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1 Introduction

The aim of this work is to study the oscillation of the second-order half-linear neutral delay
differential equation (

r
(
z′
)α
)′

(t) + q(t)xα(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)). Throughout, we assume that

(H1) α > 0 is a quotient of odd positive integers;

(H2) r ∈ C([t0, ∞), (0, ∞)) satisfies

π(t0) :=
∫ ∞

t0

r−1/α(s)ds < ∞;

(H3) the delay functions σ, τ ∈ C1([t0, ∞), R) satisfy τ(t), σ(t) ≤ t, σ′(t) > 0 and lim
t→∞

τ(t) =
lim
t→∞

σ(t) = ∞;
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(H4) q, p ∈ C([t0, ∞), [0, ∞)), 0 ≤ p(t) < 1 and q does not vanish identically on any half-line
of the form [t∗, ∞), t∗ ≥ t0;

(H5) p(t) < π(t)
π(τ(t)) .

Under a solution of equation (1.1), we mean a function x ∈ C([ta, ∞), R) with
ta = min{τ(tb), σ(tb)}, for some tb ≥ t0, which has the property r (z′)α ∈ C1([ta, ∞), R)

and satisfies (1.1) on [tb, ∞). We only consider those solutions of (1.1) which exist on some
half-line [tb, ∞) and satisfy the condition

sup{|x(t)| : tc ≤ t < ∞} > 0 for any tc ≥ tb.

As is customary, a solution x of (1.1) is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise, it is said to be nonoscillatory. The equation itself is termed
oscillatory if all its solutions oscillate.

The problem of determining oscillation criteria for particular functional differential equa-
tions has been a very active research area in the past decades, and many references and
summaries of known results can be found in the monographs by Agarwal et al. [1–3] and
Győri and Ladas [7].

In a neutral delay differential equation, the highest-order derivative of the unknown func-
tion appears both with and without delay. The qualitative study of such equations has, besides
its theoretical interest, significant practical importance. This is due to fact that neutral differ-
ential equations arise in various phenomena including problems concerning electric networks
containing lossless transmission lines (as in high speed computers where such lines are used
to interconnect switching circuits), in the study of vibrating masses attached to an elastic bar,
and in the solution of variational problems with time delays. We refer the reader to Hale’s
monograph [8] for further applications in science and technology.

In fact, the assumption
π(t0) = ∞

has been commonly used in the literature in order to ensure that any possible nonoscillatory,
say positive solution, x of (1.1) satisfies

x(t) ≥ (1− p(t))z(t). (1.2)

There is, however, much current interest in the study of oscillation of (1.1) in the case when
(H2) holds, and consequently, the inequality (1.2) does not hold generally.

In particular, Xu and Meng [17] and Mařík [14] gave conditions under which (1.1) is either
oscillatory or the solution approaches zero eventually. Ye and Xu [18] established further
results ensuring that every solution of (1.1) is oscillatory. Unfortunately, as discussed in [9],
some inaccuracies in their proofs prevented the successful application of the results obtained.
Therefore, Han et al. [9] continued the work on this subject to obtain new oscillation criteria
for (1.1), which we present below for convenience of the reader.

Theorem A (See [9, Theorem 2.1]). Assume (H1)–(H4) and

p′(t) ≤ 0 and σ(t) ≤ τ(t) = t− τ0 for t ≥ t0. (1.3)

If there exists a function ρ ∈ C1([t0, ∞), (0, ∞)) such that

lim sup
t→∞

∫ t

t0

(
ρ(s)q(s) (1− p(σ(s)))α −

(
(ρ′(s))+

)α+1 r(τ(s))
(α + 1)α+1ρα(s)(τ′(s))α

)
ds = ∞ (1.4)
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and

lim sup
t→∞

∫ t

t0

(
q(s)πα(s)
(1 + p(s))α

−
(

α

α + 1

)α+1 1
π(s)r1/α(s)

)
= ∞, (1.5)

then (1.1) is oscillatory.

Theorem B (See [9, Theorem 2.2]). Assume (H1)–(H4) and (1.3). If there exists a function ρ ∈
C1([t0, ∞), (0, ∞)) such that (1.4) holds and for all t1 ≥ t0,

lim sup
t→∞

∫ t

t1

r−1/α(v)
(∫ v

t1

q(u)
(

1
1 + p(u)

)α

(π(u))α du
)1/α

dv = ∞, (1.6)

then (1.1) is oscillatory.

Similar results to those above have been obtained in [11,13]. Using the generalized Riccati
substitution, Agarwal et al. [4] have recently proved less-restrictive oscillation criteria for (1.1)
without requiring condition (1.3).

Theorem C (See [4, Theorem 2.2]). Assume (H1)–(H5), α ≥ 1, and there exist functions ρ, δ

∈ C1([t0, ∞), (0, ∞)) such that (1.4) holds and

lim sup
t→∞

∫ t

t0

(
ψ(s)−

δ(s)r(s)
(
(ϕ(s))+

)α+1

(α + 1)α+1

)
ds = ∞, (1.7)

where

ψ(t) := δ(t)
(

q(t)
(

1− p(σ(t))
π(τ(σ(t)))

π(σ(t))

)α

+
1− α

r1/α(t)πα+1(t)

)
,

ϕ(t) :=
δ′(t)
δ(t)

+
1 + α

r1/α(t)π(t)
, (ϕ(t))+ = max{ϕ(t), 0}.

Then (1.1) is oscillatory.

Very recently, Džurina and Jadlovská [6] established, contrary to most existing results,
one-condition oscillation criteria for a special case of (1.1), namely,(

r
(
x′
)α
)′

(t) + q(t)xα(σ(t)) = 0. (1.8)

Theorem D (See [6, Theorem 2]). Assume (H1)–(H4). If

∫ ∞ ( 1
r(t)

∫ t
q(s)πα(σ(s))ds

)1/α

dt = ∞, (1.9)

then (1.8) is oscillatory.

Theorem E (See [6, Theorem 3]). Assume (H1)–(H4). If, for all t1 ≥ t0 large enough,

lim sup
t→∞

πα(t)
∫ t

t1

q(s)ds > 1, (1.10)

then (1.8) is oscillatory.
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One purpose of this paper is to further improve, complement, and simplify Theorems A–C.
The organization is as follows. Firstly, we extend Theorems D and E to be applicable on
(1.1). The newly obtained couple of criteria ensure oscillation of (1.1) without verifying the
extra condition (1.4), which has been (or its similar form) traditionally imposed in all results
reported in the literature (see [4, 9, 11–14, 16–18, 20]).

Secondly, we present a comparison result in which the oscillation of (1.1) is deduced from
that of a first-order delay differential equation. If, however, this criterion does not apply, we
are able to obtain lower bounds of solutions to (1.1) in order to achieve a qualitatively stronger
result in case of σ(t) < t.

Thirdly, following Agarwal et al. [4], we introduce a generalized Riccati substitution

w := δ

(
r (z′)α

zα
+

1
πα

)
. (1.11)

By careful observation and employing some inequalities of different type, we provide a crite-
rion which is equally sharp as that in [4, Theorem 1] for Euler-type differential equations with
σ(t) = t (see Example 2.11), but

(a) applies for any α > 0,

(b) has a significantly simpler form compared to (1.7),

(c) essentially takes into account the influence of delay argument σ(t), which has been
neglected in all previous results,

(d) in view of the technique used is in a nontraditional form (lim sup · > 1 instead of
lim sup · = ∞) and thus can be applied to different equations which cannot be covered
by the above-mentioned known results.

Moreover, as can be seen from Corollaries 2.8–2.10, this result improves Theorems A and C
also for the nonneutral case, i.e., when p(t) = 0.

2 Main results

In what follows, all occurring functional inequalities are assumed to hold eventually, that is,
they are satisfied for all t large enough. As usual and without loss of generality, we can deal
only with eventually positive solutions of (1.1).

Let us define

Q(t) := q(t)
(

1− p(σ(t))
π (τ(σ(t)))

π(σ(t))

)α

, Q̃(t) =
(

1
r(t)

∫ t

t1

Q(s)ds
)1/α

,

where t1 ∈ [t0, ∞). By assumption (H5), we note that the function Q is positive.

Theorem 2.1. Assume (H1)−(H5). If

∫ ∞ ( 1
r(t)

∫ t
Q(s)πα(σ(s))ds

)1/α

dt = ∞ (2.1)

then (1.1) is oscillatory.
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Proof. Suppose to the contrary that x is a positive solution of (1.1) on [t0, ∞). Then there
exists t1 ≥ t0 such that x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t1. Obviously, for all t ≥ t1,
z(t) ≥ x(t) > 0 and r(t) (z′(t))α is nonincreasing since(

r
(
z′
)α
)′

(t) = −q(t)xα(σ(t)) ≤ 0. (2.2)

Therefore, z′ is either eventually negative or eventually positive. We will consider each case
separately.

Assume first that z′ < 0 on [t1, ∞). Since

z(t) ≥ −
∫ ∞

t
r−1/α(s)r1/α(s)z′(s)ds ≥ −π(t)r1/α(t)z′(t), (2.3)

it follows that ( z
π

)′
(t) ≥ 0.

In view of the definition of z, we get

x(t) = z(t)− p(t)x(τ(t)) ≥ z(t)− p(t)z(τ(t)) ≥ z(t)
(

1− p(t)
π(τ(t))

π(t)

)
,

and consequently, (2.2) becomes(
r
(
z′
)α
)′

(t) ≤ −q(t)
(

1− p(σ(t))
π(τ(σ(t)))

π(σ(t))

)α

zα(σ(t))

= −Q(t)zα(σ(t)).
(2.4)

Taking into account the monotonicity of r(t) (z′(t))α, we have

−r(t)
(
z′(t)

)α ≥ −r(t1)
(
z′(t1)

)α
=: γ > 0 for all t ≥ t1,

which in view of (2.3) implies

z(t) ≥ γ1/απ(t) for all t ≥ t1. (2.5)

Combining (2.4) with (2.5) yields the inequality(
r
(
z′
)α
)′

(t) ≤ −γQ(t)πα(σ(t)) for all t ≥ t1. (2.6)

Integrating (2.6) from t1 to t, we obtain

r(t)
(
z′(t)

)α ≤ r(t1)
(
z′(t1)

)α − γ
∫ t

t1

Q(s)πα(σ(s))ds ≤ −γ
∫ t

t1

Q(s)πα(σ(s))ds. (2.7)

Integrating (2.7) from t1 to t and taking (2.1) into account yield

z(t) ≤ z(t1)− γ1/α
∫ t

t1

(
1

r(s)

∫ s

t1

Q(u)πα(σ(u))du
)1/α

ds→ −∞ as t→ ∞,

a contradiction.
Assume now that z′ > 0 on [t1, ∞). Then x(t) ≥ (1− p(t))z(t) and (2.2) becomes(

r
(
z′
)α
)′

(t) ≤ −q(t)(1− p(σ(t)))αzα(σ(t)). (2.8)
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Since π(τ(σ(t)))
π(σ(t)) ≥ 1, we have

1− p(σ(t)) ≥ 1− p(σ(t))
π(τ(σ(t)))

π(σ(t))
(2.9)

eventually, say for t ≥ t2, t2 ∈ [t1, ∞). On the other hand, it follows from (2.1) and (H2) that∫ t
t1

Q(s)πα(σ(s))ds must be unbounded. Further, since π′(t) < 0, it is easy to see that

∫ t

t1

Q(s)ds→ ∞ as t→ ∞. (2.10)

Integrating (2.8) from t2 to t and using (2.9) in the resulting inequality, we get

r(t)
(
z′(t)

)α
= r(t2)

(
z′(t2)

)α −
∫ t

t2

q(s)(1− p(σ(s)))αzα(σ(s))ds

≤ r(t2)
(
z′(t2)

)α − zα(σ(t2))
∫ t

t2

q(s)(1− p(σ(s)))αds

≤ r(t2)
(
z′(t2)

)α − zα(σ(t2))
∫ t

t2

Q(s)ds,

(2.11)

which in view of (2.10) contradicts to the positivity of z′(t) as t → ∞. The proof is complete.

Theorem 2.2. Assume (H1)−(H5). If, for all t1 ≥ t0 large enough,

lim sup
t→∞

πα(t)
∫ t

t1

Q(s)ds > 1, (2.12)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that x is a positive solution of (1.1) on [t0, ∞). Then there exists
t1 ≥ t0 such that x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t1. As in the proof of Theorem 2.1, z′

is of one sign eventually.
Assume first that z′ < 0 on [t1, ∞). Integrating (2.4) from t1 to t, we get

r(t)
(
z′(t)

)α ≤ r(t1)
(
z′(t1)

)α −
∫ t

t1

Q(s)zα(σ(s))ds ≤ −zα(σ(t))
∫ t

t1

Q(s)ds. (2.13)

Using that (2.3) holds and z(σ(t)) ≥ z(t) in (2.13), we obtain

−r(t)
(
z′(t)

)α ≥ −r(t)
(
z′(t)

)α
πα(t)

∫ t

t1

Q(s)ds. (2.14)

Cancelling −r(t) (z′(t))α on both sides of (2.14) and taking the lim sup on both sides of the
resulting inequality, we arrive at a contradiction with (2.12).

Assume that z′ > 0 on [t1, ∞). Except the fact that (2.10) follows now from (2.12) and (H2),
this part of proof is similar to that of Theorem 2.1 and so we omit it.

Remark 2.3. When p(t) ≡ 0, conditions (2.1) and (2.12) reduce to (1.9) and (1.10), respectively.

Next, we give the following oscillation result which is applicable for the delay case only,
i.e., when σ(t) < t.
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Theorem 2.4. Assume (H1)–(H5). If

lim inf
t→∞

∫ t

σ(t)
Q̃(s)ds >

1
e

, (2.15)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that x is a positive solution of (1.1) on [t0, ∞). Then there exists
t1 ≥ t0 such that x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t1. As in the proof of Theorem 2.1, z′

is of one sign eventually.
Assume first that z′ < 0 on [t1, ∞). From (2.13), it is easy to see that z is a solution of the

first-order delay differential inequality

z′(t) + Q̃(t)z(σ(t)) ≤ 0. (2.16)

In view of [15, Theorem 1], the associated delay differential equation

z′(t) + Q̃(t)z(σ(t)) = 0 (2.17)

also has a positive solution. However, it is well-known (see, e.g., [10, Theorem 2]) that con-
dition (2.15) implies oscillation of (2.17). This in turn means that (1.1) cannot have a positive
solution, a contradiction.

Assume that z′ > 0 on [t1, ∞). If suffices to note that∫ ∞

t0

Q̃(s)ds = ∞ (2.18)

is necessary for the validity of (2.15). Then, except the fact that (2.10) follows now from (2.18)
and (H2), this part of proof is similar to that of Theorem 2.1 and so we omit it. The proof is
complete.

It is obvious that if ∫ t

σ(t)
Q̃(s)ds ≤ 1

e
, (2.19)

then Theorem 2.4 does not apply. If, however, (2.19) holds and z is a positive solution of
(2.16), then it is possible to obtain lower bounds of z(σ(t))

z(t) which will play an important role in
proving the next theorem. Zhang and Zhou [19] obtained such bounds for (2.17) by defining
a sequence { fn(ρ)} by

f0(ρ) = 1, fn+1(ρ) = eρ fn(ρ), n ∈N0, (2.20)

where ρ is a positive constant satisfying

lim inf
t→∞

∫ t

σ(t)
Q̃(s)ds ≥ ρ for t ≥ t1. (2.21)

They showed that, for ρ ∈ (0, 1/e], the sequence is increasing and bounded above and
lim
t→∞

fn(ρ) = f (ρ) ∈ [1, e], where f (ρ) is a real root of the equation

f (ρ) = eρ f (ρ). (2.22)

We essentially use their result in the following lemma.
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Lemma 2.5. Assume that (2.21) holds for ρ > 0 and let x be a positive solution of (1.1) with z > 0
satisfying z′ < 0 on [t1, ∞). Then there exists t2 ≥ σ−(2+n)(t1) such that, for some n ∈N0,

z(σ(t))
z(t)

≥ fn(ρ) for t ≥ t2, (2.23)

where fn(ρ) is defined by (2.20).

Proof. Let x be a positive solution of (1.1) with z > 0 satisfying z′ < 0 on [t1, ∞). Then as in
the proof of Theorem 2.4, one can obtain that z is a positive solution of the first-order delay
differential inequality (2.16). Proceeding in the same manner as in the proof of [19, Lemma 1],
we see that the estimate (2.23) holds.

Finally, we recall another auxiliary result which is extracted from Erbe et al. [16, Lemma 2.3].

Lemma 2.6. Let g(u) = Au− B(u− C)
α+1

α , where B > 0, A and C are constants, α is a quotient of
odd positive numbers. Then g attains its maximum value on R at u∗ = C +

(
α

α+1
A
B

)α
and

max
u∈R

g(u) = g (u∗) = AC +
αα

(α + 1)α+1
Aα+1

Bα
. (2.24)

Let us define the sequence of functions {ψn(t)} by

ψn(t) :=

{
Q(t), if σ(t) = t,

f α
n (ρ) Q(t), if σ(t) < t,

where n ∈N0, ρ ∈ (0, 1/e] satisfies (2.21) and fn(ρ) is defined by (2.20).

Theorem 2.7. Assume (H1)–(H5). If there exist functions ρ, δ ∈ C1([t0, ∞), (0, ∞)) and T ∈ [t0, ∞)

such that (1.4) holds and, for some n ∈N0,

lim sup
t→∞

{
πα(t)
δ(t)

∫ t

T

(
δ(s)ψn(s)−

r(s) (δ′(s))α+1

(α + 1)α+1δα(s)

)
ds

}
> 1, (2.25)

then (1.1) is oscillatory.

Proof. Suppose to the contrary that x is a positive solution of (1.1) on [t0, ∞). Then there exists
t1 ≥ t0 such that x(τ(t)) > 0 and x(σ(t)) > 0 for all t ≥ t1. As in the proof of Theorem 2.1,
we have that z′ is of one sign eventually.

Assume first that z′ < 0 on [t1, ∞). Proceeding as in the proof of Theorem 2.1, we obtain
that z is a solution of the inequality (2.4). Let us define the Riccati function w by (1.11), that is,

w := δ

(
r (z′)α

zα
+

1
πα

)
on [t1, ∞). (2.26)

In view of (2.3), we see that w ≥ 0 on [t1, ∞). Differentiating (2.26), we arrive at

w′ =
δ′

δ
w + δ

(
r (z′)α)′

zα
− αδr

(
z′

z

)α+1

+
αδ

r1/απα+1

≤ δ′

δ
w + δ

(
r (z′)α)′

zα
− α

(δr)1/α

(
w− δ

πα

)(α+1)/α

+
αδ

r1/απα+1 .

(2.27)
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Combining (2.23) from Lemma 2.5 with (2.4), we have(
r
(
z′
)α
)′
≤ −ψnzα (2.28)

for some n ∈N0 on [t2, ∞), where t2 ∈ [σ−(2+n)(t1), ∞). It follows from (2.27) that

w′ ≤− δ(t)ψn +
δ′

δ
w− α

(δr)1/α

(
w− δ

πα

)(α+1)/α

+
αδ

r1/απα+1 .

We use (2.24) with

A :=
δ′

δ
, B :=

α

(δr)1/α
, C :=

δ

πα

to obtain

w′ ≤ −δψn +
δ′

πα
+

r (δ′)α+1

(α + 1)α+1δα
+

αδ

r1/απα+1

= −δψn +

(
δ

πα

)′
+

r (δ′)α+1

(α + 1)α+1δα
.

(2.29)

Integrating (2.29) from t2 to t, we arrive at∫ t

t2

(
δ(s)ψn(s)−

r(s) (δ′(s))α+1

(α + 1)α+1δα(s)

)
ds− δ(t)

πα(t)
+

δ(t2)

πα(t2)
≤ w(t2)− w(t).

In view of the definition of w, we are led to∫ t

t2

(
δ(s)ψn(s)−

r(s) (δ′(s))α+1

(α + 1)α+1δα(s)

)
ds ≤ δ(t2)

r(t2) (z′(t2))
α

zα(t2)
− δ(t)

r(t) (z′(t))α

zα(t)
. (2.30)

On the other hand, it follows from (2.3) that

− δ(t)
πα(t)

≤ δ(t)
r(t) (z′(t))α

zα(t)
≤ 0.

After substituting the above estimate into (2.30), we obtain∫ t

t2

(
δ(s)ψn(s)−

r(s) (δ′(s))α+1

(α + 1)α+1δα(s)

)
ds ≤ δ(t)

πα(t)
. (2.31)

Multiplying (2.31) by πα(t)
δ(t) and taking the lim sup on both sides of the resulting inequality, we

arrive at contradiction with (2.9). The proof is complete.
Assume that z′ > 0 on [t1, ∞). Then we are back to the proof of [18, Theorem 2.1] to obtain

a contradiction with (1.4). The proof is complete.

Theorem 2.7 can be used in a wide range of applications for oscillation of (1.1) depending
on the appropriate choice of functions ρ and δ. Namely, by choosing

(a) ρ(t) ≡ 1, δ(t) = πα(t),

(b) ρ(t) ≡ 1, δ(t) = π(t),

(c) ρ(t) = δ(t) ≡ 1,

respectively, we get the following results, which are new also for the nonneutral ordinary case,
i.e., when p(t) = 0 and σ(t) = t.
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Corollary 2.8. Assume (H1)–(H5). If∫ ∞

t0

q(s) (1− p(σ(s)))α ds = ∞ (2.32)

and there exist T ∈ [t0, ∞) and n ∈N0 such that

lim sup
t→∞

∫ t

T

(
πα(s)ψn(s)−

(
α

α + 1

)α+1 1
π(s)r1/α(s)

)
ds > 1, (2.33)

then (1.1) is oscillatory.

Corollary 2.9. Assume (H1)–(H5) and (2.32). If there exist T ∈ [t0, ∞) and n ∈N0 such that

lim sup
t→∞

πα−1(t)
∫ t

T

(
π(s)ψn(s)−

1
(α + 1)α+1πα(s)r1/α(s)

)
ds > 1, (2.34)

then (1.1) is oscillatory.

Corollary 2.10. Assume (H1)–(H5) and (2.32). If there exist T ∈ [t0, ∞) and n ∈N0 such that

lim sup
t→∞

πα(t)
∫ t

T
ψn(s)ds > 1, (2.35)

then (1.1) is oscillatory.

Finally, we illustrate the importance of our results on the following example.

Example 2.11. Consider the second-order neutral differential equation(
tα+1

[(
x(t) + p0x

(
t
2

))′]α)′
+ q0xα(λt) = 0, t ≥ 1, (2.36)

where α > 0 is a quotient of odd positive integers, q0 ∈ (0, ∞), p0 ∈ [0, α
√

1/2) and λ ∈ (0, 1].
It is clear that assumptions (H1)–(H5) hold. By Theorem 2.2, we deduce that equation (2.36) is
oscillatory if

ααq0

(
1− α
√

2p0

)α
> 1. (2.37)

By Theorem 2.4, the same conclusion holds for (2.36) if λ < 1 and

q1/α
0

(
1− α
√

2p0

)
ln
(

1
λ

)
>

1
e

. (2.38)

If, however, (2.38) does not hold, we set

ρ := q1/α
0

(
1− α
√

2p0

)
ln
(

1
λ

)
.

Clearly, since ρ ≤ 1/e, the sequence { fn} defined by (2.20) has a finite limit (2.22), which can
be expressed as

f (ρ) = lim
n→∞

fn(ρ) = −
W(−ρ)

ρ
,

where W standardly denotes the principal branch of the Lambert function, see [5] for details.
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To apply Corollary 2.8, we first note that (2.32) is satisfied. Then (2.36) is oscillatory in
delay case (λ < 1) if

f (ρ)q0

(
1− α
√

2p0

)α
>

1
(α + 1)α+1 , (2.39)

and in ordinary case (λ = 1) if

q0

(
1− α
√

2p0

)α
>

1
(α + 1)α+1 . (2.40)

Note that if p0 = 0 and α = 1, then (2.40) reduces to the condition q0 > 1/4, which is sharp
for oscillation of the Euler differential equation(

t2x′(t)
)′
+ q0x(t) = 0.

In fact, Theorems A and B cannot be applied in (2.36) due to (1.3). To apply Theorem C, we
must require α ≥ 1. Then (2.36) is oscillatory if

q0

(
1− α
√

2p0

)α
>

1− (1− α)(α + 1)α+1

αα+1(α + 1)α+1 . (2.41)

Apparently, conditions (2.40) and (2.41) are the same for α = 1. This confirms the fact that the
influence of the delay term has been neglected in previous works.

Finally, let us consider a particular case of (2.36), namely,(
t2
(

x(t) +
1
4

x
(

t
2

))′)′
+

1
3

x
(

t
8

)
= 0. (2.42)

Obviously, (2.37), (2.38) and (2.41) fail to apply. However, it is easy to verify that (2.39) reduces
to 1/3 > 1/4, which implies that (2.42) is oscillatory.
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