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1. Introduction

In this paper, we are concerned with the multiplicity of solutions for the following biharmonic problem:

8

<

:

∆2
u + a∆u = f(x, u) + g(x, u), in Ω,

u = ∆u = 0, on ∂Ω,

(1.1)

where ∆2 is the biharmonic operator, a is a real parameter, Ω ⊂ RN is a bounded domain with smooth

boundary ∂Ω, N ≥ 3. We assume that f(x, u) and g(x, u) satisfy some of the following conditions:

(g1): g ∈ C(Ω × R, R) is odd in u.

(g2): g(x, u) = bu + g1(x, u), where b is a real parameter.

(g3): There exist q ∈ (1, 2), c1 > 0 such that

|g1(x, u)| ≤ c1|u|
q−1

, for x ∈ Ω and u ∈ R.

(f1): f ∈ C(Ω × R,R) is odd in u.

(f2): There exists C > 0 such that |f(x, u)| ≤ C(1 + |u|p−1) for x ∈ Ω and u ∈ R, where 2 < p < 2∗,

2∗ = 2N
N−2

.

(f3) : lim|u|→∞
F (x,u)

u2 = ∞ uniformly for x ∈ Ω, where F (x, u) =
R u

0
f(x, s)ds.

(f4): f(x, u)u ≥ 0 for u > 0.

(f5): There exist 0 < µ < 2∗, c2 > 0 and L > 0 such that H(x, u) ≥ c2|u|
µ for |u| ≥ L and x ∈ Ω, where

H(x, u) = 1
2
f(x, u)u − F (x, u) .
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Biharmonic equations have been studied by many authors. In [4], Lazer and Mckenna considered the

biharmonic problem:
8

<

:

∆2
u + a∆u = d[(u + 1)+ − 1], in Ω,

u = ∆u = 0, on ∂Ω,

(1.2)

where u+ = max{u, 0} and d ∈ R. They pointed out that this type of nonlinearity furnishes a model to

study traveling waves in suspension bridges. In [5], the authors got 2k − 1 solutions when N = 1 and

d > λk(λk −c) (λk is the sequence of the eigenvalues of −∆ in H1
0 (Ω)) via the global bifurcation method.

In [10], a negative solution of (1.2) was considered when d ≥ λ1(λ1 − c) by a degree argument. If the

nonlinearity d[(u + 1)+ − 1] is replaced by a general function f(x, u), one has the following problem:
8

<

:

∆2
u + a∆u = f(x, u), in Ω,

u = ∆u = 0, on ∂Ω.

(1.3)

In [7], the authors proved the existence of two or three solutions of problem (1.3) for a more general

nonlinearity f by using a variational method. In [12], positive solutions of problem (1.3) were got when

f satisfies the local superlinearity and sublinearity. For other related results, see [6], [13], [15] and the

references therein. We emphasize that all the papers mentioned above are concerned with the case

a < λ1 only. So far as we know, little has been done for the case a ≥ λ1. In particular, the authors in [8]

considered the case a ≥ λ1 and got the existence of multiple solutions of problem (1.3).

Our aim in the present paper is to investigate the existence of infinitely many large energy solutions

of problem (1.1) in the case a < λ1 and a ≥ λ1. Usually, in order to obtain the existence of infinitely many

solutions for superlinear problems, the nonlinearity is assumed to satisfy the following (AR) condition

due to Ambrosetti-Rabinowitz [1]:

(AR): There is α > 2 such that for u 6= 0 and x ∈ Ω,

0 < αF (x, u) ≤ uf(x, u),

where F (x, u) =
R u

0
f(x, s)ds. This condition implies that F (x, u) ≥ c3|u|

α − c4, where c3, c4 are two

positive constants. It is well known that the (AR) condition guarantees the boundedness of the (PS)c

sequence for the corresponding functional. Then we can apply the Symmetric Pass Theorem in [9] or the

Fountain Theorem in [11] to get the desired result. In this paper, the nonlinearity involves a combination

of superlinear and asymptotically linear terms. Moreover, the superlinear term doesn’t satisfy the (AR)

condition. Thus, it is difficult to derive the boundedness of the (PS)c sequence for the corresponding

functional. However, motivated by the variant Fountain Theorem established in [14], we can overcome

the difficulty.

Before stating our main results we give some notations. Throughout this paper, we denote by C a

universal positive constant unless otherwise specified and we set Ls(Ω) the usual Lebesgue space equipped

with the norm ‖u‖s := (
R

Ω
|u|sdx)

1
s , 1 ≤ s < ∞. Let λk (k = 1, 2, · · · ) denote the eigenvalues and ϕk

(k = 1, 2, · · · ) the corresponding normalized eigenfunctions of the eigenvalue problem
8

<

:

− ∆u = λu, in Ω,

u = 0, on ∂Ω.

Here, we repeat each eigenvalue according to its (finite) multiplicity. Then, 0 < λ1 < λ2 ≤ λ3 · · · and

λk → ∞ as k → ∞.

The main results of this paper are summarized in the following theorems. To the best of our knowl-

edge, the conclusions are new.

Theorem 1.1. Assume that f satisfies (f1) − (f5), g satisfies (g1) − (g3). Then, given a < λ1 and

b < λ1(λ1 − a), problem (1.1) has infinitely many solutions {un} satisfying

1

2

„Z

Ω

|∆un|
2dx − a

Z

Ω

|un|
2dx

«

−

Z

Ω

F (x, un)dx −

Z

Ω

G(x, un)dx → ∞ as n → ∞, (1.4)
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for µ > max{N
2

(p − 2), q}, where G(x, u) =
R u

0
g(x, s)ds.

Theorem 1.2. Assume that f , g satisfy conditions of Theorem 1.1. Then, given a < λ1 and b ≥

λ1(λ1−a), problem (1.1) has infinitely many solutions {un} satisfying (1.4) for µ > q and µ ≥ (p−1) 2N
N+2

.

Theorem 1.3. Assume that f , g satisfy conditions of Theorem 1.1. Let a ≥ λ1 and 1
2
λj < a ≤ 1

2
λj+1

for some j ∈ N . Then, if λi(
1
2
λi − a) ≤ b < λi+1(

1
2
λi+1 − a) for some i ∈ N , i ≥ j + 1, problem (1.1) has

infinitely many solutions {un} satisfying (1.4) for µ > q and µ ≥ (p − 1) 2N
N+2

.

2. Variational setting and Variant fountain theorem

Let Ω ⊂ RN be a bounded smooth domain, H = H2(Ω)
T

H1
0 (Ω) be the Hilbert space equipped with

the inner product

(u, v)H =

Z

Ω

∆u∆vdx,

which induces the norm

‖u‖H = (

Z

Ω

|∆u|2dx)
1
2 .

For u ∈ H , denote

I(u) =
1

2

„Z

Ω

|∆u|2dx − a

Z

Ω

|∇u|2dx

«

−

Z

Ω

F (x, u)dx −

Z

Ω

G(x, u)dx.

From (f1) − (f2) and (g1) − (g3), we have I ∈ C1(H). Moreover, a critical point of I in H is a weak

solution of (1.1).

We need the following variant fountain theorem introduced in [14] to handle the problem.

Let E be a Banach space with the norm ‖.‖ and E =
L

j∈N Xj with dim Xj < ∞ for any j ∈ N .

Set Yk =
Lk

j=1 Xj , Zk =
L∞

j=k Xj and

Bk = {u ∈ Yk : ‖u‖ ≤ ρk}, Nk = {u ∈ Zk : ‖u‖ = rk} for ρk > rk > 0.

Consider the following C1 functional Φλ : E → R defined by:

Φλ(u) := A(u) − λB(u), λ ∈ [1, 2].

We assume that

(F1): Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore, Φλ(−u) = Φλ(u) for

all (λ, u) ∈ [1, 2] × E.

(F2): B(u) ≥ 0 for all u ∈ E; A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞.

Let, for k ≥ 2,

Γk := {γ ∈ C(Bk, E) : γ is odd, γ|∂Bk
= id},

ck(λ) := inf
γ∈Γk

max
u∈Bk

Φλ(γ(u)),

bk(λ) := inf
u∈Zk, ‖u‖=rk

Φλ(u),

ak(λ) := max
u∈Yk, ‖u‖=ρk

Φλ(u).

Theorem 2.1. Assume (F1) and (F2). If bk(λ) > ak(λ) for all λ ∈ [1, 2], then ck(λ) ≥ bk(λ) for all

λ ∈ [1, 2]. Moreover, for a.e. λ ∈ [1, 2], there exists a sequence {uk
n(λ)}∞n=1 such that

sup
n

‖uk
n(λ)‖ < ∞, Φ′

λ(uk
n(λ)) → 0 and Φλ(uk

n(λ)) → ck(λ) as n → ∞.
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3. The case a < λ1 and b ∈ R

For a < λ1, define a norm u ∈ H as follows:

‖u‖ =

„Z

Ω

|∆u|2dx − a

Z

Ω

|∇u|2dx

«1
2

.

We note that the norm ‖.‖ is a equivalent norm on H . In this section we use the norm ‖.‖. It is well

known that ∧k = λk(λk − a), k = 1, 2, · · · , are eigenvalues of the eigenvalue problem

8

<

:

∆2
u + a∆u = ∧u, in Ω,

u = ∆u = 0, on ∂Ω,

ϕk, k = 1, 2, · · · are the corresponding eigenfunctions. Furthermore, the set of {ϕk} is an orthogonal

basis on the Hilbert space H . Let Xj := span{ϕj}, j ∈ N and set Yk =
Lk

j=1 Xj , Zk =
L∞

j=k Xj .

Observe that the following inequality holds:

‖u‖2 ≥ ∧k

Z

Ω

u
2dx, ∀u ∈ Zk. (3.1)

We start with some technical lemmas.

Consider Iµ : H → R defined by

Iµ(u) :=
1

2
‖u‖2 − µ

Z

Ω

F (x, u)dx −

Z

Ω

G(x, u)dx, µ ∈ [1, 2].

Lemma 3.1. Assume that f satisfies (f1)− (f4), g satisfies (g1)− (g3). Then, given a < λ1 and b < ∧1,

there exists k0 ∈ N , such that for k ≥ k0, there exist ck ≥ bk > 0, bk → ∞ as k → ∞. Moreover, fix

k ≥ k0, there exist µn → 1 as n → ∞ and {un}
∞
n=1 ⊂ H such that

I
′
µn

(un) = 0, Iµn(un) ∈ [bk, ck].

Proof. We note that for u ∈ H ,

‖u‖2 ≥ ∧1

Z

Ω

u
2dx. (3.2)

Then it is easy to prove (F1) − (F2) hold. By (f2), there holds

|F (x, u)| ≤ C(|u| + |u|p). (3.3)

(g3) implies that

|G1(x, u)| ≤ C|u|q , (3.4)

where G1(x, u) =
R u

0
g1(x, s)ds. For 2 < p < 2∗, let

βk := sup
u∈Zk,‖u‖=1

‖u‖p. (3.5)

Then βk → 0 as k → ∞ following the method of Lemma 3.8 in [11]. Hence, combining (3.3) − (3.5) , we

obtain that for u ∈ Zk,

Iµ(u) =
1

2
‖u‖2 − µ

Z

Ω

F (x, u)dx −

Z

Ω

G(x, u)dx

≥
1

2
‖u‖2 −

1

2
b

Z

Ω

u
2dx − C‖u‖q − C‖u‖ − Cβ

p
k‖u‖

p
. (3.6)

For simplicity, we only need to consider the case 0 ≤ b < ∧1. (3.2) and (3.6) imply that for u ∈ Zk,

Iµ(u) ≥
1

2

„

1 −
b

∧1

«

‖u‖2 − C(‖u‖q + ‖u‖) − Cβ
p
k‖u‖

p
.
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Choosing r̄k :=
“

2Cp∧1β
p

k

∧1−b

” 1
2−p

, we obtain that for u ∈ Zk, ‖u‖ = r̄k,

Iµ(u) ≥

»

1

4

„

1 −
b

∧1

«

‖u‖2 − Cβ
p
k‖u‖

p

–

+

»

1

4

„

1 −
b

∧1

«

‖u‖2 − C(‖u‖q + ‖u‖)

–

≥
p − 2

4p

„

1 −
b

∧1

«„

2Cp ∧1 β
p
k

∧1 − b

« 2
2−p

+

»

1

4

„

1 −
b

∧1

«

r̄
2
k − C(r̄q

k + r̄k)

–

:= b̄k +

»

1

4

„

1 −
b

∧1

«

r̄
2
k − C(r̄q

k + r̄k)

–

.

From βk → 0 as k → ∞, we have r̄k → ∞ as k → ∞. Thus, there exists k0 ∈ N , such that for k ≥ k0,
h

1
4

“

1 − b
∧1

”

r̄2
k − C(r̄q

k + r̄k)
i

≥ 0. Therefore, for k ≥ k0,

b̄k(µ) := inf
u∈Zk,‖u‖=r̄k

Iµ(u) ≥ bk.

Moreover, bk → ∞ as k → ∞ from βk → 0 as k → ∞. On the other hand, by (f1) and (f3), we obtain

that for any M > 0, there exists C(M) > 0 such that

F (x, u) ≥ M |u|2 − C(M). (3.7)

Combining (g2), (f4), (3.4) and (3.7), there holds

Iµ(u) ≤
1

2
‖u‖2 +

1

2
|b|

Z

Ω

u
2dx + C

Z

Ω

|u|qdx −

Z

Ω

F (x, u)dx

≤ C‖u‖2 + C‖u‖q − M

Z

Ω

|u|2dx + C(M)meas(Ω).

Choosing M > 0 large enough, we have that for u ∈ Yk,

Iµ(u) ≤ −C‖u‖2 + C‖u‖q + C,

using the equivalence of all norms on the finite dimensional space Yk . Now we choose ρ̄k > 0 large

enough, such that ρ̄k > r̄k and

āk(µ) := max
u∈Yk,‖u‖=ρ̄k

Iµ(u) ≤ 0.

Thus, the conditions of Theorem 2.1 are satisfied for k ≥ k0. For k ≥ k0, from Theorem 2.1, we obtain

that for all µ ∈ [1, 2], c̄k(µ) ≥ b̄k(µ) ≥ bk, where c̄k(µ) := infγ∈Γk
maxu∈Bk

Iµ(γ(u)), Bk := {u ∈ Yk :

‖u‖ ≤ ρ̄k} and Γk := {γ ∈ C(Bk, H) : γ is odd, γ|∂Bk
= id}. Moreover, c̄k(µ) ≤ supu∈Bk

I(u) := ck. Fix

k ≥ k0, we have that for a.e. µ ∈ [1, 2], there exists a sequence {uk
n(µ)}∞n=1 such that

sup
n

‖uk
n(µ)‖ < ∞, I

′
µ(uk

n(µ)) → 0 and Iµ(uk
n(µ)) → c̄k(µ) ≥ bk as n → ∞.

Recalling that c̄k(µ) ≤ ck, by standard argument, we conclude that {un
k (µ)}∞n=1 has a convergent subse-

quence. Suppose uk
n(µ) → uk(µ) as n → ∞. We get I ′

µ(uk(µ)) = 0, Iµ(uk(µ)) ∈ [bk, ck], for almost every

µ ∈ [1, 2]. So, when µn → 1 with µn ∈ [1, 2], we find a sequence uk(µn) (denote by un for simplicity)

satisfying I ′
µn

(un) = 0, Iµn(un) ∈ [bk, ck].

Consider I∗
µ : H → R defined by

I
∗
µ(u) :=

1

2
‖u‖2 − µ

Z

Ω

[F (x, u) +
1

2
bu

2]dx −

Z

Ω

G1(x, u)dx, µ ∈ [1, 2],

where G1(x, u) =
R u

0
g1(x, s)ds.

Lemma 3.2. Assume that f , g satisfy conditions of Lemma 3.1. Then, given a < λ1 and b ≥ ∧1, there

exists k′
0 ∈ N , such that for k ≥ k′

0, there exist c∗k ≥ b∗k > 0, b∗k → ∞ as k → ∞. Moreover, fix k ≥ k′
0,

there exist µn → 1 as n → ∞ and {un}
∞
n=1 ⊂ H such that

I
∗′

µn
(un) = 0, I

∗
µn

(un) ∈ [b∗k, c
∗
k].
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Proof. It is easy to prove (F1) − (F2) hold. (3.3) − (3.5) imply that for u ∈ Zk,

I
∗
µ(u) =

1

2
‖u‖2 − µ

Z

Ω

[F (x, u) +
1

2
bu

2]dx −

Z

Ω

G1(x, u)dx

≥
1

2
‖u‖2 − b

Z

Ω

u
2dx − C‖u‖q − C‖u‖ − Cβ

p
k‖u‖

p
. (3.8)

Since b ≥ ∧1, there exists j ∈ N , such that
∧j

2
≤ b <

∧j+1

2
. Combining (3.1) and (3.8), we obtain that

for u ∈ Zk, k ≥ j + 1,

I
∗
µ(u) ≥

1

2

„

1 −
2b

∧j+1

«

‖u‖2 − C(‖u‖q + ‖u‖) − Cβ
p
k‖u‖

p
.

For k ≥ j + 1, choosing r∗k :=
“

2Cp∧j+1β
p
k

∧j+1−2b

” 1
2−p

, we obtain that for u ∈ Zk, ‖u‖ = r∗k,

I
∗
µ(u) ≥

»

1

4

„

1 −
2b

∧j+1

«

‖u‖2 − Cβ
p
k‖u‖

p

–

+

»

1

4

„

1 −
2b

∧j+1

«

‖u‖2 − C(‖u‖q + ‖u‖)

–

≥
p − 2

4p

„

1 −
2b

∧j+1

«„

2Cp ∧j+1 β
p
k

∧j+1 − 2b

« 2
2−p

+

»

1

4

„

1 −
2b

∧j+1

«

r
∗2
k − C(r∗q

k + r
∗
k)

–

:= b
∗
k +

»

1

4

„

1 −
2b

∧j+1

«

r
∗2
k − C(r∗q

k + r
∗
k)

–

.

It is easy to see that r∗k → ∞ as k → ∞. Thus, there exists k′
0 ≥ j + 1, k′

0 ∈ N , such that for k ≥ k′
0,

b
∗
k(µ) := inf

u∈Zk,‖u‖=r∗

k

I
∗
µ(u) ≥ b

∗
k.

Moreover, b∗k → ∞ as k → ∞ . On the other hand, combining (f4), (3.4) and (3.7), we obtain that for

any M > 0, there exists C(M) > 0, such that

I
∗
µ(u) ≤

1

2
‖u‖2 −

Z

Ω

F (x, u)dx −

Z

Ω

G1(x, u)dx

≤ C‖u‖2 + C‖u‖q − M‖u‖2
2 + C(M)meas(Ω).

Choosing M > 0 large enough, we have that for u ∈ Yk,

I
∗
µ(u) ≤ −C‖u‖2 + C‖u‖q + C.

Thus, we can choose ρ∗
k > 0 large enough, such that ρ∗

k > r∗k and

a
∗
k(µ) := max

u∈Yk,‖u‖=ρ∗

k

I
∗
µ(u) ≤ 0.

The rest of the proof is just the same as Lemma 3.1, we omit it.

Proof of Theorem 1.1. (f1) − (f4) and (g1) − (g3) imply that Lemma 3.1 holds. Fix k ≥ k0,we

claim that the sequence {un} of Lemma 3.1 is bounded under assumptions of Theorem 1.1. Indeed, (f1)

and (f5) imply that
1

2
f(x, u)u − F (x, u) ≥ C|u|µ − C. (3.9)

Together with (g2) − (g3), there holds

Iµn(un) −
1

2
(I ′

µn
(un), un)

=µn

Z

Ω

[
1

2
f(x, un)un − F (x, un)]dx +

Z

Ω

[
1

2
g(x, un)un − G(x, un)]dx

≥C

Z

Ω

|un|
µdx − C

Z

Ω

|un|
qdx − C.

Since

Iµn(un) −
1

2
(I ′

µn
(un), un) = Iµn(un) ∈ [̄bk, c̄k],
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we get

‖un‖µ ≤ C, (3.10)

in view of µ > q. (3.10) implies that

‖un‖q ≤ C. (3.11)

Thus, from (f2), (g2) − (g3), (3.2), (3.11) and (I ′
µn

(un), un) = 0,

‖un‖
2 = µn

Z

Ω

f(x, un)undx +

Z

Ω

g(x, un)undx

≤ b

Z

Ω

u
2
ndx + C

Z

Ω

(|un| + |un|
p)dx + C

≤
b

∧1
‖un‖

2 + C

Z

Ω

(|un| + |un|
p)dx + C,

which implies that

‖un‖
2 ≤ C

Z

Ω

(|un| + |un|
p)dx + C. (3.12)

Note that N
2
(p − 2) < (p − 1) 2N

N+2
< p, we will consider two cases.

Case 1. µ > q and µ ≥ (p − 1) 2N
N+2

.

From (3.10) and (3.12),

‖un‖
2 ≤ C‖un‖ + C

Z

Ω

|un|
p−1|un|dx + C

≤ C‖un‖ + C‖un‖2∗‖un‖
p−1

(p−1) 2N
N+2

+ C

≤ C‖un‖ + C‖un‖‖un‖
p−1
µ + C

≤ C‖un‖ + C, (3.13)

which implies that ‖un‖ ≤ C.

Case 2. µ > q and N
2

(p − 2) < µ < p.

We need the following well known inequality (3.14).

If 0 < µ < p < 2∗ and t ∈ (0, 1) are such that 1
p

= 1−t
µ

+ t
2∗

then

‖u‖p ≤ ‖u‖1−t
µ ‖u‖t

2∗ , ∀u ∈ L
µ ∩ L

2∗
. (3.14)

Combining (3.10), (3.12) and (3.14), there holds

‖un‖
2 ≤ C‖un‖ + C‖un‖

(1−t)p
µ ‖un‖

tp
2∗ + C

≤ C‖un‖ + C‖un‖
tp
2∗ + C

≤ C‖un‖ + C‖un‖
tp + C. (3.15)

Observing that the condition µ > N
2
(p−2) is equivalent to tp < 2, we conclude from (3.15) that ‖un‖ ≤ C.

The claim is proved. Combining with Lemma 3.1 and by standard argument, we obtain that {un} has a

convergent subsequence (denote by un for simplicity). Since un is relevant to the choice of k, we suppose

that un → uk in H , as n → ∞. We note that

I(un) = Iµn(un) + (µn − 1)

Z

Ω

F (x, un)dx. (3.16)

Since supn ‖un‖ < ∞, we conclude that
R

Ω
F (x, un)dx stays bounded as n → ∞. Recalling that Iµn(un) ∈

[bk, ck], we get

I(uk) = lim
n→∞

I(un) ∈ [bk, ck]. (3.17)

On the other hand, we have

(I ′(un), v) = (I ′
µn

(un), v) + (µn − 1)

Z

Ω

f(x, un)vdx for all v ∈ H. (3.18)

Combining with I ′
µn

(un) = 0 and supn ‖un‖ < ∞,we obtain that

lim
n→∞

(I ′(un), v) = 0 for all v ∈ H.
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Since I ∈ C1(H), we have I ′(un) → I ′(uk) in H∗. Thus, (I ′(uk), v) = 0, ∀v ∈ H . Combining with (3.17)

and bk → ∞ as k → ∞, we know that the conclusion of Theorem 1.1 holds.

Proof of Theorem 1.2. (f1) − (f4) and (g1) − (g3) imply that Lemma 3.2 holds. Fix k ≥ k′
0,we

claim that the sequence {un} of Lemma 3.2 is bounded under assumptions of Theorem 1.2. Seeking a

contradiction we suppose that ‖un‖ → ∞. Let vn = un

‖un‖
. Up to a sequence, we get

vn ⇀ v weakly in H,

vn → v strongly in L
t(Ω), 1 ≤ t < 2∗

,

vn(x) → v(x) a.e. x ∈ Ω.

We consider two cases.

Case 1. v 6= 0 in H .

By I∗
µn

(un) ∈ [b∗k, c∗k], there holds

1

2
‖un‖

2 − µn

Z

Ω

[F (x, un) +
1

2
bu

2
n]dx −

Z

Ω

G1(x, un)dx ≥ b
∗
k.

Divided by ‖un‖
2 in both sides of the above equality, we get

1

2
+ o(1) ≥

Z

Ω

F (x, un)

‖un‖2
dx +

b

2

Z

Ω

v
2
ndx

=

Z

Ω

F (x, un)

‖un‖2
dx +

b

2

Z

Ω

v
2dx, (3.19)

in view of (f4) and (3.4). On the other hand, set Ω1 := {x ∈ Ω, v(x) 6= 0}. Since meas(Ω1) > 0 and for

x ∈ Ω1,

lim
n→∞

F (x, un)

‖un‖2
= +∞,

using Fatou’s lemma, we obtain that

lim
n→∞

Z

Ω

F (x, un)

‖un‖2
dx ≥ lim

n→∞

Z

Ω1

F (x, un)

‖un‖2
dx = +∞,

which contradicts (3.19).

Case 2. v = 0 in H .

Since b ≥ ∧1, there exists i ∈ N , such that 1
2
∧i ≤ b < 1

2
∧i+1. We note that H = Yi

L

Y ⊥
i , where

Yi =
Li

j=1 Xj . Decompose un as un = un1 + un2, where un1 ∈ Yi and un2 ∈ Y ⊥
i . From (3.1) and

I∗′

µn
(un) = 0, we have

0 =(I∗′

µn
(un), un2)

=‖un2‖
2 − µn

Z

Ω

bu
2
n2dx − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx

≥‖un2‖
2 − 2b

Z

Ω

u
2
n2dx − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx

≥

„

1 −
2b

λi+1

«

‖un2‖
2 − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx. (3.20)

Combining (f2), (g3) and (3.20), there holds

‖un2‖
2 ≤C

Z

Ω

(|un2| + |un|
p−1|un2|)dx + C

Z

Ω

|un|
q−1|un2|dx

≤C‖un2‖ + C

Z

Ω

|un|
p−1|un2|dx + C‖un2‖2‖un‖

q−1
2(q−1)

≤C‖un2‖ + C

Z

Ω

|un|
p−1|un2|dx + C‖un2‖‖un‖

q−1

≤C‖un‖ + C‖un‖
q + C

Z

Ω

|un|
p−1|un2|dx. (3.21)
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Divided by ‖un‖
2 in both sides of (3.21) and noting that ‖un‖ → ∞,

‖un2‖
2

‖un‖2
≤ o(1) +

C
R

Ω
|un|

p−1|un2|dx

‖un‖2
. (3.22)

Arguing as in the proof of Theorem 1.1, we conclude that for µ > q, ‖un‖µ ≤ C. Thus, for µ > q and

µ ≥ (p − 1) 2N
N+2

, (3.22) implies that

‖un2‖
2

‖un‖2
≤o(1) +

C‖un2‖2∗‖un‖
p−1

(p−1) 2N
N+2

‖un‖2

≤o(1) +
C‖un2‖‖un‖

p−1
µ

‖un‖2

≤o(1) +
C‖un‖

‖un‖2

=o(1). (3.23)

Set vn1 = un1

‖un‖
and vn2 = un2

‖un‖
. Then, vn = vn1 + vn2. (3.23) implies that vn2 → 0 strongly in L2(Ω).

Note that vn → 0 strongly in L2(Ω), we obtain that vn1 → 0 strongly in L2(Ω). Thus, vn1 → 0 strongly

in H , using the equivalence of all norms on the finite dimensional space. Observe that vn2 → 0 strongly

in H , we have vn → 0 strongly in H , contradicts with ‖vn‖ = 1. Thus, the claim is proved. The rest of

the proof is just the same as Theorem 1.1, we omit the details.

4. The case a ≥ λ1 and b ≥ 0

In this section we use the norm ‖.‖H . It is well known that µj = λ2
j , j = 1, 2, · · · , are eigenvalues of

the eigenvalue problem
8

<

:

∆2
u = µu, in Ω,

u = ∆u = 0, on ∂Ω,

ϕj , j = 1, 2, · · · are the corresponding eigenfunctions. Furthermore, the set of {ϕj} is an orthogonal

basis on the Hilbert space H . Let Xj := span{ϕj}, j ∈ N and set Uk =
Lk

j=1 Xj , Vk =
L∞

j=k Xj .

Using the Lax-Milgram Theorem, we deduce that for any g ∈ Lr(Ω), 2N
N+2

≤ r < ∞, there exists

unique u ∈ H , such that
Z

Ω

∆u∆ϕdx =

Z

Ω

gϕdx, ∀ϕ ∈ H. (4.1)

From [2], we have

‖u‖W4,r ≤ C‖g‖r (4.2)

and

∆2
u = g in Ω, γ0(u) = γ0(∆u) = 0. (4.3)

Here, γ0(u) and γ0(∆u) are the traces on the boundary ∂Ω. That is, γ0 is a linear continuous operator

such that γ0(v) = v|∂Ω for all v ∈ C(Ω̄). Let

E :=
˘

u; u ∈ W
4,r(Ω), γ0(u) = γ0(∆u) = 0

¯

be the linear space equipped with the W 4,r norm. It is easy to see that E is a Banach space. Then we can

conclude that for any g ∈ Lr(Ω), there exists unique u ∈ E satisfying ∆2u = g and ‖u‖W4,r ≤ C‖g‖r,

where ∆2 is a linear operator from E to Lr(Ω). Thus, the inverse operator (∆2)−1 is a linear bounded

operator from Lr(Ω) to E. The restriction 2N
N+2

≤ r < ∞ ensures that the imbedding E →֒ H is compact.

Hence, the operator (∆2)−1 is compact from Lr(Ω) to H .

We observe that the operator ∆ is a linear bounded operator from H to L2(Ω). Then the operator

(∆2)−1∆ is compact from H to H . On the other hand, we recall that Nf is the Nemytskii operator

defined by (Nfu)(x) = f(x, u(x)) for x ∈ Ω. From (f1)− (f2) and Proposition 5 in [3], we know that Nf

is continuous from Lp(Ω) to L
p

p−1 (Ω) and maps bounded sets into bounded sets. Combining with the

compact imbedding H →֒ Lp(Ω) and p
p−1

> 2N
N+2

, we have (∆2)−1Nf is a compact operator from H to
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H . Similarly, (∆2)−1Ng1
is compact from H to H , where Ng1

is defined by (Ng1
u)(x) = g1(x, u(x)) for

x ∈ Ω.

Now, for µ ∈ [1, 2], we can define

Aµ(u) := (∆2)−1 [−aµ∆u + µf(x, u) + bµu + g1(x, u)] , µ ∈ [1, 2].

Moreover, Aµ is compact from H to H .

Consider Jµ : H → R defined by

Jµ(u) :=
1

2
‖u‖2

H − µ

Z

Ω

[F (x, u) +
1

2
a|∇u|2 +

1

2
bu

2]dx −

Z

Ω

G1(x, u)dx, µ ∈ [1, 2].

Lemma 4.1. For µ ∈ [1, 2], there holds

˙

J
′
µ(u), u − Aµ(u)

¸

H∗,H
= ‖u − Aµ(u)‖2

H . (4.4)

Proof. Let u ∈ H and set v = Aµ(u). It is easy to see that
Z

Ω

∆u∆vdx =

Z

Ω

u [−aµ∆u + µf(x, u) + bµu + g1(x, u)] dx

and
Z

Ω

∆v∆vdx =

Z

Ω

v [−aµ∆u + µf(x, u) + bµu + g1(x, u)] dx.

Then

˙

J
′
µ(u), u − Aµ(u)

¸

H∗,H

=

Z

Ω

∆u(∆u − ∆v)dx − aµ

Z

Ω

∇u∇(u − v)dx − µ

Z

Ω

f(x, u)(u − v)dx − bµ

Z

Ω

u(u − v)dx

−

Z

Ω

g1(x, u)(u − v)dx

=

Z

Ω

(∆u − ∆v)2dx.

Lemma 4.2. Assume that f , g satisfy conditions of Lemma 3.1. Let a ≥ λ1 and 1
2
λj < a ≤ 1

2
λj+1 for

some j ∈ N . Then , if λi(
1
2
λi − a) ≤ b < λi+1(

1
2
λi+1 − a) for some i ∈ N , i ≥ j + 1, there exists k′′

0 ∈ N ,

such that for k ≥ k′′
0 , there exist c̃k ≥ b̃k > 0, b̃k → ∞ as k → ∞. Moreover, fix k ≥ k′′

0 , there exist

µn → 1 as n → ∞ and {un}
∞
n=1 ⊂ H , such that

J
′
µn

(un) = 0, Jµn(un) ∈ [̃bk, c̃k].

Proof. It is easy to prove (F1) − (F2) hold. For 2 < p < 2∗, let

αk := sup
u∈Vk,‖u‖H=1

‖u‖p. (4.5)

Then αk → 0 as k → ∞ following the method of Lemma 3.8 in [11]. Combining (3.3) − (3.4) and (4.5),

we obtain that for u ∈ Vk,

Jµ(u) =
1

2
‖u‖2

H − µ

Z

Ω

[F (x, u) +
1

2
a|∇u|2 +

1

2
bu

2]dx −

Z

Ω

G1(x, u)dx

≥
1

2
‖u‖2

H −

Z

Ω

[a|∇u|2 + bu
2]dx − C‖u‖q

H − C‖u‖H − Cα
p
k‖u‖

p
H . (4.6)

We note that
n

ϕj

‖ϕj‖H

o∞

j=1
is an orthonormal basis of H . Then, for u ∈ Vk, we can write

u =

∞
X

j=k

cj
ϕj

‖ϕj‖H

EJQTDE, 2011 No. 9, p. 10



for cj =
“

u,
ϕj

‖ϕj‖H

”

H
, the series converging in H . In additional,

‖u‖2
H =

∞
X

j=k

c
2
j . (4.7)

Denote um =
Pm

j=k cj
ϕj

‖ϕj‖H
, where m ∈ N , m ≥ k . Thus,

lim
m→∞

‖um − u‖H = 0.

Recall that H1
0 (Ω) is the Hilbert space equipped with the inner product

(u, v)H1
0

=

Z

Ω

∇u∇vdx,

which induces the norm

‖u‖H1
0

= (

Z

Ω

|∇u|2dx)
1
2 .

We note that for u ∈ H ,
Z

Ω

|∇u|2dx ≤ C

Z

Ω

|∆u|2dx.

Thus,

lim
m→∞

‖um − u‖H1
0

= 0.

Now, we rewrite

u =
∞
X

j=k

cj

‖ϕj‖H1
0

‖ϕj‖H

ϕj

‖ϕj‖H1
0

,

the series converging in H1
0 (Ω). Note that



ϕj

‖ϕj‖H1
0

ff∞

j=1

is an orthonormal basis of H1
0 (Ω), we have

‖u‖2
H1

0
=

∞
X

j=k

c
2
j

‖ϕj‖
2
H1

0

‖ϕj‖2
H

. (4.8)

Combining (4.7) − (4.8), we obtain that for u ∈ Vk,

‖u‖2
H ≥ λk‖u‖

2
H1

0
. (4.9)

Similarly, we can deduce that for u ∈ Vk,

‖u‖2
H1

0
≥ λk‖u‖

2
2. (4.10)

(4.6) and (4.9) − (4.10) imply that for u ∈ Vk, k ≥ i + 1,

Jµ(u) ≥

»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

‖u‖2
H − C‖u‖q

H − C‖u‖H − Cα
p
k‖u‖

p
H . (4.11)

For k ≥ i + 1, choosing r̃k :=

 

2Cpλi+1α
p

k

λi+1−2

„

a+ b
λi+1

«

! 1
2−p

, we have that for u ∈ Vk, ‖u‖ = r̃k,

Jµ(u) ≥



1

2

»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

‖u‖2
H − Cα

p
k‖u‖

p
H

ff

+



1

2

»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

‖u‖2
H − C‖u‖q

H − C‖u‖H

ff

≥

„

1

2
−

1

p

«»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

0

@

2Cpλi+1α
p
k

λi+1 − 2
“

a + b
λi+1

”

1

A

2
2−p

+
1

2

»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

r̃
2
k − Cr̃

q
k − Cr̃k

:=b̃k +
1

2

»

1

2
−

1

λi+1

„

a +
b

λi+1

«–

r̃
2
k − Cr̃

q
k − Cr̃k. (4.12)
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We note that r̃k → ∞ as k → ∞. Thus, there exists k′′
0 ≥ j + 1, k′′

0 ∈ N , such that for k ≥ k′′
0 ,

b̃k(µ) := inf
u∈Vk,‖u‖H=r̃k

Jµ(u) ≥ b̃k.

Moreover, b̃k → ∞ as k → ∞. On the other hand, combining (f4), (3.4) and (3.7), we obtain that for

any M > 0, there exists C(M) > 0, such that

Jµ(u) ≤
1

2
‖u‖2

H −

Z

Ω

F (x, u)dx −

Z

Ω

G1(x, u)dx

≤
1

2
‖u‖2

H + C‖u‖q
H − M‖u‖2

2 + C(M)meas(Ω).

Choosing M > 0 large enough, we have that for u ∈ Uk,

Jµ(u) ≤ −C‖u‖2
H + C‖u‖q

H + C.

Thus, we can choose ρ̃k > 0 large enough, such that ρ̃k > r̃k and

ãk(µ) := max
u∈Uk,‖u‖=ρ̃k

Jµ(u) ≤ 0.

Thus, the conditions of Theorem 2.1 are satisfied for k ≥ k′′
0 . For k ≥ k′′

0 , from Theorem 2.1, we obtain

that for all µ ∈ [1, 2], c̃k(µ) ≥ b̃k(µ) ≥ b̃k, where c̃k(µ) := infγ∈Γk
maxu∈Bk

Jµ(γ(u)), Bk := {u ∈ Uk :

‖u‖ ≤ ρ̃k} and Γk := {γ ∈ C(Bk, H) : γ is odd, γ|∂Bk
= id}. Moreover, c̃k(µ) ≤ supu∈Bk

J(u) := c̃k. Fix

k ≥ k′′
0 , we have that for a.e. µ ∈ [1, 2], there exists a sequence {uk

n(µ)}∞n=1 such that

sup
n

‖uk
n(µ)‖H < ∞, J

′
µ(uk

n(µ)) → 0 and Jµ(uk
n(µ)) → c̃k(µ) ≥ b̃k as n → ∞.

Thus, from Lemma 4.1, we conclude that

u
k
n(µ) − Aµ(uk

n(µ)) → 0 strongly in H.

Recalling that Aµ is compact from H to H , combining with supn ‖uk
n(µ)‖H < ∞, we deduce that

{un
k (µ)}∞n=1 has a convergent subsequence. Suppose uk

n(µ) → uk(µ) as n → ∞. We get J ′
µ(uk(µ)) = 0,

Jµ(uk(µ)) ∈ [̃bk, c̃k], for almost every µ ∈ [1, 2]. So, when µn → 1 with µn ∈ [1, 2], we find a sequence

uk(µn) (denote by un for simplicity) satisfying J ′
µn

(un) = 0, Jµn(un) ∈ [̃bk, c̃k].

Proof of Theorem 1.3. (f1) − (f4) and (g1) − (g3) imply that Lemma 4.2 holds. Fix k ≥ k′′
0 ,we

claim that the sequence {un} of Lemma 4.2 is bounded under assumptions of Theorem 1.3. Seeking a

contradiction we suppose that ‖un‖H → ∞. Let wn = un

‖un‖H
. Up to a sequence, we get

wn ⇀ w weakly in H,

wn → w strongly in L
t(Ω), 1 ≤ t < 2∗

,

wn(x) → w(x) a.e. x ∈ Ω.

We consider two cases.

Case 1. w 6= 0 in H .

By Jµn(un) ∈ [̃bk, c̃k], there holds

1

2
‖un‖

2
H ≥ b̃k +

Z

Ω

F (x, un)dx +

Z

Ω

G1(x, un)dx.

Divided by ‖un‖
2
H in both sides of the above equality and in view of (3.4), we get

1

2
≥ o(1) +

Z

Ω

F (x, un)

‖un‖2
H

dx. (4.13)

Set Ω2 := {x ∈ Ω, w(x) 6= 0}. Since meas(Ω2) > 0 and for x ∈ Ω2,

lim
n→∞

F (x, un)

‖un‖2
H

= +∞,
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using Fatou’s lemma, we obtain that

lim
n→∞

Z

Ω

F (x, un)

‖un‖2
H

dx ≥ lim
n→∞

Z

Ω2

F (x, un)

‖un‖2
H

dx = +∞,

which contradicts (4.13).

Case 2. w = 0 in H .

We note that H = Yi

L

Y ⊥
i , where Yi =

Li
j=1 Xj . Decompose un as un = un1 + un2, where un1 ∈ Yi

and un2 ∈ Y ⊥
i . In view of (4.9) − (4.10), we have

0 =(J
′

µn
(un), un2)

=‖un2‖
2
H − µn

Z

Ω

[a|∇un2|
2 + bu

2
n2]dx − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx

≥‖un2‖
2
H − 2

Z

Ω

[a|∇un2|
2 + bu

2
n2]dx − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx

≥

»

1 −
1

λi+1

„

a +
b

λi+1

«–

‖un2‖
2
H − µn

Z

Ω

f(x, un)un2dx −

Z

Ω

g1(x, un)un2dx. (4.14)

Combining (f2), (g3) and (4.14), there holds

‖un2‖
2
H ≤ C‖un‖H + C‖un‖

q
H + C

Z

Ω

|un|
p−1|un2|dx. (4.15)

Divided by ‖un‖
2
H in both sides of (4.15),

‖un2‖
2
H

‖un‖2
H

≤ o(1) +
C
R

Ω
|un|

p−1|un2|dx

‖un‖2
H

. (4.16)

Arguing as in the proof of Theorem 1.2, we conclude that wn → 0 strongly in H , contradicts with ‖wn‖H =

1. Thus, the claim is proved. Now we will prove the sequence {un} has a convergent subsequence. Observe

that

(J ′(un), v) = (J ′
µn

(un), v) + (µn − 1)

Z

Ω

[f(x, un)v + a∇un∇v + bunv]dx for all v ∈ H.

Combining with J ′
µn

(un) = 0 and supn ‖un‖H < ∞,we have

lim
n→∞

(J ′(un), v) = 0 for all v ∈ H.

Thus, from Lemma 4.1, we conclude that

un − A1(un) → 0 strongly in H.

Recalling that A1 is compact from H to H , together with supn ‖un‖H < ∞, we know that {un} has

a convergent subsequence. Since un is relevant to the choice of k, we suppose that un → uk in H , as

n → ∞. We note that

J(un) = Jµn(un) + (µn − 1)

Z

Ω

[F (x, un) +
1

2
a|∇un|

2 +
1

2
bu

2
n]dx.

Combining with Jµn (un) ∈ [̃bk, c̃k], we get

J(uk) = lim
n→∞

J(un) ∈ [̃bk, c̃k].

Besides,

J
′(uk) = lim

n→∞
J
′(un) = 0.

Recalling that b̃k → ∞ as k → ∞, we get the conclusion of Theorem 1.3.
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