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Abstract

This paper studies a nonlinear fractional differential equation of an arbitrary
order with four-point nonlocal integral boundary conditions. Some existence re-
sults are obtained by applying standard fixed point theorems and Leray-Schauder
degree theory. The involvement of nonlocal parameters in four-point integral
boundary conditions of the problem makes the present work distinguished from
the available literature on four-point integral boundary value problems which
mainly deals with the four-point boundary conditions restrictions on the solu-
tion or gradient of the solution of the problem. These integral conditions may be
regarded as strip conditions involving segments of arbitrary length of the given
interval. Some illustrative examples are presented.
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1 Introduction

Boundary value problems for nonlinear fractional differential equations have recently
been studied by several researchers. Fractional derivatives provide an excellent tool
for the description of memory and hereditary properties of various materials and pro-
cesses. These characteristics of the fractional derivatives make the fractional-order
models more realistic and practical than the classical integer-order models. As a mat-
ter of fact, fractional differential equations arise in many engineering and scientific
disciplines such as physics, chemistry, biology, economics, control theory, signal and
image processing, biophysics, blood flow phenomena, aerodynamics, fitting of experi-
mental data, etc. [17, 18, 19, 20]. Some recent work on boundary value problems of
fractional order can be found in [1, 2, 3, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 22] and the

EJQTDE, 2011 No. 22, p. 1



references therein.

In this paper, we consider a boundary value problem of nonlinear fractional dif-
ferential equations of an arbitrary order with four-point integral boundary conditions
given by

( Dix(t) = f(t,z(t)), 0<t<l, m—1<qg<m,
3
:U(O):a/ z(s)ds, '(0) =0, 2”(0) =0,...,2m"2(0) =0, (1.1)
ﬁ/ ds, 0<§&n<l1,

where D7 denotes the Caputo fractional derivative of order ¢, f : [0,1] x X — X
is continuous and «, 5 € R. Here, (X, || - ||) is a Banach space and C = C(][0, 1], X)
denotes the Banach space of all continuous functions from [0,1] — X endowed with a
topology of uniform convergence with the norm denoted by || - ||.

Integral boundary conditions have various applications in applied fields such as
blood flow problems, chemical engineering, thermoelasticity, underground water flow,
population dynamics, etc. For a detailed description of the integral boundary con-
ditions, we refer the reader to the papers [4, 5] and references therein. It has been
observed that the limits of integration in the integral part of the boundary conditions
are usually taken to be fixed, for instance, from 0 to 1 in case the independent vari-
able belongs to the interval [0, 1]. In the present study, we have introduced a nonlocal
type of integral boundary conditions with limits of integration involving the parameters
0 < &, n < 1.1t is imperative to note that the available literature on nonlocal boundary
conditions is confined to the nonlocal parameters involvement in the solution or gradi-
ent of the solution of the problem. The present work is motivated by a recent article
[10], in which some existence results were obtained for nonlinear fractional differential
equations with three-point nonlocal integral boundary conditions.

2 Preliminaries

Let us recall some basic definitions of fractional calculus [17, 18, 20].

Definition 2.1 For a function g : [0,00) — R, the Caputo derivative of fractional
order q is defined as

1 t
) / (t - S)N_q_lg(n)<8)d87 n—1< qg<n,n= [q] + 17
0

‘Dig(t) = Tin—q)

where [q] denotes the integer part of the real number q.
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Definition 2.2 The Riemann-Liouville fractional integral of order q is defined as

17(t) = F(lq) /O 0 i]<j))1qu’ q>0,

provided the integral exists.

Lemma 2.1 ([17]) Forq > 0, the general solution of the fractional differential equation
¢Dix(t) =0 is given by

z(t) =co+ et +cot? + ...+ cpit"
where ¢; €ER, 1 =0,1,2,...,n—1 (n=[q] + 1).
In view of Lemma 2.1, it follows that
I9°D92(t) = 2(t) + co + ert + cot® 4+ ..+ et (2.1)
for some ¢; € R, i =0,1,2,...n—1 (n=[q] + 1).

Lemma 2.2 For a given o € C[0, 1], the unique solution of the boundary value problem

( Dig(t)=0(t), 0<t<l, m—1<qg<m,
3
:U(O):a/ z(s)ds, 2'(0) =0, 2”(0) =0,...,2m2(0) =0, (2.2)
ﬁ/ ds, 0<&n<1,
\

15 given by

x(t) = /Ot %a(s)ds + % [(ﬁnm —m) /: </Os %a(k)dk)ds
— pem /On </OS (s ;—(Ziq_la(k)dk:) ds +&™ /01 (1 ;(Z—iq_lg(s)dS]
_ th_l [a(Bn—1) /05 (/0 (s ;(Z—))q_lg(k)dk)ds
s 1—s)it

— Blag—1) /077 (/O %Ta(k)d@ds + (o€ —1) /01 (FTO—(S)dS]

A~ (B —1) — (e~ 1)(Bn™ —m)

m

where

£0. (2.3)
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Proof. It is well known [17] that the general solution of the fractional differential
equation in (2.1) can be written as

- [ et - e L)

x(t) = ——————o0(s)ds —cy—cit —cot” — ... — Cpq , .
0 I'(q)

where ¢, ¢y, s, ..., cpn_1 are arbitrary constants. Applying the boundary conditions

for the problem (2.2), we find that ¢; =0, ...,¢_2 =0,

o = —% [(ﬁnm—m) /05 (/OS %a(k)dk‘)ds
— ﬁgm/o (/0 (s =R ;(Z)) a(k)dk;)ds+§m/0 d=s ;(z)) a(s)ds]

and

Cm-1 = %[a(ﬁn -1) /0g 8 Ma(k)dk)ds

_ Blat - 1)/0" (/:%dk)dk)dsjt(ag— 1)/01 %a(s)ds |

q

where A is given by (2.3). Substituting the values of ¢y, ¢, ..., ¢pn_1 in (2.4), we obtain

x(t) = /Ot %a(s)ds = [(ﬁnm —m) /O£ (/Os %a(k)dk)ds
_ ﬁfm/o (/0 (s F(k))q ' o(k )dk;)derfm/Ol @;(72);_10(5)@]
_ th_l[ (Bn—1) /O (/0 cr(k)dk:)ds

~ ﬁ(a5—1)/0 (/0 (s F(’(?) - (k)dk>d5+(oz£—1)/01 %o’@)ds]

This completes the proof. O
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In view of Lemma 2.2, we define an operator F : C — C by

I = S R
vl = [ ([ ST st wpa)as

65/ / (Z)) f(k,:c(k))dk)ds
—|—£mf0 F(q) (s,x(s))ds] (2.5)

_thl [a(on - 1)/g (/0 wf(k,x(k))dk)ds

For convenience, let us set

- t7 la| r18n™ —m|€7 + (|87t + (¢ +1))E™
Vo= t‘éﬁﬁiﬁ{r(qﬂ) +m|A|[ T(q+2) ]
! [\Oé(ﬁn — D + |ag = 1(|BIn"" + (¢ + 1))] }
Al I'(g+2)
o 1 Uy + Uy
- T(g+1) ( i m|Al(q + 1))’

(2.6)
where

01 = lal(|67™ — m| +m|Bn — 1T, Ps = (laf¢™ +mlag = 1)(|BIn" + (¢ +1)).

Observe that the problem (1.1) has solutions if the operator equation Fx = x has
fixed points.

For the forthcoming analysis, we need the following assumption:

(H) Assume that f : [0,1] x X — X is a jointly continuous function and maps
bounded subsets of [0, 1] x X into relatively compact subsets of X.

Furthermore, we need the following fixed point theorem to prove the existence of
solutions for the problem at hand.

Theorem 2.1 [21] Let X be a Banach space. Assume that 2 is an open bounded subset
of X with 8 € Q and let T : Q0 — X be a completely continuous operator such that

| Tul|| < |lu|l, Yu € oS
Then T has a fized point in Q.
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3 Existence results in Banach space
Lemma 3.1 The operator F:C — C 1is completely continuous.

Proof. Clearly, continuity of the operator F follows from the continuity of f. Let
2 C C be bounded. Then, Yz € Q, by the assumption (H), there exists L; > 0 such
that | f(¢,x)| < L;. Thus, we have

0] < [ s el

‘|— m| / / [k, (k)| dk ) ds
+|BlEm / / A S ))\dk) s
e >>|ds]

A e W"—“/ /
+atag =) [ /
Hae =11 [ I . >>|ds]
w{ [ <t;<8q)>q1 o
+1B¢™ / s =B 1dk: ds +€" / lds}
L 1| )ds

N \Oz B
dk:)ds 4ot — 1|/

+|ﬁa§—1|/ /

01 + 0y
N F(q+1)< +m\A|ZJ+ ))_ v

f(k :c(k;))|dk>ds
| (k, (K ))|dk:>ds (3.1)

IA

-1

ds} }

which implies that ||(Fz)|| < Ly. Furthermore,

Eay o) = [ Lt

i o [ ([

I (k x(k:))|dk:) ds

EJQTDE, 2011 No. 22, p. 6



Hotag = 0| [ [ T h ol ae) as

Hag = 1] [ O s et

< Ll{/ot%ds (3.2)
m— 1)gm—2 ¢ S (g — fya-1
m = L |A1)‘t ‘[|a(ﬁn—1)|/0 (/0 (Gl F(]Z)) k) ds
+|B(ag — 1) |/ / dk)ds+|a§—1\/ ;ds}}
m— a(fn — a+1 af — g+l aé —
¢ n{pl s Im ey 1>\§F(q++|§)<f AU LR}
— L

Hence, for tq,ts € [0, 1], we have

|(F)(t2) — (Fa) ()] < /tQ |(Fz)'(s)|ds < La(ty — t1).

t1

This implies that F is equicontinuous on [0, 1]. Thus, by the Arzela-Ascoli theorem, we
have that F(Q)(¢) is relatively compact in X for every ¢, and so the operator F : C — C
is completely continuous.

t
Theorem 3.1 Assume that (H) holds and liIT(l) fitw) = 0, where the limit is uniform
Tr— i

with respect to t. Then the problem (1.1) has at least one solution.

f(t,x)
z—0

|f(t,x)| < d|x| for 0 < |x\ < r, where § > 0 is such that

Proof. Since lim = 0, therefore there exists a constant r > 0 such that

95 < 1, (3.3)

where 9 is given by (2.6). Define ; = {z € C | ||z|| < r} and take x € C such that
||| = r, that is, x € 0. As before, it can be shown that F is completely continuous
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and

t laf 7180 —m|€ + (180" + (¢ +1))&™
)] < mex (e s g +2) ]
" rla(Bn = DIE + |af = (1B + (¢ + 1)) (3.4)
A [ T(g+2) J Jall
= U6|z|,

which, in view of (3.3), yields ||Fz| < ||z]|, x € 0€. Therefore, by Theorem 2.1, the
operator F has at least one fixed point, which in turn implies that the problem (1.1)
has at least one solution. O

Theorem 3.2 Assume that f : [0,1] x X — X is a jointly continuous function and
satisfies the condition

||f(t,l‘) - f(tay)H S LHI‘—yH,\V/t € [07 1]7 L> 07 T,y € X7

with L < 1/9, where 9 is given by (2.6). Then the boundary value problem (1.1) has a
unique solution.

IM
Proof. Setting supcjy ;| f(¢,0)] = M and choosing r > 15 e show that FB, C
B,, where B, = {x € C: ||z|| < r}. For x € B,, we have:

s
@01 < s [ [T s et

tel0,1 )

||A| 3™ —ml/ / 1|f(k:,:zc(k:))|dk>ds
ol [ ([T <>>|dk)ds
+§m/ ;W\f(s,x(s))\ds}

R LC ] / / o b)) s

Hotag— 0| [ ( [ T s ot ar)as
+|0z§—1|/ Sq))ql x(s))|ds}]

IN

sup [ [ () — 15,00 + 500

te[0,1] Q)
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L L=l ([ 6= 00706206 - 5010)
1 (k, >|>dk)ds
w1t ([ s = 0 ol - 10 0) 4 17K 0) k) ds

w6 [0 09 = F0) 5 175, 0))ls}
oo =1 [ ([t = 0=t 200 - 1000
+IF (K, O)\)dk)ds

#1tag =01 [ ([ =R sk o) = 0,0
1 £ (k, )k ) ds

+(ag — 1>|/01<1 — ) q‘l(lf(s 2(s)) = f(s,0) + £ (s, 0)] H

IN

i
“’”*M%i}é%[/o W) |A\ {lo

m—1 ¢ S (g — )1
|t|A||{'“<5 -0l (/o ( r(?) dk)ds

+|B(ag — 1) |/ / dk; ds+|a§ 1|/ 1ds}]
< %&1%( m&\z;i—%l)) (Lr+M)9 <.

Now, for z,y € C and for each ¢ € [0, 1], we obtain

[(Fz)(t) = (Fy) @)

(t— )0
<t2‘fé%[ /0 () F(s,2(5)) — F(5,9(s))lds

U

s [M( [ (SF(";)) 00, 0)) — £ <>>|dk)ds

(k) — f(k,y(k))mk) ds
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1] _ g1
s [ O st - f<s,y<s>>|ds}

0= 01 ([ 0wt~ 150 a) s
#otag =01 [ ([T ) 1000 ) s
o =11 [ 76 069) - 1G5t}
(g g)a- o —1
< the=ul g [ [ r<q)> G ‘m’/ () T

+|B|€/ / ds+£/ 1_8
‘|mA|1‘ |a ﬁn—1|/ / dk)ds
+\6a§—1\/ / dk)ds+ya§—1y/ ;ds}}

F(q+ 1) m|Al(g+ 1)
= Liflz -y,

<

where ¥ is given by (2.6). Observe that L depends only on the parameters involved
in the problem. As L < 1/9, therefore F is a contraction. Thus, the conclusion of the
theorem follows by the contraction mapping principle (Banach fixed point theorem).O

Our next existence result is based on Leray-Schauder degree theory.

Theorem 3.3 Suppose that (H) holds. Furthermore, it is assumed that there exist

1
constants 0 < k < g’ where 6 is given by (2.6) and M > 0 such that | f(t, z)| < klx|+M
for allt € [0,1],x € X. Then the boundary value problem (1.1) has at least one solution.

Proof. Consider a fixed point problem
x = Fuz, (3.5)

where F is defined by (2.5). In view of the fixed point problem (3.5), we just need to
prove the existence of at least one solution z € C satisfying (3.5). Define a suitable
ball B with radius R > 0 as

Bp={zeC:|z]| <R},
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where R will be fixed later. Then, it is sufficient to show that F : Br — C satisfies
x# NFz, Yo edBr and V )€ [0,1]. (3.6)

Let us set
H(\z)=MFz, z€ X, Ae€[0,1].

Then, by the Arzeld-Ascoli Theorem, hy(x) = © — H(A,x) = x — A\Fz is completely
continuous. If (3.6) is true, then the following Leray-Schauder degrees are well defined
and by the homotopy invariance of topological degree, it follows that

deg(h)n BRv 0) = deg<[ - )\F7 BR7 O) = deg(h17 BRa O)
— deg(ho, Br,0) = deg(I, Br,0) =1 #0, 0¢ B,,

where I denotes the identity operator. By the nonzero property of Leray-Schauder
degree, hi(t) = ©x — A\Fz = 0 for at least one x € Bg. In order to prove (3.6), we
assume that © = AFx for some A € [0,1] and for all ¢ € [0, 1] so that

5)7t

o0 = WPt < [ L el

|‘A| \577 _m|/ / q 1|f</€,l’(/{7))|dk>ds

Holen [ ([ S <>>|dk)

rer [ U2 oo

0 o -1 [ / I athian) s
Hiptag = [ (OGS e ds

Hag 11 [ %ms,x(s)nds}

et + 0 { [ e e cibior —m [7( [ o
+Iﬁ|§’”/0n(/os %dk)dﬁﬁm/ol %d%

o o1 [ ( / L

+Iﬁa£—1|/ / dk>d3+|0é€—1|/7lds]}
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(/{|IE|+M)( 191+Q92
Ilg+1) m|Al(g +1)
which, on taking norm and solving for ||z||, yields

MY
1— k0

) = (k|z| + M) 9,

(K /[

Letting R =

- + 1, (3.6) holds. This completes the proof. O
- K

4 Examples

Let us define
X ={z = (21,29, ..., 2p,...) t x, — 0}

with the norm ||z|| = sup,, |z,|.
Example 4.1 Consider the problem
CDag,(t) = (121 Fad(t)z +2(t+ 1) (z, —sina,(t)) — 11, 0<t <1,
2,(0) = / p(s)ds, 2,(0) =0, z/(0) =0,...,2{"2(0) =0, (4.1)
ﬁ/ zp(s)ds, 0<En<1,
where m —1 < qg<m, m > 2.

It can easily be verified that all the assumptions of Theorem 3.1 hold. Consequently,
the conclusion of Theorem 3.1 implies that the problem (4.1) has at least one solution.

Example 4.2 Consider the following four-point integral fractional boundary value prob-
lem

512 ||
p(t+2)2 (14 |zp])’
1

1/4 3/4
z,(0) = 5/0 zp(s)ds, 2,,(0) =0,...,z"(0) =0, 2,(1) = /0 z,(s)ds.

Here, ¢ = 13/2, m =7, a = 1/2, f =1, £ = 1/4, n = 3/4, and f,(t,x) =
512 T
S = (oo ) A [l1:2) = flt.9)] < 1281, = ], there
f(t

p(t+2)? (1 + |z, |
fore, || f(t,z) — ( y)|| < 128||z — y|| with L = 128. Further,

_ _ L Y1+92 _ —03\ _
L9 = ks (14 iy ) = 128 x (LOST501 x 10°%) = 0.139212 < 1,

CDlg/Ql‘p(t) —

€ [0,1], "
4.2

Thus, by the conclusion of Theorem 3.2, the boundary value problem (4.2) has a unique
solution on [0, 1].
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Example 4.3 Consider the following boundary value problem

DBy, (t) = sin(2mz,) + 2| , telo,1],

1
1/4(47r) 3/4
z,(0) =2 i zy(s)ds, 2,(0)=0,...,z"(0) =0, z,(1) = 3/0 zp(s)ds.

Here, g =13/2, a =2, §=3,£=1/3, n=2/3, and

1
(47)

1
sin(2mz,) + 122 < Slapl + 1.

1+ |xp|

)| =

So ||f(t,2)|| < 3llzl|+1. Clearly M =1, k =1/2, ¥ = 1.081553 x 10", and x < 1/9.
Thus, all the conditions of Theorem 3.3 are satisfied and consequently the problem
(4.3) has at least one solution.

Acknowledgement. The authors thank the referee and the editor for their useful
comiments.
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