§(v),0) = ch([lolDllol%  lig(@)]l < Ch([lol)]o] (22)

with an admissible function h satisfying

O(s) > cv/s h(Vs) (2.3)

for some c > 0 and all s > 0. Let us denote
X(s) =sh(), @y = [ s 4
and assume that {(s) = s?h(s) is convex. Then
o(=®y) 7 (Ct) < E(u(t), u(t)) — E(9,0) < C(=y) 7 (ct)

for some ¢, C > 0 and all t large enough.

Let us first mention that if E(u) = |u||’, p > 2, then (KLI), (IKLI) hold with ®(s) ~
@1(s) = Cs'79, 0 :% and (2.1) holds with T(s) = Cst¢. If h(s) = s, a € (0,1), then
condition (2.3) becomes a > 1 — 26 and (—®,) !(ct) = Ct~+. In this case, we obtain the same
result as [5, Theorem 20] and also [9].

Remark 2.2.

1. If (®,)"! has property (K), then the statement of Theorem 2.1 can be written as
E(u(t),u(t)) — E(p) ~ (=) 1 (t).

2. We can see that the energy decay depends on & only. In particular, it is independent of ©.

3. It is enough to assume that all the assumptions except (g(v),v) > 0 for all v # 0 hold on a
small neigborhood of zero, resp. a small neighborhood of w(u).

4. It follows from (KLI) and [2, Proposition 2.8] that ©(s) = O(y/s). Hence, by (2.3) function
h must be bounded on a neighborhood of zero and ®,(t) — —oo as t — 0+. So, it is not
important which primitive function ®, we take and we have (—®,)~1(t) — 0 as t — +oo.

5. Theorem 2.1 does not imply that u(t) — ¢ as t — +oo. In fact, in [6, Theorem 4] we
have shown that u(t) — ¢ if h is large enough, in particular if [; W < o0, If this
condition is not satisfied, it may happen that w(u) contains more than one point.



4 T. Bdrta

6. If ¢ is an asymptotically stable equilibrium for the gradient system 1 + VE(u) = 0 (e.g. if
E has a strict local minimum in ¢ and is convex on a neighborhood of ¢) and (KLI), (IKLI)
hold on a neighborhood of ¢, then by [5, Corollary 5] we have ||x — ¢|| ~ ®e(E(x) — E(¢))
on a neighborhood of ¢ where ®g(t) = Ot é. In this case, for any solution starting in a

neighborhood of ¢ we have
c(=@x)7H(CH) < lo(B)]* + g ([[u(t) — @ll) < C(=Py) 7 (ct)

and, especially,

[u(t) — @Il < Pe(C(~Py) " (ct)),
so u(t) — ¢. We do not have the estimate for ||u(t) — ¢|| from below since, at least in one-
dimensional case, the solution oscillates and u(f,) = ¢ for a sequence t, ,* 4o (see [9]).

Example 2.3. Let us consider E(u) = F(|ju||) with a real function F having a strict local
minimum F(0) = 0 and satisfying on a right neighborhood of zero CF(s) > sF'(s) >
(1+¢)F(s) and sF”(s) ~ F'(s). Moreover, we assume that (F')~! has property (K). (It is
easy to show that any analytic function F(s) = Y5> ,, as*, a2, > 0 and any function of the
form (1.1) witha >2,r;€ Rora=2,rn=---=1r;1=0,7, <0,7j41, ..., 1x € R satisfy these

assumptions.) Then (KLI), (IKLI) holds with ®(s) = C , since

s
F1(s)

o(E(w) = O(F(ul)) == ~ Fr(jul) = 192G

Further, (2.1) holds with I'(s) = C (F,)Sfl(s) since

IV2E(u)|| < CF"(|lu]]) ~ F/\(!%H) ~ T(F(ull)) = TUIVE@)I),

where the first inequality is due to the fact that the diagonal resp. nondiagonal terms of
V2E(u) are

i u;u; F'(llu
FN(HuH)Hule resp. HuH]z <F//(||u||)_ (ll H>>,

[l

so they are estimated by CF”(||u||). Further, we have

: KOF() " F()s—F(s) _1(, F(s)) 1
O ="Fr = e —  #FE) s (1_3F'(s)> s
O(F ()0 (F(s)) ~ (O(F(s)) ~ F(s)
and
o)~ OFE)  Fe  FE _Fe)

) @FE)) ~ s(py1(Fe) " s(F) () | 8
S
hence T'(O(s)) ~ O(s)®'(s). Then, for any g satisfying (2.2) with a function / small enough
(such that (2.3) holds) Theorem 2.1 can be applied and we obtain the exact energy decay which

depends on h only and not on F. In particular, if h(s) = s* we have £(u(t),v(t)) ~ t~+ and if
h is of the form (1.1), we have by [4, Lemmas 6.5, 6.6]

E(u(t),v(t)) ~t 4 In"* (In1/t)...In"* (In...In1/¢).

Let us mention that if / is equal to (1.1) and such that cs < h(s) < c near zero (i.e. a € [0,1]
and if a € {0,1} we have a sign condition on the first nonzero number 7;), then ¥ (s) = s?h(s)
is convex near zero.
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3 Proof of Theorem 2.1

Let us write v(t) instead of u(t) and £(t) instead of £(u(t),v(t)). We also often write u, v
instead of u(t), v(t).

First of all, since u is precompact {E(u(t)) : t > 0} is bounded. Therefore, {E(f) : t > 0}
is bounded, hence v is bounded and by (SOP) also ii = v is bounded. Since

[ is@.0) = £0) - £ < K

we have (g(v),v) € L((0,+0o0)). Then boundedness of @ yields convergence of (g(v(t)),v(t))
to 0. Hence v(f) — 0 as t — +oo0 and it follows that £(t) — £(¢,0). So, we can assume
without loss of generality that E(¢) =0, £(¢,0) = 0.

In the rest of the proof we will work with

H(t) = £(t) + eB(E(u(t))) (VE(u(t)),v),

where

B(s) = {s(ls)zsh(\/;) s >8
s =

and & > 0 is small enough. Let us mention that B can be unbounded in a neighborhood of
zero, but due to (2.3) we have O(s)B(s) < Ci/s, hence H is continuous even in the points
where E(u(t)) = 0 and in these points we have H(t) = £(t). Let us denote M := {t > 0 :
E(u(t)) >0} and M = {t > 0: E(u(t)) = 0}.

We show that H(t) ~ £(t). On M it is trivial. On M we apply (IKLI), Cauchy-Schwarz
and Young inequalities and ©(s)B(s) < C4/s and we obtain

|eB(E(u))(VE(u(t),v)| < eCB(E(u))O(E(u))|v]|
< eCB(E(u))*@(E(u))? +&Cllo||?

hence
(1—eC)E(t) < H(t) < (1+eC)E(H)

and taking € > 0 small enough we obtain H(t) ~ £().
The next step is to show that

OS—H%DthﬂMMF+EWM< HW)- (3.1)

Let us first estimate B'(s). For any s > 0 we have

o BO) (1 HGAWVE sO6)Y  [BG) g e BO)
B(s) = = (1+ e z%))e[ ~2(1-20), = (1+C)],

where the equality follows by definition of B and the rest from admissibility of # and © (the
two fractions in round bracket are nonnegative and bounded above by a constant). Hence,
|sB'(s)| < CB(s).
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Let t € M. Let us compute H'(t) and use the fact that u solves (SOP) to get
IVE(u)|?

(3.2)

Due to (2.2) we have (g(v),v) ~ h(||v]|)||v||> and by definition of B, (KLI) and (IKLI) we
immediately have B(E(u))||VE(u)||?> ~ E(u)h(y/E(u)). So,

(§(v),v) + eB(E(w)) [ VE(w)|[> ~ h([[o]})[[o]|* + eCE (u)h ( E(Lt)) -

We show that the second, third and fourth lines of (3.2) are smaller than this term, then (3.1)
is proved.
The second line of (3.2) is less than

B(E®w)
ec Gt E )P ol < ech (y/Ew) ) o]

Since T has property (K) and satisfies T(@(s)) ~ O(s)®'(s) < Cs~'0O(s)? and due to (IKLI)
and definition of B, the third line in (3.2) is less than

eCBEIIVE@I) oI < eCh (/£ ) o]
If E(u) < 4C||v||?, then (h satisfies property (K)) we have h(\/E(u))|[v||> < Ch(||v|)||v||* and

if E(u) > 4C||v||?, then h(\/E(u))|/v||* < gh(y/E(u))E(u). So, in either case we have that
lines two and three in (3.2) are less than

eCh([ol) ol + geh (y/Ew) ) ECw)

so they are less than the first line in (3.2) since we can make C small by taking & small enough.
The last line in (3.2) is (by definition of B and (2.3)) less than

eCB(E(u))[[VE|[h([lo[])][v]| < eC

1
oz 0 (VE@ ) mloD ol

< eCy/E(u)h([|o]])[[o]-

Applying the Young inequality ab < y(a) + §(b) with ¢(s) = s?h(s) and the convex conjugate

P we get
eC\E(Iol) o1 < gev (EG ) +eChloliniol)
< geEGh (/) +Ch(lol)lol?

since (sh(s)) < Cs?h(s) due to Lemma 3.1 below. Now, (3.1) is proven on M. If E(u(t)) — 0
for t — ty, we can see that H'(t) — —(g(v(to)), v(to)) = £'(tp) (due to the estimates above, all
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terms on the right-hand side of (3.2) except the first one tend to zero). By continuity of H, we
have H' = &’ on M, in particular (3.1) holds on M°.
We show that x(H(t)) ~ —H'(t). In fact,

X(H(D) < X(CCJolP + Ew))
< Clx(elP) + x(EG))
= (ol o1P + Byt (/200 ) )
< —CH'(t),

where we applied monotonicity in the first line, C-sublinearity and property (K) in the second
line (x has these properties by Lemma 3.2 below), definition of x in the third line and (3.1)
in the last inequality. On the other hand, by Lemma 3.2 also the inverse inequalities in C-
sublinearity and property (K) are valid, so we have

> x(c(lol* + E(w))))
> c(x(llol?) + x(E(u)))

- (h<||vu>||vuz+E<u>h< E<”>>>

> —cH'(t),

so x(H(t)) ~ —H'(t) is proved.
Let T =sup{t >0: H(t) > 0}. For any t € (0, T) we have proved

—ﬁ € [C,C].

Integrating this relation from ¢y to t we obtain
c(t —to) = Px(H(to)) < =Py (H(t)) < C(t —to) — Px(H(to))- (33)

If T < +oo, then we can see that —®, (H(t)) is bounded on (0, T), hence 0 < lim;_,7_ H(t) =
H(T), contradiction. Therefore, T = o0, (3.3) holds for all t > 0 and for ¢ large enough we
have

&t < c(t —tg) — Py (H(to)) < —Py(H(t)) < C(t—tg) — Dy (H(to)) < Ct.

Hence
c(=@y)H(Ct) < H(t) ~ E(u(t),0(t)) < C(—=Dy) ' (1),

which completes the proof of Theorem 2.1.

Lemma 3.1. Let ¢(s) = s?h(s) and ¢(r) = sup{rs — (s) : s > 0} be the convex conjugate to .
Then there exists C > 0 such that {(sh(s)) < Cs*h(s) for all s > 0.

Proof. Since 1 is convex, the one-sided derivatives i, (s) = s?h/_(s) + 2sh(s) are nondecreasing
functions and the interval [¢ (s), ¢/ (s)] is nonempty. Take sp > 0 arbitrarily and take r €
(¢ (s0), ¥ (s0)]. Then the function s — rs — {(s) attains its maximum in sp, hence §(r) =
rso — s3h(so). Since r > ' (so) = s3h’_(so) + 2s0h(so) > soh(so) and ¥ is increasing, we have
P(sol(s0)) < (r) = 150 —sgh(so) < ¥)(s0)so — s§h(so) = sgh'.(s0) + 2s5h(s0) — sgh(so) <
(c+2—1)s3h(sp). O
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Lemma 3.2. Function x(s) = sh(\/s) is C-sublinear and it has property (K). Moreover, x (s +t) >
3 II's, t > 0 and for every ¢ > 0 there exists ¢ > 0 such that x(cs) > ¢x(s).
2(x(s) +x(t)) for all s, t > 0 and for every c > > x(cs) = ex(s)

Proof. Since h has property (K), we have for a fixed K > 0
x(Ks) = Ksh(v/K+/s5) < KsC(VK)h(v/s) = KC(WK)x(s).

So, x has property (K) and since it is increasing, it is also C-sublinear. Since Y is increasing,
we also have x(s +t) > x(s), x(s +t) > x(t) and therefore x(s +t) > 1(x(s) + x(t)). From
property (K) we have for any fixed ¢ > 0

x(o) =x (Ges) < () xtes) = )

and the last property is proven. O

References

[1] M. ABDELLI, M. ANGUIANO, A. HARAUX, Existence, uniqueness and global behavior of the
solutions to some nonlinear vector equations in a finite dimensional Hilbert space, Nonlin-
ear Anal. 161(2017), 157-181. https://doi.org/10.1016/j.na.2017.06.001; MR3672999;
Zbl 1381.34033

[2] P. BEGour, J. BoLTE, M. A. JENDOUBI, On damped second-order gradient systems, J. Dif-
ferential Equations 259(2015), No. 7, 3115-3143. https://doi.org/10.1016/j.jde.2015.
04.016; MR3360667; Zbl 1347.34082

[3] T. BArRTA, Rate of convergence to equilibrium and bLojasiewicz-type estimates, J. Dy-
nam. Differential Equations 29(2017), No. 4, 1553-1568. https://doi.org/10.1007/
$10884-016-9549-z; MR3736148; Zbl 06829893

[4] T. BARTA, Decay estimates for solutions of abstract wave equations with general damping
function, Electron. ]. Differential Equations 2016, No. 334, 1-17. MR3604779; Zbl 1368.35191

[5] T. BARTA, Sharp and optimal decay estimates for solutions of gradient-like systems,
preprint, 2017.

[6] T. BArRTA, R. CHiLL, E. FASANGOVA, Every ordinary differential equation with a strict
Lyapunov function is a gradient system, Monatsh. Math. 166(2012), 57-72. https://doi.
org/10.1007/s00605-011-0322-4; MR2901252; Zbl 1253.37019

[7] I. Ben Hassen, A. Haraux, Convergence and decay estimates for a class of sec-
ond order dissipative equations involving a non-negative potential energy, J. Funct.
Anal. 260(2011), No. 10, 2933-2963. https://doi.org/10.1016/j.jfa.2011.02.010;
MR2774060; Zbl 1248.34092

[8] L. CuerGul, Convergence of global and bounded solutions of a second order gradi-
ent like system with nonlinear dissipation and analytic nonlinearity. J. Dynam. Differen-
tial Equations 20(2008), No. 3, 643-652. https://doi.org/10.1007/s10884-007-9099-5;
MR2429439; Zbl 1167.34017


https://doi.org/10.1016/j.na.2017.06.001
https://www.ams.org/mathscinet-getitem?mr=3672999
https://zbmath.org/?q=an:1381.34033
https://doi.org/10.1016/j.jde.2015.04.016
https://doi.org/10.1016/j.jde.2015.04.016
https://www.ams.org/mathscinet-getitem?mr=3360667
https://zbmath.org/?q=an:1347.34082
https://doi.org/10.1007/s10884-016-9549-z
https://doi.org/10.1007/s10884-016-9549-z
https://www.ams.org/mathscinet-getitem?mr=3736148
https://zbmath.org/?q=an:06829893
https://www.ams.org/mathscinet-getitem?mr=3604779
https://zbmath.org/?q=an:1368.35191
https://doi.org/10.1007/s00605-011-0322-4
https://doi.org/10.1007/s00605-011-0322-4
https://www.ams.org/mathscinet-getitem?mr=2901252
https://zbmath.org/?q=an:1253.37019
https://doi.org/10.1016/j.jfa.2011.02.010
https://www.ams.org/mathscinet-getitem?mr=2774060
https://zbmath.org/?q=an:1248.34092
https://doi.org/10.1007/s10884-007-9099-5
https://www.ams.org/mathscinet-getitem?mr=2429439
https://zbmath.org/?q=an:1167.34017

Optimal decay for damped second order problems 9

[9] A. Haraux, Sharp decay estimates of the solutions to a class of nonlinear second
order ODE’s, Anal. Appl. (Singap.) 9(2011), No. 1, 49-69. https://doi.org/10.1142/
S021953051100173X; MR2763360; Zbl 1227.34052

[10] K. KurDpyka, On gradients of functions definable in o-minimal structures, Ann. Inst.
Fourier (Grenoble) 48(1998), 769-783. https://doi.org/10.5802/aif.1638; MR1644089;
Zbl 0934.32009

[11] S. LojasiEwicz, Une propriété topologique des sous-ensembles analytiques réels (in
French), in: Colloques internationaux du C.N.R.S.: Les équations aux dérivées partielles, Paris
(1962), Editions du C.N.R.S., Paris, 1963, pp. 87-89. https://doi.org/10.1006/jdeq.
1997 .3393; MR0160856; Zbl 0915.34060


https://doi.org/10.1142/S021953051100173X
https://doi.org/10.1142/S021953051100173X
https://www.ams.org/mathscinet-getitem?mr=2763360
https://zbmath.org/?q=an:1227.34052
https://doi.org/10.5802/aif.1638
https://www.ams.org/mathscinet-getitem?mr=1644089
https://zbmath.org/?q=an:0934.32009
https://doi.org/10.1006/jdeq.1997.3393
https://doi.org/10.1006/jdeq.1997.3393
https://www.ams.org/mathscinet-getitem?mr=0160856
https://zbmath.org/?q=an:0915.34060

	Introduction
	Notations and the main result
	Proof of Theorem 2.1

