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Abstract. In this paper, we deal with the following p(x)-Schrédinger problem:

—div(|VulP®=2Vy) + V(x) [ulPP 24 = f(x,u) inRN;
u € WWPO)(RN),

where the nonlinearity is sublinear. We present the existence of infinitely many
solutions for the problem. The main tool used here is a variational method and
Krasnoselskii’s genus theory combined with the theory of variable exponent Sobolev
spaces. We also establish a Bartsch-Wang type compact embedding theorem for the
variable exponent spaces.
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1 Introduction

In this paper, we consider the following p(x)-Schrodinger equation in RN

{—div(|Vu|P(x)‘2Vu) + V() [uf®2u = f(x,u), inRN; )

u € WhP(RN),
where N > 2, p : RN — R is Lipschitz continuous, 1 < p~ := inf. gy p(x) < p™ =

sup, gy P(¥) < N and V € C(RN,R) is the new potential function, f obeys some conditions
which will be stated later and WP (RN) is the variable exponent Sobolev space.
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These interests are stimulated mainly by the development of the studies of problems in
elasticity, electrorheological fluids, flow in porous media, calculus of variations, differential
equations with p(x)-growth (see [1,4, 10, 20,27, 28]). We refer to the p(x)-Laplace operator
Apyu = div(|Vu| plx)=2 Vu), where p is a continuous non-constant function. This differential

operator is a natural generalization of the p-Laplace operator Apu := div(|Vu/|” “2Vu), where
p > 1is a real constant. However, the p (x)-Laplace operator possesses more complicated
nonlinearity than p-Laplace operator, due to the fact that A,(,) is not homogeneous. This
fact implies some difficulties; for example, we cannot use the Lagrange multiplier theorem in
many problems involving this operator. Among these problems, the study involving p (x)-
Laplacian problems via variational methods is an interesting topic. Many researchers have
devoted their work to this area (see [2,3,13,15,17,26]).
When V(x) is radial (for example V(x) = 1), Dai studied the following problem in [9]:

—div(|Vu|P®2Vu) + [u|'P 2y = f(x,u), inRN;
u € W) (RN),

by means of a direct variational approach and the theory of variable exponent Sobolev spaces,
sufficient conditions ensuring the existence of infinitely many distinct homoclinic radially
symmetric solutions is proved.

The case of p, when V are radially symmetric on RY with 1 < p~ < p* < N and
V=~ > 1 was discussed by Ge, Zhou and Xue in [19]. The existence of at least two nontrivial
solutions has been established. In [30], Zhou and Wang studied the existence of infinitely
many solutions for a class of (P) when the potential function does not satisfy the coercive
condition.

For p(x) = p, problem (P) reduces to
—Apu+V(x)|ulP?u = f(x,u), inRY; (Py)
u € Wi (RV). ’

Liu [24] studied that the existence of ground states of problem (FP;) with a potential which
is periodic or has a bounded potential. Liu, Wang [23] discussed the problem (F)) with
sign-changing potential and subcritical p-superlinear nonlinearity, by using the cohomological
linking method for cones, and obtained an existence result of nontrivial solution. Recently,
Alves, Liu [3] established the existence of ground state solution for problem (P) via modern
variational methods on the potential function V under following hypothesis
(Vo) V € C(RN,R), inf V(x) >0
x€RN

and for each M > 0, u{x € RN : V-!(—oc0, M|} < +oo, where u(.) denotes the Lebesgue
measure in RY. By using a variational method combined with the theory of variable exponent
Sobolev spaces, Duan, Huang [13] and Wang, Yao, Liu [29] studied the existence of infinitely
many solutions for a class of (P) equations in RN, which the potential V satisfies hypothesis
(Vo) and f(x, u) is sublinear at infinity in . Moreover, the authors proposed new assumptions
on the nonlinear term to yield bounded Palais-Smale sequences and then proved that the
special sequences converge to critical points respectively. The main arguments are based on
the geometry supplied by the fountain theorem. Consequently, they showed that the problem
(P) under investigation admits a sequence of weak solutions with high energies.

Now, p(x) and V(x) satisfy the following assumptions.
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(p1) The function p : RN — R is ipschitz continuous and 1 < p~ < p* < N;

(V1) V e C(RN,R), inf,cgy V(x) > 0 and there are constants r > 0, « > N such that for any

b>0,
lim <{x B (y): L) o b}) o,

ly|—+oo Cx)”

where B, (y) = {x € RN : |[x —y| < r} and u(-) denotes the Lebesgue measure.

Remark 1.1. Condition (V) which is weaker than (Vp), is originally introduced by Bartsch,
Wang, Willem [6] to guarantee the compact embedding of the working space. There are
functions V satisfying (V) and not satisfying (Vp).

In the present paper, we concern with the existence of infinitely many solutions for (P) in
RN without any growth conditions imposed on f(x,u) at infinity with respect to u and to the
best of our knowledge, no results on this case have been obtained up to now. The main tool
used here is a variational method and Krasnoselskii’s genus theory combined with the theory
of variable exponent Sobolev spaces. We also prove a Bartsch-Wang type compact embedding
theorem for variable exponent spaces. We emphasize that in our approach, no coerciveness
hypothesis (V;) and not necessarily radially symmetric will be required on the potential V .
Based on the above fact and motivated by techniques used in [24,29,30], the main purpose of
this paper is devoted to investigate the existence of infinitely many solutions for problem (P)
when the nonlinearity is sublinear in u at infinity.

Assume that f : RN x R — R satisfies Carathéodory and the following conditions.

(f1) (0] < m(x)g(x) 1", V(xt) e RN xR,

q(x)
where ¢ : RN — R is a positive continuous function such that g € Li®-® (RN) nL* (RV),
meC(RN),1<m <m" <p,px) <q(x) <p(x) = 1\5\’_’77;’(‘3(), and g(x) < p*(x) means

that essinf, gy (p*(x) — g (x)) > 0.

(f2) There exist an xg € RN and a constant r > 0 such that

t
,s)d
liminf< inf fof(xs)s> > —o00,

t=0  \ xeB,(xo) MP(X)
t
,8)d
lim sup inf M = 4o0.
t—0 x€B; (%) |t|p

(f3) fisan odd function according to f, that is,

flxt) = =f(x,—t)

for all f € R and for all x € RN.

2 Preliminaries

In this section, we recall some results on variable exponent Lebesgue and Sobolev spaces. Over
the last decade, the variable exponent Lebesgue spaces L?*) and the corresponding Sobolev
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space WLP(¥) have been a subject of active research area (we refer to [11,14,16,18,21,25] for
the fundamental properties of these spaces). Write

Ci(RN) = {p € C(RN) : p(x) > 1 for any x E]RN},

p~ = inf p(x),p" := sup p(x) forany p € C, (RV).

N
xeR xeRN

The set of all measurable real-valued functions defined on RN will be denote by R(RR"). Note
that two measurable functions in ®(RRN) are considered as the same element of R(RR") when
they are equal almost everywhere.

Let p € C(RY). The variable exponent Lebesgue space LP*)(IRN) is defined by

LPE (RN = {u € R(RN) : /N Ju(x) "™ dx < oo} ,
R
which is equipped with the norm, so-called Luxemburg norm
u (x)
K

Moreover, we define the variable exponent Sobolev space by

p(x)
|| Ly vy = [0y = inf{ﬂ >0: . dx < 1} :

WIPE(RN) = {u € LPO(RN) : |Vu| € LPO(RN) ],
with the norm
||“||w1,p<x>(]RN) = ||“H1,p(x) = |u|p(x) + \V”|p(x)

for all u € WYP(*) (RN).The spaces LP(*) (RN), WL P(*) (RN) are separable and reflexive Banach
spaces [11,18,21]. Now, let us introduce the modular of the space L) (RN) as the functional
Tp(x) ¢ LP(RN) — R defined by

Oy () = [ ()" ax
for all u € LP(™)(RN). The relation between modular and Luxemburg norm is clarified by the

following propositions.

Proposition 2.1 ([11,18,21]). Let u,u, € LP™(RN) (n=1,2,...):
Q) [u] ) <U=1L>1) & 0y (1) <U=1>1);

.o B +
(ii) ’”‘p(x) >1 —= |u]§(x) < Op(x) u) < |M’§(x);

—~

Pt P

-

1
(i) [1t] ) < Op) ()7 + Opy ()77 5
(i) Hm fuy — vy =0 Hm oy (un —u) =0;

Hm fun] ) = 00 € Opy) () = oo

Proposition 2.2 ([11,21], Holder-type inequality). The conjugate space of LP¥) (RN) is LV (*) (RN),
where -1~ + 1~ = 1. For any u € LP®)(RN) and v € LV ) (RN), we have

plx) " p(x)
’ / uvdx
IRN

< 2{ulyx) [0y -
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Proposition 2.3 ([2,11,16]). Let k,h € C(RN) with 1 < k(x) < h(x) for all x € RN and u €
h(x)
LM (RN). Then, [u[*™) € L¥& (RN) via

- +
“u|k(X) ) < |u’;<1(x) + |u’;<1(x)

h(x)
k(x)

or there exists a number k € [k=,k*] such that

15 = Tl -

h(x
k(x)

Proposition 2.4 ([14,16,21]). Let p : RN — R be Lipschitz continuous and satisfy p™ < N, let
g : RN — R be a measurable function. If p(x) < q(x) < p*(x) = L&

N=p(x)’ then there is a continuous
embedding WP (RN) — LI (RN),

Proposition 2.5 ([10,15,19]). Let Q) be a bounded domain in RN. Assume that the boundary 9Q)

possesses cone property and g(x) € C(Q,R) with 1 < g(x) < p*(x) = NNfFEJ(‘i) for N > p(x) and

p* (x) = +oo for N < p(x), then there is a compact embedding WP (Q) << L1%¥) (Q).

Proposition 2.6 ([18,21]). Let Q) be an open subset of RN and G : Q) x R — R satisfies Carathéodory
conditions, and

IG(x, )| < a(x) + bt/ y(x, ) e Q xR,

where a € LP2X)(Q), bis a positive constant, p1, p» € L (Q). Denoted by Ng the Nemytsky operator
is defined by G, i.e.

(N (u))(x) = G(x,u(x)),
then Ng : L™ (Q) — LM (Q) is a continuous and bounded map. When p(x) < N, write
* _ Np(x)
P(%) = Ny

Next, we consider the case that V satisfies (V;). On the linear subspace

E= {u e Whrl) (]RN> : / <|Vu|p(x) + V(x) |u|p(x)> dx < —i—oo} /
RN
we equip with the norm

] Yu p(x)
||MHE:1nf{77>O/]RN<17 )dxgl}

Then (E, ||-||z) is continuously embedded into WP(*) (RN) as a closed subspace. Therefore,
(E,||-||g) is also a separable reflexive Banach space.
In addition, we define the modular A,y : E — R associated with E as follows:

p(x)
+ V(x)

Apay,v () = /]RN (IVu(x)\”("’ + V(x) \u(x)wm) dx

for all u € E, in a similar way to Proposition 2.1. The following proposition holds.
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Proposition 2.7 ([11,18,21]). Let u,u, € E:
@) [[ullp <U(=L>1) & Ay v(u) <1U(=1,>1);

(i) Jullp >1 = [ullh < Apv() < |ullh
lullp <1 = Jullh < Ay (@) < [ulh ;
(i) Tim [fu|[p = 0 < lm Ao,y (un) = 0;
Hm [Ju,||p = 00 & Hm Ay (1) = oo.
Proposition 2.8 ([17]). | € C'(E,R) and

(J'(u),v) = /]RN (|Vu\”(x)_2 VuVo + V(x) |ul/™2 uv) dx,  Yv,u€E,

J is a convex functional, |' : E — E* is strictly monotone, bounded homeomorphism, and is of (S )
type, namely u, — u (weakly) and

limy oo (J' (1) — J' (), (un —u)) <O implies 1y, — u (strongly) in E.

Definition 2.9. We say that the functional | satisfies the Palais—Smale condition ((PS) for
short) if every sequence {u,} € E such that

I(uy)| <c¢ and I'(uy) -0 asn— oo

contains a convergent subsequence in the norm of E.

3 Proof of main result

In order to discuss the problem (P), we need to consider the energy functional I : E — R
defined by

I(u) = /]RN o) (\Vu]p V(x) |u]p(x)) dx—/]RN F(x,u)dx, Vu € E, (3.1)

where F(x,t) fo f(x,8)ds, V(x,t) € RN x R. Set

/N1 Va4 () )
R

(x
9= o FE)

[(u) = J(u) =¥ (u).
Under our conditions, it follows from Holder-type inequality and Sobolev embedding

theorem that the energy functional I is well-defined. It is well known that I € C*(E,R) and
its derivative is given by

=

then

(I'(u), ¢) = /]RN <|Vu|p(x)_2 VuVe+ V(x) |u]p(x)_2ugo> dx — /]RN f(x, u)pdx (3.2)

forall u,p € E.
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Definition 3.1. We call that u € E \ {0} is a weak solution of (P), if

/]RN <\Vu|p(x)_2 VuVe + V(x) [u|P )2 ucp) dx = /RNf(x,u)(pdx,
where ¢ € E.
We are now in a position to state our main results.
Theorem 3.2. Assume that conditions (p1), (V1) and (f1) hold.
(1) Problem (P) has a solution.

(2) Furthermore, if f admits the conditions (f,) and (f3), then problem (P) has a sequence of solution
{tur:k=1,2,...,} such that I(£uy) < 0and I(+uy) — 0as k — oo.

For more existence and multiplicity results on p(x)-Laplacian equation in RY, we refer to
Fan and Han [15]. In [15, Theorem 3.2], the similar results are obtained for the case V(x) = 1.

For the proof of Theorem 3.2 we need some preliminary lemmas. The following Bartsch—
Wang type compact embedding will play a crucial role in our subsequent arguments.

Lemma 3.3. If V satisfies (V1) and p : RN — R is continuous and 1 < p~ < p™ < N, then

(i) we have a compact embedding E —— L% (RN).

(ii) for any measurable function q : RN — R with % < q(x) < p*(x), we have a compact

embedding E << L1 (RN),

Proof. (i). Let {u,} C E such that ||u,|; < C. We assume up to a subsequence u,, — u in E.
Then we have ||wy||; < C and w, — 0 in E, where w, = u, — u. We need to show w, — 0 in

Ly W (]RN ) to complete the proof
Set Ay(y) = {x € B, (y) : ¥ W (v;) and Dy (y) = {x € B, (y) : Vpg";) ().
By the Sobolev compact imbedding theorem in bounded domains (see Proposition 2.5), it

implies that w, — 0 strongly in LP (BR) for any R > 0, where Bg = {x € RN : |x| < R}.

To estimate [;. |wy| P* dx, let {y;}icn be a sequence of points in RN satisfying such that
R

RN C U®,B, (y;) and each point x is contained in at most 2V such balls B, (y;). So for all
R > 2r, we have

, Jenl

*s‘"“
[
=
INA
M
\
§
*x“

On the other hand, choose a number T € (1
Proposition 2.4, we have that

= p ) arbitrarily, then p(x) < Tp(x) < p*(x). By

E < WY (RN) s LTPO)(RN)
is continuous, and there are constants Cy, C1,C > 0 such that

‘wnyrp(x) < G Hwnul,p(x) <G Hw”HE < GG, Vwy, € E. (33)
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Applying the Holder-type inequality, we get

p(x)

p(x)
P ’wn‘ P

n| 7" dx <
Z /Ab(yi) ‘w ’ * 2

lyi|>R—r lyi[>R—r

1]
™=, Ap(Yi)

p+

o= -1
: T <’w”|”’<">f‘b<%>+|“’”|5p<x),Ab(y,~>> sup [u(Ap(yi))] ™

[yl lyi|>R—r
g -1
= (""”'w(x),&(yi)+“*’n’§p<x>,By<yo) sup [p (Ap (vi))]
lyi|>R—r lyi|>R—r
vt _
< 2 lwnlepoy g, + lwnh”p(x),B;z,) sup 1 (A )]
Yyilzk—=r

— T -1
rp(x)ﬂwn!ip(x)) sup  [p (Ap (vi))] 7
lyi|=R—r

D + . s(x
where pﬁ, - [1,5—,] and |uly ) o =inf{v>0: [, |@‘ ®ix < 1}.

p -1
Setting O, := {x € RN : |x]"‘\wn]< P~ )p) < 1}, we conclude that

p(x) plx)
. / Wi P dx+ Y / wa| 7 dx
|yi|>R—r Dy (y:)NOY, lyi|>R—r Dy (yi)NQy
P Pt
< r/ w7 tdx Y[ 271 dx
i =R—r 7 Do ()N, yi|=R—r Y Do (yi)N
< & [ tlefWace T [ s
yi|=R—r /Do (¥i) yi|=R—r 7 Do (i)
< Z / |x|“|wn|p(x) dx + Z / |x|z7:7af1 dx
i =R—r 7 Do) yil=R—r /Do)
1 il S
<> Y / V) PP dx+ Y / 7 dc
b lyi[=R—r / Do(¥i) yi|=R—r /Do (¥i)
2N plx) =
<2 [ V)|l dx+/ |7 de
b Blcifb' BfoZr
N 2N
<2 [ (V@™ + V() "™ )dx + -
b Jry g -N
R (R—2r)r 1
2N 5 2N 2NcP 2N
< — |lw ||p + v < + T
b TE Ry N T b (R Y

with o« > %. Therefore, we get
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p) N 7 w1 pNCP 2N
[ el ar <2 @07 sup i) T 4+ @
B lyi[>R—r (R—2r)r

Now, for any & > 0 and choose b > 0, we can find a positive constant R > 0 big enough such
that

P -1 €

(GO sup [u(Ap(y))] T < o, (3.5)
lyil=R—r
2NCP ¢
5 < & (3.6)
and
2N
< £ (3.7)
(R—2r)r 1 6
It follows from (3.4)—(3.7) that
M 3
o |l AX S 5

This implies w, — 0in L~ P (]RN ) and the proof of Lemma 3.3 (i) is completed.
(ii). Since {wy} is bounded in E and by Proposition 2.4, we get that {w,} is bounded

in LP"(RN). Tt is taken into account % < g(x) < p*(x), we can use the interpolation
inequality [21, Corollary 2.2] and obtain

L
|wnlgay < €lwnlly [wnlye iy, Ve € Ly (RY) ALV OI(RY), (3.8)

P

where ¢ > 0 is a constant and

ess su p(x) p(x) —q(x) Lo

SR g peg Tl
essin p(x) pr(x) —q(x) ; ‘
xe]RNf q(x) p- p*(x) ( ) f |wn|pp(%) <1,
and

esssup “(x) pa(x) — p(x) § 1w
o= xEIRNp q(x) p~p*(x) — p(x) £] ”’P*(x) >1,
essinf P "(x) prqlx) — p(x) <1
pr(x) < 1.

q(x) p=p*(x) = p(x)

Moreover, it follows from Lemma 3.3 (i) that |wu|,sy — 0 and (3.8) implies w, — 0 in
P

L1 (x)(]RN ). In the proof, some ideas in [5,6,12] have been followed. Proof of Lemma 3.3 is

completed. O

Lemma 3.4. Suppose (f1) holds. Then functional I is coercive and bounded from below.
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. From (f1), we have |F(x,t)| < g(x)|u|"™. By using Proposi-

Proof. Let M = |g]|
(x), (X)
tions 2.1,2.2,2.3,2.4, 2.7, we get

1 X X m(x
1<u>z}7+ (|w|P< )V (x) Ju]" >)dx—/RNg<x>|u| ) dx
> 5 Il =218y lul
> =y —zc;"MHunE, Vu € E, (39)

for ||u||; large enough. Therefore, i < p~ gives the coercivity of I and I is bounded from
below. Proof of Lemma 3.4 is completed. O

Lemma 3.5. Suppose (f1) holds. Then I satisfies the (PS) condition.

Proof. Let us assume that there exists a sequence {u,} in E such that
|I(uy)| = c and I'(uy) -0 asn— oo. (3.10)

From (3.10), we have |I(u,)| < cp. Combining this fact with (3.9) implies that

1
co > I(un) > P leall —2C7 18] g lluallE = 1,

qx m*(

for ||u||; large enough. Since i < p~, we obtain that {u,} is bounded in E. Finally, we
show that there is a strongly convergent subsequence of {u,} in E. Indeed, in view of the
boundedness of {u,}, passing to a subsequence if necessary, still denoted by {u,}, we may
assume that

u, —~u inE.

By Lemma 3.3, we obtain the following results:

=
\

Uy, —u inLv? (]RN) p(x) <g(x) < p*(x),

e

that is

|ty — | py =+ 0 asn — oo,

P

and

un —ufypy =0 asn — oo
In view of the definition of weak convergence, we have (I'(u,) — I'(u), u, — u) — 0. Hence

't — I (1)t — 1) = (I (1) — '), 10 — 1) +/ F(x 1) — F(,u)) (i — 1) dx

= / V1,2V (Vi — V) dx
+ - V(x) |un|p 2u, (g —u)dx
+ ]RN(f(x,un) — f(x,u))(uy —u)dx — 0. (3.11)

It is clear that

(I'(un) = I' (), uy —uy = (I'(up), upy — u) + (I'(u), 4y —u) — 0. (3.12)
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By (f1), Lemma 3.3 and Propositions 2.1, 2.2, 2.4, 2.7 it follows,

[ ) — £ ) (g — ) 2

< | [ g (Jual ™7 4 )"0 ) (o, — )
<ot | [ g el (=) ] | [ () " (= )
<3t gl Il ™ it =l
5 m(x)—1
-1
+3m7 gl "7 = g
q(x)—m(x) m(x)—1
——1 -1 ——1 T—-1
< 3m* M [max {fun 657 a5y} max {Julyi ™ Julyi "} o — g

-—1 -1 ——1 -1
< Co (Jlatnllf ™ el el Q) ot = ]

— 0 asn — oo. (3.13)
Together (3.12) with (3.13), one deduces from (3.11) that
(J'(un) = J'(u),uy —u) =0 asn — oo.

Since | is of (S4) type (see Proposition 2.8), we obtain u, — u in E. Proof of Lemma 3.5 is
completed. O

Let X be a separable and reflexive Banach space, then there exist (e,) C X and (e};) C X*
such that

1 ifn=m
eX e,) =bpm = !
(ensen) i {O ifn #m,

where X = span{e,:n=1,2,...,} and X* = span{e; :n=1,2,...,}. For each k € IN we
consider
Xy = span{ey, ey, ..., e},

then the subspace of E spanned by the vectors ey, ey, ..., e and

k )
=1 j=k

Lemma 3.6 ([14]). Assume that ¥ : X — R is weakly-strongly continuous and ¥(0) =0, v > 0 is
a given positive number. Set

Pr=sup [¥(u)],

UEZy, ||lullx <y

then B — 0as k — oo.

We denote by y(A) the genus of A (see [7,22]). Set

R = {A C X\ {0} : Ais compact and A = —A}.
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%k:{AC%:'y(A)Zk}, k=1,2,..., cx = inf supI(u),
Ae%kuGA
we have
—c0 < << S Sy St

The following result obtained by Clarke in [8] is the main idea, which we use in the proof of
Theorem 3.2.

Theorem A ([8]). Let I € C'(X,R) be functional satisfying the (PS) condition. Furthermore, let us
suppose that

(i) I is bounded from below and even;
(ii) There is a compact set K € R such that v(A) = k and sup, . I(x) < 1(0).

Then I possesses at least k pairs of distinct critical points, and their corresponding critical values ¢ < 0
satisfying ¢y — 0 as k — oo are less than 1(0).

Proof of Theorem 3.2. (1). Proposition 2.6 and Lemma 3.5 conclude that I is weakly lower semi-
continuous. From Lemma 3.4, I is coercive on E, i.e., I(1) — +o0 as |[u||p — oo. Hence, I can
attain its minimum on E, this provides a solution of problem (P).

(2). As I is coercive, by Lemma 3.3 we know that satisfies (PS) condition. By (f3), I is an
even functional. Now, we will show that ¢, < 0 for every k € IN. Because E is a reflexive and
separable Banach space for any k € IN, we can choose a k-dimensional linear subspace Xj of
E such that X; C C3°(RN). As the norms W?(*)(IRN) and E on X are equivalent, there exists
re € (0,1) and 6 > 0 such that u € Xy with [|u|[g < 7 implies [u|;«gy) < 6.

Set Sg:) = {u € Xi : ||u||p = r¢}. From condition (f>), there exist L > 0, > 0 such that

t _
essinf/ flx,s)ds > —L|t|P"™) > —L|# (3.14)
0

x€B,(x0)

for every 0 < [t| <.
Let us consider a compact set Bj(xg) C Bs(xp), 0 < d < r with |Bs(xo)| =
(L+1)|B,(x0) \ B4(x0)| and a nonzero nonnegative function v € C* (RN) such that

v(x) =1 ifx € By(xo), (3.15)
0< U(X) <1 ifxe Br(xg) \ Bd(xg) (3.16)

and
v(x) =0 ifx € RN\ B.(x). (3.17)

Then we have |v(x)| < 1. By condition (f2), there exists ' € R and c(k) > 1 such that

o (k) fw (IVOIP™ + V() o) dx .
essinf f(x,s)ds > max ( o7 1B (x0) \ Ba(xo)] 1 ‘t ‘ (3.18)

x€B,(x0) JO
forallv € Sﬁf)and 0 < [t] < 6. We take a t' > 0 such that 'sup,.p (,,) v(x) < . By (3.14) and
(3.18), we get

t'v t
/ F(x,s)ds > —L essinf | f(x,5)ds (3.19)
0 x€B,(x9) JO
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for every 0 < || < 4. Combining (3.14)—(3.19), for v € Sﬁf) and t' € (0,1), we have

I(t'v) = /N (1x) (\V(t’v)‘P(x)JrV(x) ‘tfv‘mx)) dx_/m (/Ot/vf(x,s)ds> N

R

=

t/)p t
volPY) Ly P 4 _/ </ , d)d
5 o (9010 V@ o) [ ([ fs)ds ) dx

t'v
— X,$ ds) dx
/Br(xo)\Bd(xo) ( 0 flxs)

—

<

t/

—~

<) / (]Vv\p(x)—I—V(x)\v]p(x))dx—\Bd(x0)| essinf | f(x,s)ds
o P+ RN x€B;(x0) JO
t'v
— L|Br(x0) \ Ba(xo)| ess glf) | flxs)ds
r{A0

t/

NP
< (ifp)+ /]RN (’vU|P(x) +V(x) ‘U’P(x)) dx — (L +1) |By(xo) \ Ba(xo)] fesgraf) ; f(x,s)ds

t/

+ L|B,(x0) \ Bg(x0)| essinf [ f(x,s)ds

xX€By(x0) JO
= ()" / <|Vv|p(x) +V(x) |v]p(x)) dx — |By(x0) \ Bg(xo)| essinf t/f(x,s)ds
p+ RN xEB,(xO) 0
t/ p x x t/ r k x X
< (,,)+ /RN (IV0"® + v (x) o] ))dx—( )pf( )/RN(WW( )4V (x) []P@)dx
NnP(1 — -
)y g

p+

we can find t, € (0,1) and € > 0 such that I(f,v) < —¢; forall u € ng), thatis, I(u) < —ey,
(k)
forall u € Stm'

It is clear that ’y(St(fr)k) = k so ¢y < —er < 0. Moreover, from (f3), I is even. Finally,
by Lemma 3.4, Lemma 3.5 and above results, we can apply Theorem A to obtain that the
functional I admits at least k pairs of distinct critical points, and since k is arbitrary, we obtain
infinitely many critical points of I.

It remains to prove ¢y — 0 as k — co. By Lemma 3.4 there exists a constant oy > 0 such that
I(u) > 0 when |[u||; > <. Taking arbitrarily A € R , then v(A) > k, k =1,2,... According
to the properties of genus we know that AN Z; # &. By Lemma 3.4 we have B — 0 as
k — co. When u € Zy and |ju||p < v, we have I(u) = J(u) —¥(u) > —¥(u) > —pPx, hence
SUup,c 4 I(u) > —PBy and then ¢, > — By, this concludes ¢y — 0 as k — oco. Proof of Theorem 3.2
is completed. O
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