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1 Introduction

The following problem

—div (]Vu|”*2 Vu) +|ulP2u = f(x,u) inQ

. (1.1)

u e W,"(Q).
has been considered under many assumptions on p, f, Q C RN. One of the questions is under
what assumptions does the problem have infinitely many non-negative solutions. The answer
is obtained by means of various methods; for instance: sub-super solution arguments; the
general variational principle of Ricceri; the fountain theorems; the Nehari manifold method;
continuity of certain superposition operators. When the nonlinear term has an appropriate
oscillatory behavior at zero or at infinity, the existence of infinitely many solutions can be
shown in two steps.

1. Firstly, by showing that there exists a sequence {u;} of critical points of an energy
functional I corresponding to the problem.

2. Secondly, by showing that the sequence contains infinitely many distinct elements.
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2 R. Stegliiski

There are at least two ways to obtain the first step. The existence of the sequence of critical
points can be obtained by showing that

1A. the global minima of the energy functional restricted to suitable chosen sets are local
minima of I (see [1,4-6,8]); or

1B. the global minima of suitable truncated problems are local minima of I (see [2]).
To carry out the second step, i.e. to show that there are infinitely many distinct uy, it is
enough to obtain I(uy) < 0 and limy_, ;o I(ux) = 0 in the case of oscillatory behavior at zero
or limy o I(1y) = —oo in the case of oscillatory behavior at infinity. For this, the above

mentioned papers use the following assumptions: for a = 0" or a = +o0

(U") there exists an open bounded set () C Q) such that

L

v

lim inf Flxs) > —] and limsup Flxs)
s—a sP s—a sP

uniformly in x € (), where I, L are some positive constants or L = +o0 and F(x,s) =

Jo fx, t)at.

Let us note here that [1] assume (O = Q = RN. But this is contradictory with other
assumptions in this paper (see below).

In [9] we have attempted to translate the above mentioned results into the discrete case
on integers. It has emerged that the condition (U”) corresponds to a condition in which the
oscillatory behavior of nonlinearity f : Z x R — R occurs on a finite number of integers.
Consequently, the problem is essentially reduced to a finite dimensional one. In [9] we found
another condition, which uses infinite number of elements of Z and which has not its coun-
terpart in the continuous case.

In the present paper we find conditions on nonlinearity f, which are more general than
condition (U"). We give easy verifiable examples of such nonlinearities and we show that for
some of them we have

. F(x,s)
lim

s—a sP

=0

for all x € Q) and so (U?) is not satisfied.

The paper is organized as follows. In Section 2 we follow [1], where the strategy 1A is
used. In Section 3 we follow [2], where the strategy 1B is used. Here we observe that, if () is a
bounded subset of RY, the strategy 1B provides us with alternative proofs of results obtained
in [6,8]. The examples are also given.

2 The strategy 1A

In this section we assume () = RN. From the variational viewpoint, one of the difficulties in
addressing problem (1.1) in R arises from the lack of compactness of the Sobolev embed-
dings: W7 (RN) cannot be embedded compactly into L1(RY), g > 1. In [3], Kristdly showed
that W,”” (RN), the subspace of radially symmetric functions of W1#(RN), can be embedded
compactly into L®(IRN) whenever 2 < N < p < +oo.
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Let 2 < N < p < +oco. The energy functional I : WP (RN) — R associated with problem
(1.1)

I(u) = /]RN;(|Vu|P+|u|p) dx—/]RNF(x,u)dx,

is well defined, by the embedding W'?(RN) < L®(R") and the condition (F,) below. More-
over, standard arguments show that I is of class C! on W' (RN) (see [7] for a similar proof).

For 0 < r < R define A(r,R) = {x e RN : r < [x|] < R} = {x e RN : ||x| - ZB| < &1}
and A'(r,R) = {x € RN : ||x| — 58| < 2*}. Now, we make the following assumptions on
function f.

(F1) f:RN x [0, +00) — R satisfies the Carathéodory condition and is radial with respect to
the first argument, with f(x,0) = 0 for almost all x € RY;

(F2) supj < [f(-1)] € LY(RN) for each s > 0;

(F)) there are two sequences {a }rew, {bk}ken such that 0 < byyq < ax < by, limy, o by = 0,
and f(x,s) <0 for almost all x € RN, and s € [a, by], k € N;

(Ff) there exist y >0, so >0, >0, L > ZNH(%(%)’[7 + % + l), a sequence of nonnegative
numbers {r¢ }xen and sequences of positive numbers {Ri }xew, {7k }renw such that

(i) limyyeo iy = 0 and Ry — 1y > «y for all k € IN;
(ii) F(x,s) > —Is? fors € (0,s9) and a.e. x € A(r,, Rg) \ A’ (11, Ry), k € N;
(iii) F(x,1¢) > Lyl for a.e. x € A'(ry, Ry) and every k € IN;

(F5°) there are two sequences {ai }reN, {0k }rew such that 0 < ap < by < agyq, imy_, o2 =
+00, and f(x,s) <0 for almost all x € RN and s € [ay, bx], k € IN;

(F°) there exist y >0, s.o >0, 1 >0, L > 2N+1(%(%)p + % +1), a sequence of nonnegative
numbers {7t }xew and sequences of positive numbers { Ry }rew, {#k }renw such that

(i) limy 4o g = +o00 and Ry — 1y > 7y for all k € IN;
(ii) F(x,s) > —Is? for s € (Seo, +0) and a.e. x € A(ry, Rx) \ A’ (rr, Ri), k € N;
(iii) F(x,nc) > Ly! for a.e. x € A'(ry, Ri) and every k € N.

In the sequel we extend function f on the whole RN x R by taking f(x,s) = 0 for a.e.
x € RN and s < 0. Observe that (U") implies (F{), a =0 ora = oo, when f : RN x R — R is
radial with respect to the first argument.

Now we are ready to state our first results.

Theorem 2.1. Let 2 < N < p < +oo. Let f satisfy (F1), (F2), (EY) and (FY). Then there exists a
sequence {uy} C X of distinct radially symmetric, nonnegative weak solutions of (1.1) such that

k—+c0

Theorem 2.2. Let 2 < N < p < +oo. Let f satisfy (Fy), (F,), (F5°) and (F;°). Then there exists a
sequence {uy} C X of distinct radially symmetric, nonnegative weak solutions of (1.1) such that

kgrfwl(“k) = —oco and kgffoo [tk [y vy = o0



4 R. Steglitiski

In [1] the author considers problem (1.1) with a variable exponent p € C(RN) which
is radial and 2 < N < p~ := infgn p(x) < pt = supgy p(x) < +o0. The only difference in
hypotheses concerns (F}) and (F{°), The author assumes that there exist iy > 0 and a sequence
{"k }ken such that F(x, 7)) > ]’loﬂ;: for almost all x € RN. But this stands in contradiction with
hypothesis (F,). Indeed, (F,) gives B € L!(RY) such that supjy <, |f(x,t)] < B(x) for all
x € RN. Then [F(x, )| = | [ f(x,s)ds| < [ SUP |y, |f(x, £)|ds < B(x)m for all x € RN
and so F(-, ;1) € LY(RN). On the other hand, the inequality F(x,7;) > hoy} for almost all
x € RN gives F(-,171) € L'(RN) and we obtain a contradiction.

Sketch of the proofs of Theorem 2.1 and Theorem 2.2. The beginning is the same in both proofs.
Let I stand for the restriction of I to W, (RYN). Due to the principle of symmetric criticality
of Palais (see [10]), the critical points of I; are critical points of I as well. By the compactness
embedding of WP (RYN) into L®(IRN), the functional I is sequentially weakly lower semicon-
tinuous on er P (RN ) [1, Proposition 3.1]. Let us fix number r < 0 arbitrarily, and for every

k € IN, consider the set
Sk = {u € W,l’p(IRN) s <u(x) < by a.e.xG]RN}. 2.1

Then Sy is convex and closed in W, (RYN), by Morrey inequality, and so weakly closed. Next,
we show that the functional I is bounded from below on Sy and its infimum on S; is attained
at u; € Sy, which satisfies 0 < u(x) < a; for almost all x € RN [1, Proposition 3.2 and
Proposition 3.3] and we conclude that u; is also a local minimum point of I; in er P (RN)
[1, Proposition 3.4].

Now, let us continue with the proof of Theorem 2.1. Since |[uk|[;« gy < ax for all k € N
and limy_, o ax = 0, we have lim;_., ||uk|\Lw(]RN) = 0. To show that the sequence {uj}ren
contains infinitely many distinct elements, it is enough to show that I (1) < 0, which gives
the nontriviality of uy. Let vy, so, I, L, {ri}xen, {Rk}ken, {7k }kew be such as in (FY). Up to
extracting a subsequence, we may assume that {7, xen satisfies 17 < by for all k € IN. Write
Ag = A(ri, Ri), Ay = A'(r, Ri). It is easy to check that

1
meas Aj, > SN meas Ag (2.2)

and meas Ay > wyN, where w is the volume of the unit ball in RY. Define for every k € N
the function wy : RN — R by

0 if x € RN\ A
wi(x) = < Tk ifx € 4 =
s (U7 [ = 5gm]) ifxe A

Then wy € Sy and

[0l gy = [, EConeNdx = [ P wi(x)dx
k

Ig(wy) =
() (A\AY)

1
p

P
< 1 < 417k > meas (A \ Ay) + 117,5 meas Ay —/ F(xfﬂk)dx‘i‘/ I (wye(x))Pdx
p Al A\ A

p \ Rk — 1

IN

1 /4\"* 1
E (7) 175 meas Ay + ;ﬂ]f meas Ay — L;y,f meas A} + liyf meas Ay

1 /4\7 1 1
< 1’ meas A [ <> —i——L—i—l]
Mk o \y p  2NTI
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where in the last inequality we have used (2.2). Since L > 2N*1 (% (f) +1 5 +1), this forces
Ig(wg) < 0, which gives Ig(u) < 0. Moreover,

0> Io(iy) > —/RN F(x, u (x))dx > —ay /RN sup |f(x, )| dx

[t]<aq

and as limy_, , o ax = 0, we have limy_., Ig(uy) = 0. Further, we have

1
— g ||Dn = I (ux —|—/ (x, ug(x dx<ak/ sup |f(x,t)]dx,
p Wlp(]RN RN |t‘§ILI)1

50 limy, 4 oo [|ttk[| pyrpryy = 0

Now, let us continue with the proof of Theorem 2.2. In this case, to show that the sequence
{uy }ren contains infinitely many distinct elements, it is enough to show that limy_,, I (1) =
—oo. Let 7, Seo, I, L, {ri}ren, {Rik}ken, {Wk}ken be such as in (F°). Up to extracting a
subsequence, we may assume that {7 } e satisfies 17 < by for all k € N and 77 > se. Taking
wy from (2.3) and using (F;°), we obtain

1
Ig(wg) = » Hwngvl,p(]RN) - /A;{ F(x, wi(x))dx — ~/(Ak\A’)ﬁ{wk>soo} F(x, wi(x))dx

— F(x,we(x))dx
/<Ak\A/k)n{wk<sm} )
e A+ 1yf Ax— Ly} Al + I A
=2\ 1, meas Ay + piyk meas Ay 1, meas Ay + Iy, meas Ag
+ 50 || sup |f(-1)]
te[0,500] L1(RN)
1 /4\" 1 1
< 17f meas A [ <> +- - 2N+1L+l:|+soo sup [f(-,1)]
P\ P t€[0,500) L1(RN)

Since L > ZNH( ( )+ 5+ 1), meas Ay > wyN, limy oo ffx = +o00 and Ig (ux) < Ig(wy), we
conclude that hmk_>c>o IG(uk) —c0.

To show that limy_, | « Hukuwl,p(]RN) = 400, we argue by contradiction. Let us assume that
there exists a subsequence {uy, } of {u;} which is bounded in E. Thus, it is also bounded in
L*(RYN), by Morrey inequality. As limy_, . by = 400, there exists ko € N such that uy, € S,
for all I € N. Since {I(ux)} is nonincreasing, we have for all k; > ko

I(uko) = inf I( ) < I(L{k’) S I(l/lko),

ues ko
ie. I(uy,) = I(u,) for all k; > ko. But this fact contradics with limy_, o I(1,) = —o0. O
Now we will give couple of examples.

Example 2.3. Let us start with an example of function which satisfies (F;), (F), (F), (U°).

Let {1k }xen be a decreasing sequence of positive numbers such that 73 < 1, 7541 < %iyk for all
k € N. Let f : R — R be defined by

fls)=8L Y M — ’7k+1 (2’7k_2 s —

kEN ’7k

3
il > i) (8




6 R. Steglitiski

where 14 is the indicator of A and L > 2N “(%4” + % +1). Obviously, f is continuous.
Let Q € Li(RYN) be radially symmetric and Q > 1 on B, the unit ball in RN. Now, let
f: RN xR — R be defined by f(x,s) = Q(x)f(s). Then f satisfies (F;), (F;) and (FJ) with
ar = ffx11 and by = 1 for all k € N. Since F > 0 and F(x,7x) = Q(x)L Y, 5 (17 — mpﬂ) > Ly}
for all x € By and k € N, the condition (U°) is satisfied with O/ = B;.

Example 2.4. Now we give an example of function which satisfies (F;), (F), (F)), (F)) and
does not satisfy (U°). Let {r¢ }xew be an increasing sequence such that 7y > 1and rpy 1 > 7+ 1
for every k € IN. Let {a; }ren be a decreasing sequence of positive numbers such that a; <1,
Agiq < %uk forall k € N, and ) ;e a]f_lmeas Ay < oo, where Ay = A(ry, e+ 1). Let] =0 and
L>2NTH(% 4 1), Let f: RN x R — R be defined by
/1
f(x,s) =8L Z ali) <2ak -2 ) .l[rk/kJrl]X[%”k,ﬂk](’x‘ /)
keIN

where 145 is the indicator of A x B. Obviously, f satisfies (F;), and (F{). Since for all s > 0
and x € RN

S—EH
4k

sup |f(x,£)] < sup |f(x,t)| =4L Y af " 1 0y (J]),

[t <s [t|<aq kelN
the condition (F,) is satisfied. Moreover, F > 0 and F(x,a;) = La} for all x € Ay and k € N,

which gives (F)). Now, for any x € RY there is ko such that for all 0 < s < ag, we have
F(x s) _

F(x,s) = 0. This means that lim, o+ = 0 and f does not satisfy condition (U°).

Example 2.5. Now we will give an example of a function which satisfies (F;), (F), (F5°),
(U®). Let {nx }kew be an increasing sequence of positive numbers such that ;. > 1,1 + 1 for
all k € N, where 7o = 0. Let f : R — R be defined by

1
=2L 2 77k 1 < —2|s =k — ZD '1[77k,’7k+1](s)’

kelN
where L > 2N +1( 4p + +1). Obviously, f is continuous. Let Q € L;(RN) be radially sym-
metric and Q > 1 on B1 Now, let f : RN x R — R be defined by f(x,s) = Q(x)f(s). Then
f satisfies (Fy), (F2) and (E9) with a; = 7, + 1 and by = 14,1 for all k € N. Since F > 0 and
F(x,m) = Q(x)LYf_; (nf =5 ) > Lyf for all x € By and k € N, the condition (U%) is
satisfied with )/ = B;.

Example 2.6. Now we will give an example of a function which satisfies (F;), (E), (F5°),
(F;°) and does not satisfy (U*). Let {rk}xen be an increasing sequence such that r; > 1 and
rky1 > tx + 1 for every k € IN. Let {a; }rew be an increasing sequence of positive numbers such
thata; > 1,451 —1 > a; forallk € N. Let/ =0and L >2N+1(%+%). Let f: RN xR — R
be defined by

f(x,s)=2LY  af (1 -2

1
§ —ax + 2‘) ) 1[rk,rk+1]><[ak—1,ak](’x| /S)'

kelN
Obviously, f satisfies (F;), and (F5®). Since for all s > 0 and x € RN
min{l:s<a; }
sup |f(x' t)| <2L Z ulf : 1[rk,rk+1](|x|)/
[t]<s k=1

the condition (F,) is satisfied. Moreover, F > 0 and F(x,a;) = La} for all x € Ay and k € N,

which gives (F]). Now, for any x € RN there is ko such that for all a5, < s < +co we have

F(x s) _

F(x,s) < La,f This means that lims_, e = 0 and f does not satisfy condition (U%).
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3 The strategy 1B

In this section we follow [2], where the strategy 1B was used. In this paper the perturbed
quasilinear elliptic problem with oscillatory terms was investigated. The unperturbed version
reads as follows

{—div (IVulP Vu) + |ulP?u=Q(x)f(x,u), x€Q )

ue w,”(Q)

where p > 1 and Q is a domain in RN which may be unbounded. Let us enunciate the
assumptions.

(Q) Q: 0 — Ris a positive potential such that Q € L'(Q) N L¥ (Q)) where % + % =1

(H1) f: QxR — R satisfies the Carathéodory condition with f(x,0) = 0 for almost all
x € Q)

(HY) SUPye (o, 1] |f(-,£)] € L®(Q) for some Ty > 0;

(HY) there are two sequences {ay }xen, {bk }ren such that 0 < by < ay < by, limy_, oo by = 0,
and f(x,s) <0 for almost all x € Q), and s € [ay, by], k € IN;

(Hg) there exist sp > 0,1y > 0, a sequence {xi }xen in Q) and sequences of positive numbers
{7 tkews { Li bkens {77k trew such that

(i) limyyoe 7 = 0 and

1 1/2\" 1 1N
S 10y Lp ) e\ 7 aw ) pan ke o Qs p, ate
rk/2 k

for all k € IN;
(ii) F(x,s) > —lps? for s € (0,50) and a.e. x € B, (xx) \ By, s2(xx), k € IN;
(iii) F(x,1c) > Lyny! for a.e. x € B, j»(xx) and every k € N;
(Hy) supsejor) If(+,t)] € L*(Q) forany T > 0;

(HY®) there are two sequences {a }ren, {Uk bkew such that 0 < ap < by < agyq, imy oo ax =
+00, and f(x,s) < 0 for almost all x € Q and s € [a;, bi], k € IN;

(Hy®) there exist seo > 1,100 > 0, a sequence {xy}ren in QO and sequences of positive numbers
{re}kens {Li tkeN, {7k b ken such that

(i) limyte 75 = 400 and

> o3 (2 ) ot (1 )+ e +ie ) )
kom0 . o\ " AHN AN [e3) x x
1QIlLi B, (e LP \re) 5\ 2N )7 p2N L (By (0)\ By, 2 ()

for all k € IN;
(i) F(x,s) > —lws? for s € (s, +00) and a.e. x € By, (xx) \ By, s2(xx), k € N;
(iii) F(x,1c) > Ly for a.e. x € B, j»(xx) and every k € N,
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where B,(x) = {y e RN : |y — x| < r}.
Since we only search the solutions belonging to W&’p (Q)), we may relax hypothesis (Q) and

(H)" in [2] to our one (see [2], Remark 3.1; see also [8]). In the sequel we extend the function
f on the whole Q) x R by taking f(x,s) =0 for a.e. x € Q and s < 0.

Now we can formulate the following theorems.

Theorem 3.1. Let p > 1. Assume (Q), (Hy), (HY), (HY), (HY). Then there exist infinitely many
nonnegative weak solutions {uy} for (P) such that

ETOO ||uk||L°°(Q) = kgrfoo HukHWS'l’(Q) =0.

Theorem 3.2. Let p > 1. Assume (Q), (H1), (HY®), (HY), (H{®). Then there exist infinitely many
nonnegative weak solutions {uy} for (P) such that

li w(O)) = .
A el o) = oo

Sketch of the proofs of Theorem 3.1 and Theorem 3.2. The beginnings in both proofs are the same.
For k € IN, define the truncation function

0, (s<0ors>ar+1) and x € ),
fi(x,8) = < f(x,s), 0<s<agrand x € Q,
flx,a) (ag+1—5s), ap<s<a+1landxec Q.

and consider the equation
—div (|Vul" Vu) + [u]" 2 u = Q(x) fi(x,u) x€Q ®)
u e W (Q). ¢

A weak solution of the problem (Py) is a critical point of the energy functional J: Wé’p (Q)—R,
1 p
M@:p/qu+m - [ Q)

where Fi(x,s) = fos fr(x,t)dt. It is easy to check that the functional Ji is well defined and

Ji € C! (Wg 7(Q)) (in the case of nonlinearity which oscillates at the origin, up to subsequence,

we may assume that a; < Tp). Ji satisfies the (PS) condition and is bounded from below

[2, Lemma 2.3]. So, there exists uy € Wé’p(ﬂ) such that J(u;) = inf LW (O ]k( ). Hence
0

uy is a critical point of J; and as such u; is a weak solution for problem (Pk) Arguing as
in Lemma 2.4 in [2] one can prove that 0 < u(x) < a; for almost all x € Q (the proof
works with our assumptions (H3Y) and (HY®), which are slightly weaker than (f3)" and (f5°)’,
respectively). This means that f(x, ux(x)) = fi(x, ux(x)) for almost all x € Q), which implies
that uy is a weak solution for problem (P).

Now, let us continue with the proof of Theorem 3.1. Since [|u||;~(q) < ax for all k € N,
we have limy_, [|1k[| () = 0. To show that the sequence {uj}ren contams infinitely many
distinct elements, it is enough to show that J(u;) < 0, which gives the nontriviality of uy. Let
s0, lo, {xx b kens {7x teems {Lk bkens {7k trew be such as in (HY). Up to extracting a subsequence,
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we may assume that {1, }ren satisfies 7 < a for all k € N and 77 < sg. Let By = By, (xx) and
B, = By (xx). Define for every k € IN the function wy : RN — R by

0 if x € RN\ By
wr(x) = < i if x € B, (3.1)
2 (re — |x — x¢|) if x € B\ By,

Then 0 < wy(x) < a for all x € Q) and consequently J(uy) = Ji(ug) < Je(wy) = J(wg). We
have

I < el g, = [, QIR+ [ QEx)lo(wr(x)dx
1/2\" , N1,
S; ™ nkmeas(Bk\Bk)—l-?nkmeas(Bk) Lk'7k HQHLl B}) +lon HQHLl (Bx\B})
1 /2\? 1 1
=it [2(2) @ (1- 55 ) + pveort — el Qs + 1o [Qlmap |

Since L; > |1 [%(;)pwr}{\](l — ZLN) + ﬂ%wr}j + lOHQHLI(Bk\B;)]’ this forces J(wy) < 0.

/Q

Moreover,

sup |f(-,

tE OSO

1
el = 1000 + [ QoI s () <

As the sequence {a;} tends to zero we have ||u||, 15, — 0as k — +oo.

0" ()

Now, let us continue with the proof of Theorem 3.2. In this case, to show that the sequence
{ux }kew contains infinitely many distinct elements, it is enough to show that limy . J(1x) =
—00. Let Seo, loo, {Xkken, {7k} kens {Lktken, {7k tkew be such as in (H{®). Up to extracting a
subsequence, we may assume that {7 } e satisfies 77 < ai for all k € IN and 77 > se. Taking
wy from (3.1) and using (Hj°), we obtain

J(wy) < EHwkH 1y

- [ QG wi(x)dx ~ [ Q) F(x, wi(x))dx

Q) (Be\Bp) N {wp>s0o }

— xX)F(x,we(x))dx
/<Bk\3,;>m{wkgsm}Q( JF(x, we(x))

1 /2\" 1
<2 () nmeas(i B + ol meas(5) — Lunf 1 Qs +1onl 1015

sup |f(-, )]

t€[0,500]

+ 500 [|Qll 1B\ B1)

L=(Q)

1 /2\"* 1 1
p N
N/ [P (n{) wry <1 - 21\;) + N w”k Li [1Q1l ¢ Bl) + 1o [|Ql[ 11 (B¢\BL)

sup |f(-1)]

t€[0,500]

+ Se0 [|Qll 1)

L=(Q)

sup |f(-1)]

t€[0,500]

< — 1 455 |1Qll 11

L=(Q)
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Combining this with J(uy) < J(wy) and limy_, 17y = +o00 we conclude that limy_, J(uy) =
—00.,

Arguing by contradiction as in the end of the proof of Theorem 1.3 in [2], we can show
that hmk*>+00 ||uk||L°°(Q) - +OO. D

Remark 3.3. If () is bounded and Q = 1, the estimate on Ly in (Hf), a = 0 or a = oo, is
simpler: Ly > %(%)p (2N —-1)+ %ZN +1o (2N —1) + b forall k € N, where b = 0, if 2 = 0 and
b=1,if a = oo.

Remark 3.4. In [8] the following auxiliary problem was investigated

—divA (x, Vu) + K(x) [u|P>u = f(x,u) xeQ
ue W, (Q).

Here Q) is a bounded domain of RN, N > 3, with smooth boundary, K € L*(Q) with
essinfycn K(x) > 0 and divA (x, Vu) is a general operator in divergence form of p-Laplacian
type with p > 1; its special case is p-Laplace operator div (|Vu|" Vu). Now, if we change the
estimate on Ly in (HJ), 2 = 0 or a = oo, into the following estimate L; > %(%)p (2N —1)+

”K”LTM(QQN—HQ(ZN—l)+bfora11k€]N,whereb:Oifa:Oandbzlifa:oo,weobtain

analogous results, which improve results in [6,8] with different proofs. We omit details.

An example of nonlinearity which satisfies (Hi), (HS), (Hg), (U or (Hy), (HS), (HY),
(U*) we may take from Example 2.3 and Example 2.5, respectively, requiring only that Q €
L'(Q) N LY (Q). Additionally, we may remove the assumption about the radial symmetry
of Q. Then, such a nonlinearity does not satisfy (F1). On the other hand, if we choose
Q € LY(Q) \ L”(Q) in Example 2.3 or Example 2.5, the condition (Q) does not hold. This
means that the hypotheses (F;), (F), (F§) and (Fj) are independent from the hypotheses (Q),
(H1), (H5)-(Hj), where a = 0 or a = oo.

Example 3.5. Now we will give an example of a function which satisfies (H;), (HY), (HY),
(HY) and does not satisfy (U°). Choose any function Q satisfying (Q). Let {xx}ren be a
sequence in Q) and let {r;}ren be a sequence of positive numbers such that By, (x;) C Q for
k € N and By, (xx) N By, (x;) = @ for k # 1. Note that if () is bounded, then {r(}ien is a null
sequence. Choose any Iy > 0 and let {L; };cn be a sequence with

1 1/2\" 1 1 N
B Qg L ) e 7w )+ pamerk o lluany
k

for all k € IN. Let {ay }ren be a decreasing sequence of positive numbers such that a; 1 < %ak
for all k € N and {Lkalf*l}keN is a bounded sequence. Let f : (3 X R — R be defined by

2 (1
f(x,s)=8Y Lial™? <2ak -2

kelN

S—§El
4k

> ’ 1Brk(xk)><[%ak,ak] (x,5),
where 1,4,p is the indicator of A x B. Obviously, f satisfies (Hg ). Since for all x € Q)

-1
sup |f(x,t)] =4 ) Liay - 1p, () (x),
|t|<ay kEN
we have sup, .1 [f(+ )] € L*(€2). Moreover, F > 0 and F(x,a) = Lyal for all x € By, (xy)
and k € N, which gives (HJ). Now, for any x € Q there is at most one k € IN such that
x € B, (x¢). Then F(x,s) = 0 for all s < la. This means that lim, o+ F(j,’s) = 0 for every
x e Q.
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Example 3.6. Now we will give an example of a function which satisfies (H;), (H5), (HY),
(H{*) and does not satisfy (U*). Let Q, {xx}rew and {r}ren be such as in Example 3.5.
Choose any Il > 0 and let { Ly }xen be a sequence with

Ly > ! {1<2>pw7N<1 1>+1 wrN +1 I1Q]| 41
k Nol.. 1y \ 4 AN 00 /
||Q||L1(B]’<) P \Tk . 2N p2N "k L1(B\By)

for all k € IN. Let {ay }ren be a increasing sequence of positive numbers such that a;,1 —1 > a;
for all k € N. Let f : O x R — R be defined by

flx,s)=2)" Lal (1 -2

kelN

1
s —ax+ 2D 1, ()¢ [ —1,a,] (X, 5)-

Obviously, f satisfies (H5’). Since for all s > 0 and x € Q)

min{l:s<a;}
sup [ f(x,8)| <2} Liag-1p, () (%),
[t <s k=1

the condition (HY) is satisfied. Moreover, F > 0 and F(x,ar) = Lia} for all x € B, (x;) and
k € N, which gives (H;®). Now, choose any x € (). Then there is at most one k € IN such that

x € By (xx) and so F(x,s) < Lku,’z for all s > a;. This means that limg_, | F(;;’s) = 0 for every
x € Q.
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