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Abstract. In the theory of progressive contractions an equation such as

x(t) = L(t) +
∫ t

0
A(t− s)[ f (s, x(s)) + g(s, x(s− r(s))]ds,

with initial function ω with ω(0) = L(0) defined by t ≤ 0 =⇒ x(t) = ω(t) is
studied on an interval [0, E] with r(t) ≥ α > 0. The interval [0, E] is divided into
parts by 0 = T0 < T1 < · · · < Tn = E with Ti − Ti−1 < α. It is assumed that f
satisfies a Lipschitz condition, but there is no growth condition on g. When we try for
a contraction on [0, T1] the terms with g add to zero and we get a unique solution ξ1 on
[0, T1]. Then we get a complete metric space on [0, T2] with all functions equal to ξ1 on
[0, T1] enabling us to get a contraction. In n steps we have obtained a solution on [0, E].
When r(t) > 0 on [0, ∞) we obtain a unique solution on that interval as follows. As we
let E = 1, 2, . . . we obtain a sequence of solutions on [0, n] which we extend to [0, ∞) by
a horizontal line, thereby obtaining functions converging uniformly on compact sets to
a solution on [0, ∞). Lemma 2.1 extends progressive contractions to delay equations.
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1 Introduction

In earlier papers [2–5] we studied variants of integral equations of the form

x(t) = g(t, x(t)) +
∫ t

0
A(t− s) f (s, x(s))ds

and introduced a technique which we called progressive contractions which allowed us to show:

1. Lipschitz maps become contractions;

2. continuous maps become compact maps;
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3. Krasnoselskii’s theorem on the sum of two operators can collapse into Schauder’s theorem;

4. the sum of two contractions can be a contraction even when the sum of the contraction
constants exceed one;

5. solve a classical conjecture [9, p. 39] that certain maps of the unit ball in a Banach space
have a fixed point.

The purpose of this note is to broaden the application of progressive contractions to obtain
global unique solutions of delay integral equations of the form

x(t) = L(t) +
∫ t

0
A(t− s)[ f (s, x(s)) + g(s, x(s− r(s))]ds (1.1)

with a continuous initial function ω having several important properties given in (2.4) and
(2.5) while satisfying x(t− r(t)) = ω(t− r(t)) when t− r(t) ≤ 0 and t ≥ 0. It is assumed that
f satisfies a global Lipschitz condition, g and r are continuous, and r(t) > 0. The Lipschitz
constant can grow with t. Our Lemma 2.1 is the key to the extension to delay equations.

The method is simple and it avoids classical arguments concerning problems which must
be overcome if r(t) tends to zero very quickly, while g(t, x) increases at an arbitrarily large
rate. Not only do progressive contractions get us past both difficulties but the questions do
not even arise in the process. This is in sharp contrast to methods seen in the literature in
which these problems force us to invoke, explicitly or implicitly, Zorn’s lemma ([7, p. 42],
[8, pp. 87– 98]) to obtain a maximal solution.

We point out that (1.1) is general. It includes, for example standard delay differential
equations

x′(t) = f (t, x(t)) + g(t, x(t− r(t))

and more delay terms are added without difficulty so long as the added terms are either
Lipschitz or the delay does not vanish.

The kernel A(t− s) plays a main role in progressive contractions as seen in (2.3) and (2.11).
The kernel enters into the study of a typical problem

x′(t) = f (t, x(t)) + g(t, x(t− r(t))

by converting it to a form of (1.1). Write the equation as

[x′(t) + x(t)]et = et[x(t) + f (t, x(t)) + g(t, x(t− r(t))]

or
(x(t)et)′ = et[x(t) + f (t, x(t)) + g(t, x(t− r(t))]

so that

x(t) = x(0)e−t +
∫ t

0
e−(t−s)[x(s) + f (s, x(s)) + g(s, x(s− r(s))]ds.

2 The setting

In (1.1) it is assumed that r : [0, ∞) → (0, ∞), f , g : <× < → < are continuous and for each
E > 0 there is a K > 0 and α > 0 such that 0 ≤ t ≤ E and x, y ∈ < imply that

| f (t, x)− f (t, y)| ≤ K|x− y|, r(t) ≥ α. (2.1)
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Note that K can grow with E and, in fact, be unbounded. Also, A : (0, ∞) → < is continuous
and

lim
t↓0

∫ t

0
|A(s)|ds = 0. (2.2)

Select β < 1 and find T with

0 < T < α & K
∫ T

0
|A(s)|ds < β. (2.3)

For the E > 0 there exists H > 0 such that 0 ≤ t ≤ E implies that

− H ≤ t− r(t) (2.4)

and there is a continuous initial function

ω(t) : [−H, 0]→ <, ω(0) = L(0),

with

x(t− r(t)) = ω(t− r(t)), −H ≤ t− r(t) ≤ 0. (2.5)

Progressive contractions allow both K and H to grow with E and be unbounded, while α

can approach zero.
Now we are going to divide up the interval [0, E] into n equal segments of length S on

which our mapping derived from (1.1) will be a contraction yielding a unique segment of the
solution of (1.1) and each of these segments will allow us to ignore g(t, x(t− r(t)) in the future
contraction arguments.

For the T of (2.3) choose S with 0 < S < T so that nS = E and label points on [0, E] by

0 = T0 < T1 < · · · < Tn = E, Ti − Ti−1 = S. (2.6)

The following simple result is a main theorem for delay equations to be treated by pro-
gressive contractions.

Lemma 2.1. If Ti−1 ≤ t ≤ Ti and if φ(t) = ψ(t) for −H ≤ t ≤ Ti−1 then

g(t, φ(t− r(t))− g(t, ψ(t− r(t)) ≡ 0. (2.7)

Proof. Now for Ti−1 ≤ t ≤ Ti we have

t− r(t) ≤ t− α < Ti − T < Ti − S = Ti−1.

Hence, the arguments in (2.7) are equal.

We turn now to our existence theorem and we name the type of proof a progressive con-
traction. The complete metric space used here is found in El’sgol’ts [6, p. 16] and repeated in
Burton [1, p. 177].

Theorem 2.2. Let (2.1)–(2.6) hold for (1.1). For every E > 0 there is a unique solution of (1.1) on
[0, E].
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Proof. We have divided the interval [0, E] into n equal parts, each of length S < T, denoting
the end points by

T0 = 0, T1, T2, . . . , Tn = E.

Step 1. Let (M1, ‖ · ‖1) be the complete metric space of continuous functions φ : [−H, T1]→ <
with the supremum metric and with φ(t) = ω(t) for −H ≤ t ≤ 0 . Define a mapping
P1 : M1 → M1 by φ ∈ M1 and −H ≤ t ≤ 0 implies that (P1φ)(t) = ω(t), while 0 < t ≤ T1

implies that

(P1φ)(t) = L(t) +
∫ t

0
A(t− s)[ f (s, φ(s)) + g(s, φ(s− r(s))]ds. (2.8)

Since ω(0) = L(0) in (2.5), (P1φ) is continuous.
For φ, ψ ∈ M1 and −H ≤ t ≤ T1 we have

|(P1φ)(t)− (P1ψ)(t)| ≤
∫ t

0
|A(t− s)|[| f (s, φ(s))− f (s, ψ(s))|

+ |g(s, φ(s− r(s))− g(s, ψ(s− r(s))|]ds

and by Lemma 2.1

≤ K
∫ t

0
|A(t− s)||φ(s)− ψ(s)|ds

≤ K|φ− ψ|1
∫ T1

0
|A(s)|ds

≤ β|φ− ψ|1,

a contraction with a unique fixed point ξ1 on [−H, T1] and for 0 ≤ t ≤ T1 satisfying

(P1ξ1)(t) = ξ1(t) = L(t) +
∫ t

0
A(t− s)[ f (s, ξ1(s)) + g(s, ξ1(s− r(s))]ds. (2.9)

Note that ξ1(0) = L(0) and ξ1(t) = ω(t) for −H ≤ t ≤ 0.

Step 2. Let (M2, ‖ · ‖2) be the complete metric space of continuous functions φ : [−H, T2]→ <
with the supremum metric and

φ(t) = ξ1(t) on [−H, T1].

Define P2 : M2 → M2 by φ ∈ M2 and −H ≤ t ≤ T1 implies (P2φ)(t) = ξ1(t), while
T1 < t ≤ T2 implies

(P2φ)(t) = L(t) +
∫ t

0
A(t− s)[ f (s, φ(s)) + g(s, φ(s− r(s))]ds. (2.10)

We now prove that P2φ is continuous on [−H, T2). Since P2φ = ξ1(t) on [−H, T1] then
P2 is continuous on [−H, T1) yet continuous from the left at the endpoint T1. Also P2φ is
continuous on (T1, T2] for L is continuous and the integrand in (2.10) consists of continuous
functions, yet it is continuous from the right at T1. It remains to prove that P2φ is continuous
at T1. Indeed, we have

(P2φ)(T1) = ξ1(T1)

= L(T1) +
∫ T1

0
A(T1 − s)[ f (s, φ(s)) + g(s, φ(s− r(s))]ds

= lim
t↓T1

(P2φ)(t).
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So P2φ agrees with ξ1 on [−H, T1] (by definition) and it is continuous on the whole interval
[−H, T2], and this means that P2 :M2 →M2.

We will need a change of variable to see that by (2.3) and T1 ≤ t ≤ T2 we have

K
∫ t

T1

|A(t− s)|ds < β. (2.11)

For φ, ψ ∈ M2 then

|(P2φ)(t)− (P2ψ)(t)| ≤
∫ t

0
|A(t− s)|[| f (s, φ(s))− f (s, ψ(s))|

+ |g(s, φ(s− r(s))− g(s, ψ(s− r(s))]ds

(by Lemma 2.1)

≤
∫ t

0
|A(t− s)|K|φ(s)− ψ(s)|ds

(since φ(t) = ψ(t) = ξ1(t) on [−H, T1], now take t > T1)

≤
∫ t

T1

|A(t− s)|K|φ(s)− ψ(s)|ds

≤
[ ∫ t

T1

K|A(t− s)|ds
]
|φ− ψ|2

≤ β|φ− ψ|2

a contraction on [−H, T2] with unique fixed point ξ2 on that entire interval. It is a unique
continuous solution of (1.1) on [0, T2] and it agrees with ξ1 on [−H, T1] by construction.

Step 3. The next step is essentially the inductive hypothesis. Here is a sketch of what we
are doing. We define the complete metric space (M3, ‖ · ‖3) of continuous functions φ :
[−H, T3] → < with φ(t) = ξ2 on [−H, T2]. But ξ2 is a fixed point and so P3 would be defined
as in Step 2 and mapM3 intoM3. Exactly as in Step 2 we obtain a continuous solution ξ3 on
[0, T3]. By induction we then would obtain a unique continuous solution on [0, E]. While we
feel this is sufficient for a complete understanding, here are the induction details.

For 2 < i ≤ n let ξi−1 be the unique solution of (1.1) on [0, Ti−1]. Let (Mi, | · |i) be the
complete metric space of continuous functions φ : [−H, Ti] → < with the supremum metric
and φ = ξi−1 on [−H, Ti−1]. Define Pi :Mi →Mi by φ ∈ Mi implies that (Piφ(t)) = ξi−1 on
[−H, Ti−1] and for 0 ≤ t ≤ Ti let

(Piφ)(t) = L(t) +
∫ t

0
A(t− s)[ f (s, φ(s)) + g(s, φ(s− r(s))]ds.

Continuity of the function Piφ is justified as in Step 2.
To see that this is a contraction, let φ, ψ ∈ Mi and −H ≤ t ≤ Ti and use Lemma 2.1 to see

that

|(Piφ)(t)− (Piψ)(t)| ≤
∫ t

0
|A(t− s)|| f (s, φ(s))− f (s, ψ(s))|ds

≤
∫ t

0
|A(t− s)|K|φ(s)− ψ(s)|ds.

Now, use φ = ψ on [0, Ti−1] to see that Ti−1 is the lower limit. Next, take Ti−1 < t to see that
the last quantity is

≤
[ ∫ t

Ti−1

K|A(t− s)|ds
]
|φ− ψ|i.
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Next use a change of variable to see that this quantity is

≤
[ ∫ T1

0
K|A(s)|ds

]
|φ− ψ|i

≤ β|φ− ψ|i
a contraction with unique fixed point ξi on [−H, Ti]. This completes the proof.

It is to be noted that as E→ ∞, the constant K may also tend to infinity. Still, we determine
T from the same relation; as K increases, T decreases. The process works for any E > 0. This
is important for our next result in that we need to see that we can let E → ∞ and always get
a solution on [0, E].

We will now show that we can select a well-defined function on [0, ∞) which is a unique
solution of (1.1) and it involves no translations or unfinished steps on the road to a solution
on [0, ∞).

Theorem 2.3. Under the conditions of Theorem 2.2 with r(t) > 0 on [0, ∞) there is a unique solution
of (1.1) on [0, ∞).

Proof. Using Theorem 2.2 we will obtain a sequence of uniformly continuous functions on
[0, ∞) which converge uniformly on compact sets to a continuous function which is the unique
solution of (1.1). Here are the details.

For each positive integer n use Theorem 2.2 to obtain a solution of (1.1) on [0, n]. Then
denote by xn(t) the solution on [0, n] extended to a function on [0, ∞) by xn(t) = xn(n) for
t ≥ n. This sequence converges uniformly on compact sets to a continuous function, x(t), a
solution of (1.1) because at every t the function x(t) agrees with a solution xn(t) where n > t.
This completes the proof.
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