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Abstract. In [C. Bujac, J. Llibre, N. Vulpe, Qual. Theory Dyn. Syst. 15(2016), 327–348] all
first integrals and phase portraits were constructed for the family of cubic differential
systems with the maximum number of invariant straight lines, i.e. 9 (considered with
their multiplicities). Here we continue this investigation for systems with invariant
straight lines of total multiplicity eight. For such systems the classification according to
the configurations of invariant lines in terms of affine invariant polynomials was done
in [C. Bujac, Bul. Acad. S, tiint,e Repub. Mold. Mat. 75(2014), 102–105], [C. Bujac, N. Vulpe,
J. Math. Anal. Appl. 423(2015), 1025–1080], [C. Bujac, N. Vulpe, Qual. Theory Dyn. Syst.
14(2015), 109–137], [C. Bujac, N. Vulpe, Electron. J. Qual. Theory Differ. Equ. 2015, No. 74,
1–38], [C. Bujac, N. Vulpe, Qual. Theory Dyn. Syst. 16(2017), 1–30] and all possible 51
configurations were constructed. In this article we prove that all systems in this class
are integrable. For each one of the 51 such classes we compute the corresponding first
integral and we draw the corresponding phase portrait.
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1 Introduction

Polynomial differential systems on the plane are systems of the form

ẋ = P(x, y), ẏ = Q(x, y), (1.1)

where P, Q ∈ R[x, y], i.e. P and Q are the polynomials over R. To a system (1.1) we can
associate the vector field

X = P(x, y)
∂

∂x
+ Q(x, y)

∂

∂y
. (1.2)
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We call cubic a differential system (1.1) with degree n = max{deg P, deg Q} = 3.
There are several open problems on polynomial differential systems, especially on the class

of all cubic systems (1.1) (denote by CS the whole class of such systems). In this paper we
are concerned with questions regarding integrability in the sense of Darboux and classification of
all phase portraits of CS. These problems are very hard even in the simplest case of quadratic
differential systems.

The method of integration of Darboux uses multiple-valued complex functions of the form:

F = eG(x,y) f1(x, y)λ1 · · · fs(x, y)λs , G = G1/G2, Gi ∈ C[x, y], (1.3)

and fi irreducible over C. It is clear that in general the last expression makes sense only for
G2 6= 0 and for points (x, y) ∈ C2 \

(
{G2(x, y) = 0} ∪ { f1(x, y) = 0} ∪ · · · ∪ { fs(x, y) = 0}

)
.

Consider the polynomial system of differential equations (1.1). The equation f (x, y) = 0
( f ∈ C[x, y], where C[x, y] denotes the ring of polynomials in two variables x and y with
complex coefficients) which describes implicitly some trajectories of systems (1.1), can be seen
as an affine representation of an algebraic curve of degree m. Suppose that (1.1) has a solution
curve which is not a singular point, contained in an algebraic curve f (x, y) = 0. It is clear that
the derivative of f

(
x(t), y(t)

)
with respect to t must vanish on the algebraic curve f (x, y) = 0,

so d f
dt | f=0 =

( d f
∂x P(x, y) + d f

∂y Q(x, y)
)
| f=0 = 0.

In 1878 Darboux introduced the notion of the invariant algebraic curve for differential
equations on the complex projective plane. This notion can be adapted for systems (1.1).
According to [13] the next definition follows.

Definition 1.1. An algebraic curve f (x, y) = 0 in C2 with f ∈ C[x, y] is an invariant algebraic
curve (an algebraic particular integral) of a polynomial system (1.1) if X( f ) = f K for some
polynomial K(x, y) ∈ C[x, y] called the cofactor of the invariant algebraic curve f (x, y) = 0.

In view of Darboux’s definition, an algebraic solution of a system of equations (1.1) is an
invariant algebraic curve f (x, y) = 0, f ∈ C[x, y] (deg f ≥ 1) with f an irreducible polynomial
over C. Darboux showed that if a system (1.1) possesses a sufficient number of such invariant
algebraic solutions fi(x, y) = 0, fi ∈ C, i = 1, 2, . . . , s, then the system has a first integral of
the form (1.3).

We say that a system (1.1) has a generalized Darboux first integral (respectively generalized
Darboux integrating factor) if it admits a first integral (respectively integrating factor) of the
form eG(x,y) ∏s

i=1 fi(x, y)λi , where G(x, y) ∈ C(x, y) and fi ∈ C[x, y], deg fi ≥ 1, i = 1, 2, . . . , s,
fi irreducible over C and λi ∈ C. If a system (1.1) has an integrating factor (or first integral)
of the form F = ∏s

i=1 f λi
i then ∀i ∈ {1, . . . , s}, fi = 0 is an algebraic invariant curve of (1.1).

In [13] Darboux proved the following remarkable theorem of integrability using invariant
algebraic solutions of systems (1.1).

Theorem 1.2. Consider a differential system (1.1) with P, Q ∈ C[x, y]. Let us assume that m =

max(deg P, deg Q) and that this system admits s algebraic solutions fi(x, y) = 0, i = 1, 2, . . . , s
(deg fi ≥ 1). Then we have:

I. if s = m(m+ 1)/2 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that R = ∏s
i=1 fi(x, y)λi

is an integrating factor of (1.1);

II. if s ≥ m(m + 1)/2 + 1 then there exists λ = (λ1, . . . , λs) ∈ Cs \ {0} such that F =

∏s
i=1 fi(x, y)λi is a first integral of (1.1).
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In 1979 Jouanolou proved the next theorem which completes part II of Darboux’s Theorem.

Theorem 1.3. Consider a polynomial differential system (1.1) over C and assume that it has s algebraic
solutions fi(x, y) = 0, i = 1, 2, . . . , s (deg fi ≥ 1). Suppose that s ≥ m(m + 1)/2 + 2. Then there
exists (n1, . . . , ns) ∈ Zs \ {0} such that F = ∏s

i=1 fi(x, y)ni is a first integral of (1.1). In this case
F ∈ C(x, y), i.e. F is rational function over C.

The following theorem from [19] improves the Darboux theory of integrability and the
above result of Jouanolou taking into account not only the invariant algebraic curves (in par-
ticular invariant straight lines) but also their algebraic multiplicities. We mention here this
result adapted for two-dimensional vector fields.

Theorem 1.4 ([12, 19]). Assume that the polynomial vector field X in C2 of degree d > 0 has irre-
ducible invariant algebraic curves.

(i) If some of these irreducible invariant algebraic curves have no defined algebraic multiplicity, then
the vector field X has a rational first integral.

(ii) Suppose that all the irreducible invariant algebraic curves fi = 0 have defined algebraic multi-
plicity qi for i = 1, . . . , p. If X restricted to each curve fi = 0 having multiplicity larger than 1
has no rational first integral, then the following statements hold.

(a) If ∑
p
i=1 qi ≥ N + 1, then the vector field X has a Darboux first integral, where N = (2+d−1

2 )

(b) If ∑
p
i=1 qi ≥ N + 2, then the vector field X has a rational first integral.

We note that the notion of “algebraic multiplicity” of an algebraic invariant curve is given
in [12] where in particular the authors proved the equivalence of “geometric” and “algebraic”
multiplicities of an invariant curve for the polynomial systems (1.1).

If f (x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) and X( f ) = f K where K(x, y) ∈ C[x, y], then
f (x, y) = 0 is an invariant line of the family of systems (1.1). We point out that if we have an
invariant line f (x, y) = 0 over C it could happen that multiplying the equation by a number
λ ∈ C∗ = C \ {0}, the coefficients of the new equation become real, i.e. (uλ, vλ, wλ) ∈ R3).
In this case, along with the curve f (x, y) = 0 (sitting in in C2) we also have an associated real
curve (sitting in R2) defined by λ f (x, y).

Note that, since a system (1.1) is real, if its associated complex system has a complex
invariant straight line ux+ vy+w = 0, then it also has its conjugate complex invariant straight
line ūx + v̄y + w̄ = 0.

To a line f (x, y) = ux + vy + w = 0, (u, v) 6= (0, 0) we associate its projective completion
F(X, Y, Z) = uX + vY + wZ = 0 under the embedding C2 ↪→ P2(C), (x, y) 7→ [x : y : 1].
The line Z = 0 in P2(C) is called the line at infinity of the affine plane C2. It follows from
the work of Darboux (see, for instance, [13]) that each system of differential equations of the
form (1.1) over C yields a differential equation on the complex projective plane P2(C) which
is the compactification of the differential equation Qdx− Pdy = 0 in C2. The line Z = 0 is an
invariant manifold of this complex differential equation.

For an invariant line f (x, y) = ux + vy + w = 0 we denote â = (u, v, w) ∈ C3. We note that
the equation λ f (x, y) = 0 where λ ∈ C∗ and C∗ = C\{0} yields the same locus of complex
points in the plane as the locus induced by f (x, y) = 0. So that a straight line defined by â can
be identified with a point [â] = [u : v : w] in P2(C). We say that a sequence of straight lines
fi(x, y) = 0 converges to a straight line f (x, y) = 0 if and only if the sequence of points [ai]

converges to [â] = [u : v : w] in the topology of P2(C).
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Definition 1.5 ([27]). We say that an invariant affine straight line f (x, y) = ux + vy + w = 0
(respectively the line at infinity Z = 0) for a real cubic vector field X has multiplicity m if
there exists a sequence of real cubic vector fields Xk converging to X, such that each Xk has m
(respectively m− 1) distinct (complex) invariant affine straight lines f j

i = uj
i x + vj

iy + wj
i = 0,

(uj
i , vj

i) 6= (0, 0), (uj
i , vj

i , wj
i) ∈ C3, converging to f = 0 as k→ ∞, in the topology of P2(C), and

this does not occur for m + 1 (respectively m).

We first remark that in the above definition we made an abuse of notation. Indeed, to talk
about a complex invariant curve we need to have a complex system. However we said that
the real systems Xk meaning of course the complex systems associtated to the real ones Xk.

We remark that the above definition is a particular case of the definition of geometric
multiplicity given in paper [12], and namely the notion of “strong geometric multiplicity”
with the restriction, that the corresponding perturbations are cubic systems.

The set CS of cubic differential systems depends on 20 parameters and for this reason
people began by studying particular subclasses of CS. Here we deal with CS possessing
invariant straight lines. We mention some papers devoted to polynomial differential systems
possessing invariant straight lines. For quadratic systems see [14, 23, 24, 27–31] and [32]; for
cubic systems see [4–10, 17, 18, 20, 21, 25, 35, 36] and [26]; for quartic systems see [34] and [38].

The existence of sufficiently many invariant straight lines of planar polynomial systems
could be used for integrability of such systems. During the past 15 years several articles were
published on this theme. Investigations concerning polynomial differential systems possess-
ing invariant straight lines were done by Popa, Sibirski, Llibre, Gasull, Kooij, Sokulski, Zhang
Xi Kang, Schlomiuk, Vulpe, Dai Guo Ren, Artes as well as Dolov and Kruglov.

According to [1] the maximum number of invariant straight lines taking into account their
multiplicities for a polynomial differential system of degree m is 3m when we also consider
the straight line at infinity. This bound is always reached if we consider the real and the
complex invariant straight lines, see [12].

So the maximum number of the invariant straight lines (including the line at infinity Z = 0)
for cubic systems with finite number of infinite singularities is 9. A classification of all cubic
systems possessing the maximum number of invariant straight lines taking into account their
multiplicities has been made in [18]. The authors used the notion of configuration of invariant
lines for cubic systems (as introduced in [27], but without indicating the multiplicities of real
singularities) and detected 23 such configurations. Moreover in this paper using invariant
polynomials with respect to the action of the group Aff (2, R) of affine transformations and time
rescaling (i.e. Aff (2, R) ×R∗)), the necessary and sufficient conditions for the realization of
each one of 23 configurations were detected. A new class of cubic systems omitted in [18] was
constructed in [4].

Definition 1.6 ([31]). Consider a real planar cubic system (1.1). We call configuration of invariant
straight lines of this system, the set of (complex) invariant straight lines (which may have real
coefficients) of the system, each endowed with its own multiplicity and together with all the
real singular points of this system located on these invariant straight lines, each one endowed
with its own multiplicity.

The configurations of invariant straight lines which were detected for various families of
systems (1.1) using Poincaré compactification, could serve as a base to complete the whole
Poincaré disc with the trajectories of the solutions of corresponding systems, i.e. to give a
full topological classification of such systems. For example, in papers [28, 30] for quadratic
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systems with invariant lines greater than or equal to 4, it was proved that we have a total of
57 distinct configurations of invariant lines which leads to the existence of 135 topologically
distinct phase portraits. In [25, 26, 35, 36] the existence of 113 topologically distinct phase
portraits was proved for cubic systems with invariant lines of total parallel multiplicity six
or seven, taking in consideration the configurations of invariant lines of these systems. The
notion of “parallel multiplicity” could be found in [36].

In this paper we consider the analogous problems for a specific class of cubic systems
which we denote by CSL8. We say that a cubic system belongs to the family CSL8 if it
possesses invariant straight lines of total multiplicity 8, including the line at infinity and
considering their multiplicities.

The goal of this article is to complete the study we began in [5–9]. More precisely in this
work we

• prove that all systems in the class CSL8 are integrable. We show this by using the
geometric method of integration of Darboux. We construct explicit Darboux integrating
factors and we give the list of first integrals for each system in this class;

• construct all possible phase portraits of the systems in this class and prove that only 30
of them are topologically distinct;

• give invariant (under the action of the group Aff (2, R)×R∗)) necessary and sufficient
conditions, in terms of the twenty coefficients of the systems, for the realization of each
specific phase portrait.

This article is organized as follows.
In Section 2 we give the list of affine invariant polynomials and some notion and results

needed in this article.
In Section 3 we present some preliminary results. More exactly, in Theorem 3.1 we describe

all the 51 possible configurations of invariant lines which could possess the cubic systems in
the class CSL8. Moreover we give necessary and sufficient conditions for the realization of
each of these configurations. These results (obtained in [5–9]) serve as a base for the construc-
tion of the phase portraits as well as for determining of the corresponding first integrals and
integrating factors.

Section 4 contains the main results of this article formulated in the Main Theorem. In
Table 4.1 we give the canonical forms of systems in CSL8 as well as the corresponding first
integrals and integrating factors. We prove that each one of the 51 configurations given by
Theorem 3.1 leads to a single phase portrait, except the configuration Config. 8.6, which gen-
erates two topologically distinct phase portraits. In Table 4.1 we also present the necessary
and sufficient affine invariant conditions for the realization of each one of the phase portraits
obtained. Defining some geometric invariants, we prove (see Diagram 4.1) that among the
obtained 52 phase portraits only 30 of them are topologically distinct.

2 Invariant polynomials associated with cubic systems possessing
invariant lines

As it was mentioned earlier our work here is based on the result of the papers [4,6–9] where the
classification theorems according to the configurations of invariant straight lines for different
subfamilies (i.e. systems with either 4 or 3 or 2 or 1 infinite distinct singularities) of systems in
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CSL8 were proved (see further below). In what follows we recall some results in [18] which
will be needed to state the mentioned theorems.

Consider real cubic systems, i.e. systems of the form:

ẋ = p0 + p1(x, y) + p2(x, y) + p3(x, y) ≡ P(x, y),

ẏ = q0 + q1(x, y) + q2(x, y) + q3(x, y) ≡ Q(x, y)
(2.1)

with real coefficients and variables x and y. The polynomials pi and qi (i = 0, 1, 2, 3) are the
following homogeneous polynomials in x and y:

p0 = a00, p3(x, y) = a30x3 + 3a21x2y + 3a12xy2 + a03y3,

p1(x, y) = a10x + a01y, p2(x, y) = a20x2 + 2a11xy + a02y2,

q0 = b00, q3(x, y) = b30x3 + 3b21x2y + 3b12xy2 + b03y3,

q1(x, y) = b10x + b01y, q2(x, y) = b20x2 + 2b11xy + b02y2.

It is known that on the set CS of all cubic differential systems (2.1) acts the group Aff (2, R)

of affine transformations on the plane [27]. For every subgroup G ⊆ Aff (2, R) we have an in-
duced action of G on CS. We can identify the set CS of systems (2.1) with a subset of R20 via
the map CS−→ R20 which associates to each system (2.1) the 20-tuple a = (a00, a10, a01, . . . , a03,
b00, b10, b01, . . . , b03) of its coefficients and denote R[a, x, y] = R[a00, a10, a01, . . . , a03, b00, b10,
b01, . . . , b03, x, y].

For the definitions of an affine or GL-comitant or invariant as well as for the definition of
a T-comitant and CT-comitant we refer the reader to [27]. Here we shall only construct the
necessary T- and CT-comitants associated to configurations of invariant lines for the family
of cubic systems mentioned in the statement of Main Theorem.

Let us consider the polynomials

Ci(a, x, y) = ypi(a, x, y)− xqi(a, x, y) ∈ R[a, x, y], i = 0, 1, 2, 3,

Di(a, x, y) =
∂

∂x
pi(a, x, y) +

∂

∂y
qi(a, x, y) ∈ R[a, x, y], i = 1, 2, 3.

As it was shown in [33] the polynomials{
C0(a, x, y), C1(a, x, y), C2(a, x, y), C3(a, x, y), D1(a), D2(a, x, y) D3(a, x, y)

}
(2.2)

of degree one in the coefficients of systems (2.1) are GL-comitants of these systems.

Notation 2.1. Let f , g ∈ R[a, x, y] and

( f , g)(k) =
k

∑
h=0

(−1)h
(

k
h

)
∂k f

∂xk−h∂yh
∂kg

∂xh∂yk−h .

( f , g)(k) ∈ R[a, x, y] is called the transvectant of index k of ( f , g) (cf. [16, 22])

Here f (x, y) and g(x, y) are polynomials in x and y of the degrees r and s, respectively,
and a ∈ R20 is the 20-tuple formed by all the coefficients of system (2.1).

We remark that the set of GL-invariant polynomials (2.2) could serve as bricks for the
construction of any GL-invariant polynomial of an arbitrary degree. More precisely as it was
proved in [37] we have the next result.
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Theorem 2.2 ([37]). Any GL-comitant of systems (2.1) can be constructed from the elements of the
set (2.2) by using the operations: +, −, ×, and by applying the differential operation ( f , g)(k).

In order to define the needed invariant polynomials it is necessary to construct the follow-
ing GL-comitants of second degree with respect to the coefficients of the initial systems:

S1 = (C0, C1)
(1) , S8 = (C1, C2)

(2) , S15 = (C2, D2)
(1) , S22 = (D2, D3)

(1) ,

S2 = (C0, C2)
(1) , S9 = (C1, D2)

(1) , S16 = (C2, C3)
(1) , S23 = (C3, C3)

(2) ,

S3 = (C0, D2)
(1) , S10 = (C1, C3)

(1) , S17 = (C2, C3)
(2) , S24 = (C3, C3)

(4) ,

S4 = (C0, C3)
(1) , S11 = (C1, C3)

(2) , S18 = (C2, C3)
(3) , S25 = (C3, D3)

(1) ,

S5 = (C0, D3)
(1) , S12 = (C1, D3)

(1) , S19 = (C2, D3)
(1) , S26 = (C3, D3)

(2) ,

S6 = (C1, C1)
(2) , S13 = (C1, D3)

(2) , S20 = (C2, D3)
(2) , S27 = (D3, D3)

(2) .

S7 = (C1, C2)
(1) , S14 = (C2, C2)

(2) , S21 = (D2, C3)
(1) ,

We shall use here the following invariant polynomials constructed in [18] and [6–9] to charac-
terize the cubic systems possessing invariant lines of total multiplicity greater than or equal
to 8:

D1(a) = 6S3
24 −

[
(C3, S23)

(4)
]2

, D2(a, x, y) = −S23,

D3(a, x, y) = (S23, S23)
(2) − 6C3(C3, S23)

(4),

V1(a, x, y) = S23 + 2D2
3, V2(a, x, y) = S26,

V3(a, x, y) = 6S25 − 3S23 − 2D2
3, V4(a, x, y) = C3

[
(C3, S23)

(4) + 36 (D3, S26)
(2)
]

,

V5(a, x, y) = 6T1(9A5 − 7A6) + 2T2(4T16 − T17)− 3T3(3A1 + 5A2) + 3A2T4

+ 36T2
5 − 3T44,

L1(a, x, y) = 9C2 (S24 + 24S27) 12D3 (S20 + 8S22)− 12 (S16, D3)
(2) − 3 (S23, C2)

(2)

− 16 (S19, C3)
(2) + 12 (5S20 + 24S22, C3)

(1) ,

L2(a, x, y) = 32 (13 S19 + 33S21, D2)
(1) + 84 (9 S11 − 2 S14, D3)

(1)

− 448 (S18, C2)
(1) + 8D2 (12S22 + 35S18 − 73S20)− 56 (S17, C2)

(2)

− 63 (S23, C1)
(2) + 756D3S13 − 1944D1S26 + 112 (S17, D2)

(1)

− 378 (S26, C1)
(1) + 9C1 (48S27 − 35S24) ,

L6(a, x, y) = 2A3 − 19A4, L7(a, x, y) = (T10, T10)
(2) ,

U2(a, x, y) = 6(S23 − 3S25, S26)
(1) − 3S23(S24 − 8S27)

− 24S2
26 + 2C3(C3, S23)

(4) + 24D3(D3, S26)
(1) + 24D2

3S27,

K1(a, x, y) =
(
3223T2

2 T140 + 2718T4T140 − 829T2
2 T141, T133

)(10)/2, K2(a, x, y) = T74,

K3(a, x, y) = Z1Z2Z3, K4(a, x, y) = T13 − 2T11,

K5(a, x, y) = 45T42 − T2T14 + 2T2T15 + 12T36 + 45T37 − 45T38 + 30T39,

K6(a, x, y) = 4T1T8(2663T14 − 8161T15) + 6T8(178T23 + 70T24 + 555T26)

+ 18T9(30T2T8 − 488T1T11 − 119T21) + 5T2(25T136 + 16T137)

− 15T1(25T140 − 11T141)− 165T142,
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K7(a) = A1 + 3A2, K8(a, x, y) = 10A4T1 − 3T2T15 + 4T36 − 8T37,

K9(a, x, y) = 3T1(11T15 − 8T14)− T23 + 5T24,

N1(a, x, y) = 4C2(27D1D3 − 8D2
2) + 2C2(20S15 − 4S14 + 39S12) + 18C1(3S21 − D2D3)

+ 54D3(3S4 − S7)− 288C3S9 + 54(S7, C3)
(1) − 567(S4, C3)

(1) + 135C0D2
3,

N2(a, x, y) = 2C2D3 − 3C3D2, N3(a, x, y) = C2D3 + 3S16,

N4(a, x, y) = D2D3 + 9S21 − 2S17, N5(a, x, y) = S17 + 2S19,

N6(a, x, y) = 6C3(S12 + 6S11)− 9C1(S23 + S25)− 8(S16, C2)
(1) − C3D2

2,

N7(a, x, y) = 6C3(12S11 − S12 − 6D1D3)− 21C1S23 − 24(S16, C2)
(1) + 3C1S25

+ 4D2(S16 + 2D2C3 − C2D3), N8(a, x, y) = D2
2 − 4D1D3,

N9(a, x, y) = C2
2 − 3C1C3, N10(a, x, y) = 2C2D1 + 3S4, N11(a) = S13,

N12(a, x, y) = − 32D2
3S2 − 108D1D3S10 + 108C3D1S11 − 18C1D3S11 − 27S10S11

+ 4C0D3(9D2D3 + 4S17) + 108S4S21,

N14(a, x, y) = 36D2D3(S8 − S9) + D1(108D2
2D3 − 54D3(S14 − 8S15))

+ 2S14(S14 − 22S15)− 8D2
2(3S14 + S15)− 9D3(S14, C1)

(1) − 16D4
2,

N15(a, x, y) = 216D1D3(63S11 − 104D2
2 − 136S15) + 4536D2

3S6 + 4096D4
2

+ 120S2
14 + 992D2(S14, C2)

(1) − 135D3
[
28(S17, C0)

(1) + 5(S14, C1)
(1)],

N16(a, x, y) = 2C1D3 + 3S10, N17(a, x, y) = 6D1D3 − 2D2
2 − (C3, C1)

(2),

N18(a, x, y) = 2D3
2 − 6D1D2D3 − 12D3S5 + 3D3S8,

N19(a, x, y) = C1D3(18D2
1 − S6) + C0(4D3

2 − 12D1D2D3 − 18D3S5 + 9D3S8) + 6C2D1S8

+ 2
(
9D2D3S1 − 4D2

2S2 + 12D1D3S2 − 9C3D1S6 − 9D3(S4, C0)
(1)),

N20(a, x, y) = 3D4
2 − 8D1D2

2D3 − 8D2
3S6 − 16D1D3S11 + 16D2D3S9,

N21(a, x, y) = 2D1D2
2D3 − 4D2

3S6 + D2D3S8 + D1(S23, C1)
(1),

N22(a, x, y) = T8, N23(a, x, y) = T6, N24(a, x, y) = 2T3T74 − T1T136,

N25(a, x, y) = 5T3T6 − T1T23, N26 = 9T135 − 480T6T8 − 40T2T74 − 15T2T75,

N27(a, x, y) = 9T2T9(2T23 − 5T24 − 80T25) + 144T25(T23 + 5T24 + 15T26)

− 9(T2
23 − 5T2

24 − 33T9T76), N28(a, x, y) = T3 + T4,

W1(a, x, y) = 2C2D3 − 3C3D2,

W2(a, x, y) = 6C3(S12 + 6S11)− 9C1(S23 + S25)− 8(S16, C2)
(1) − C3D2

2,

W3(a, x, y) = 12D1C3 − S10, W4(a, x, y) = −27S4 + 4S7,

W5(a, x, y) = 3D2
1C1 + 4D1S2 − 3(S4, C0)

(1),

W6(a, x, y) = 2C2D1 + 3S4, W7(a, x, y) = (S10, D2)
(1),

W8(a, x, y) = 4C2(27D1D3 − 8D2
2) + 2C2(20S15 − 4S14 + 39S12) + 18C1(3S21 − D2D3)

+ 54D3(3S4 − S7)− 288C3S9 + 54(S7, C3)
(1) − 567(S4, C3)

(1) + 135C0D2
3,

W9(a, x, y) = 3S6D2
2 + 4S3D2

2 − 6D1D2S9,

W10(a, x, y) = 18D2
1C2 + 15S6C2 − 6D1C1D2 + 4C0D2

2 + 27D1S4 − 6C1S9,

W11(a, x, y) = 9C0D5
3 − 6D4

3(C1D2 − S7) + 4C2D3
3(D2

2 + S14 − 2S15)

− 12C3D2
3[5D2S14 − 4D2S15 − 7(S14, C2)

(1)],

W12(a, x, y) = − 480T6T8 + 9T135 − 40T2T74 − 15T2T75,
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where

Z1 = 2C1D2D3 − 9C0(S25 + 2D2
3) + 4C2(9D1D3 + S14)− 3C3(6D1D2 + 5S8) + 36D3S4,

Z2 = 12D1S17 + 2D2(3S11 − 2S14) + 6D3(S8 − 6S5)− 9(S25, C0)
(1),

Z3 = 48D3
1C3 + 12D2

1(C1D3 − C2D2) + 36D1(C0S17 − C3S6)− 16D2
2S2 − 16S2S14

+ 2C0D2(3S11 + 2S14) + 3D3(8D2S1 + 3C0S8 − 2C1S6)− 9S4S8

− 216C3(S5, C0)
(1)) + 6C2(D2S6 − 4(S14, C0)

(1)) + 54D1D2(S4 + D3C0).

Here the polynomials

A1 = S24/288, A2 = S27/72, A3 = (72D1A2 +
(
S22, D2

)(1)
)/24,

A4 =
[
9D1(S24 − 288A2) + 4

(
9S11 − 2S14, D3

)(2)
+ 8
(
3S18 − S20 − 4S22, D2

)(1)]/27/33,

A5 =
(
S23, C3

)(4)/27/35, A6 =
(
S26, D3

)(2)/25/33

are affine invariants, whereas the polynomials

T1 = C3, T2 = D3, T3 = S23/18, T4 = S25/6, T5 = S26/72,

T6 =
[
3C1(D2

3 − 9T3 + 18T4)− 2C2(2D2D3 − S17 + 2S19 − 6S21)

+ 2C3(2D2
2 − S14 + 8S15)

]
/24/32,

T8 =
[
5D2(D2

3 + 27T3 − 18T4) + 20D3S19 + 12
(
S16, D3

)(1) − 8D3S17
]
/5/25/33,

T9 =
[
9D1(9T3 − 18T4 − D2

3) + 2D2(D2D3 − 3S17 − S19 − 9S21) + 18
(
S15, C3

)(1)
− 6C2(2S20 − 3S22) + 18C1S26 + 2D3S14

]
/24/33, T10 =

(
S23, D3

)(1)/25/33,

T11 =
[(

D2
3 − 9T3 + 18T4, C2

)(2) − 6
(

D2
3 − 9T3 + 18T4, D2

)(1) − 12
(
S26, C2

)(1)
+ 12D2S26 + 432(A1 − 5A2)C2

]
/27/34,

T13 =
[
27(T3, C2)

(2) − 18(T4, C2)
(2) + 48D3S22 − 216(T4, D2)

(1) + 36D2S26

− 1296C2A1 − 7344C2A2 + (D2
3, C2)

(2)]/27/34,

T14 =
[(

8S19 + 9S21, D2
)(1) − D2(8S20 + 3S22) + 18D1S26 + 1296C1A2

]
/24/33,

T15 = 8
(
9S19 + 2S21, D2

)(1)
+ 3
(
9T3 − 18T4 − D2

3, C1
)(2) − 4

(
S17, C2

)(2)
+ 4
(
S14 − 17S15, D3

)(1) − 8
(
S14 + S15, C3

)(2)
+ 432C1(5A1 + 11A2)

+ 36D1S26 − 4D2(S18 + 4S22)
]
/26/33,

T16 =
(
S23, D3

)(2)/26/33, T17 =
(
S26, D3

)(1)/25/33,

T21 =
(
T8, C3

)(1), T23 =
(
T6, C3

)(2)/6, T24 =
(
T6, D3

)(1)/6,

T25 = (15552A2C1C3 + D2
3D2

2 − 81D2
2T3 − 54D2

2T4 + 12D3D2S17 + 8D3D2S19

+ 16
(
(C2, D3)

(1))2 − 5184C1D3T5 + 2592C2D2T5 − 72C3D2S20)/26/34,

T26 =
(
T9, C3

)(1)/4, T30 =
(
T11, C3

)(1), T31 =
(
T8, C3

)(2)/24,

T32 =
(
T8, D3

)(1)/6, T36 =
(
T6, D3

)(2)/12, T37 =
(
T9, C3

)(2)/12,

T38 =
(
T9, D3

)(1)/12, T39 =
(
T6, C3

)(3)/24/32, T42 =
(
T14, C3

)(1)/2,

T44 =
(
(S23, C3)

(1), D3
)(2)/5/26/33,
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T74 =
[
27C0(9T3 − 18T4 − D2

3)
2 + C1

(
− 62208T11C3 − 3(9T3 − 18T4 − D2

3)

× (2D2D3 − S17 + 2S19 − 6S21)
)
+ 20736T11C2

2 + C2(9T3 − 18T4 − D2
3)

× (8D2
2 + 54D1D3 − 27S11 + 27S12 − 4S14 + 32S15)− 54C3(9T3 − 18T4 − D2

3)

× (2D1D2 − S8 + 2S9)− 54D1(9T3 − 18T4 − D2
3)S16

− 576T6(2D2D3 − S17 + 2S19 − 6S21)
]
/28/34,

T75 = 512C3(D3
2D3 + D2D3S14 + D2

2S19 + S15S19 − 3D2
2S21)− 648C0D4

3

+ 144(9C2D1 + 2C1D2)D3
3 ++216C3(1728T13C1 − 9216T8D1 − 79S8S25)

− 64D2
2(6C2D2

3 − 2D3S16C2S23) + 384C2D2(C3S18 − 2D3S19 − 3C3S20 + 5D3S21)

− 36C2D2
3(3S11 − 18S12 + 8S14 − 32S15) + 216C0D2

3(S23 − 12S25)

+ 72D2
3(3C3S8 + 54D1S16 + C1S17 − 2C1S19)− 288C2

2 D3(S18 − 3S20)

− 1728(648T8S10 + 11C3S9S25) + 96C2S17(S17 + 4S21)− 32C3S14(3S17 + 2S19)

− 90C2S12(31S23 − 102S25) + 3456C3D1D2(S23 − 3S25)− 216D1S16(S23 − 30S25)

− 12C3(32S14S21 − 3S8S23 − 696S9S23) + 96D3(S14S16 − 8S15S16 − 2C1D2S23)

− 128D2S16(S17 − 6S19 + 6S21)− 216C2D1D3(11S23 − 42S25)− 12C1S23(3S17

+ 10S19 − 360S21) + 72C1S25(43S17 − 78S19 − 138S21) + 54C0(S23 − 6S25)

× (S23 + 6S25)− 2C2S23(9S11 + 16S14 − 96S15) + 12C2(24S16S20 − 8S16S18

− 32S2
19 + 711S11S25) + 48C3D2

[(
3S23 − 15D2

3, C1
)(1) − 4

(
S14 + 4S15, C3

)(1)]
+ 9C2D3

[
9
(
2S25 − S23, C1

)(1)
+ 16

(
S14, C3

)(1)]
+ 48S16

(
S14, C3

)(1)
+ 9S16

(
5S23 − 274D2

3 + 54S25, C1
)(1),

T76 =
(
(T6, C3)

(2), C3
)(1)/36,

T133 = (T74, C3)
(1), T135 =

(
T75, C3

)(1),
T136 =

(
T74, C3

)(2)/24, T137 =
(
T74, D3

)(1)/6, T140 =
(
T74, D3

)(2)/12,

T141 =
(
T74, C3

)(3)/36, T142 =
(
(T74, C3)

(2), C3
)(1)/72

are T-comitants of cubic systems (2.1). We note that these polynomials are the elements of the
polynomial basis of T-comitants up to degree six constructed by Iu. Calin [11].

Next we consider the differential operator L = x · L2 − y · L1 constructed in [3] and acting
on R[a, x, y], where

L1 = 3a00
∂

∂a10
+ 2a10

∂

∂a20
+ a01

∂

∂a11
+

1
3

a02
∂

∂a12
+

2
3

a11
∂

∂a21
+ a20

∂

∂a30

+ 3b00
∂

∂b10
+ 2b10

∂

∂b20
+ b01

∂

∂b11
+

1
3

b02
∂

∂b12
+

2
3

b11
∂

∂b21
+ b20

∂

∂b30
,

L2 = 3a00
∂

∂a01
+ 2a01

∂

∂a02
+ a10

∂

∂a11
+

1
3

a20
∂

∂a21
+

2
3

a11
∂

∂a12
+ a02

∂

∂a03

+ 3b00
∂

∂b01
+ 2b01

∂

∂b02
+ b10

∂

∂b11
+

1
3

b20
∂

∂b21
+

2
3

b11
∂

∂b12
+ b02

∂

∂b03
.

Using this operator and the affine invariant µ0 = Resultantx
(

p3(a, x, y), q3(a, x, y)
)
/y9 we

construct the following polynomials: µi(a, x, y) = 1
i!L(i)(µ0), i = 1, . . . , 9, where L(i)(µ0) =

L(L(i−1)(µ0)) and L(0)(µ0) = µ0.
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These polynomials are in fact comitants of systems (2.1) with respect to the group GL(2, R)

(see [3]). The polynomial µi(a, x, y), i ∈ {0, 1, . . . , 9} is homogeneous of degree 6 in the coeffi-
cients of systems (2.1) and homogeneous of degree i in the variables x and y. The geometrical
meaning of these polynomial is revealed in the next lemma.

Lemma 2.3 ([2, 3]). Assume that a cubic system (S) with coefficients ã ∈ R12 belongs to the fam-
ily (2.1).

(i) The total multiplicity of all finite singularities of this system equals 9− k if and only if for every
i ∈ {0, 1, . . . , k− 1} we have µi(ã, x, y) = 0 in the ring R[x, y] and µk(ã, x, y) 6= 0. In this case
the factorization µk(ã, x, y) = ∏k

i=1(uix− viy) 6= 0 over C indicates the coordinates [vi : ui : 0]
of those finite singularities of the system (S) which “have gone” to infinity. Moreover the number
of distinct factors in this factorization is less than or equal to four (the maximum number of
infinite singularities of a cubic system) and the multiplicity of each one of the factors uix − viy
gives us the number of the finite singularities of the system (S) which have coalesced with the
infinite singular point [vi : ui : 0].

(ii) The system (S) is degenerate (i.e. gcd(p, q) 6= const) if and only if µi(ã, x, y) = 0 in R[x, y] for
every i ∈ {0, 1, . . . , 9}.

3 Preliminary results: the classification theorem for the family of
systems in CSL8

As it was mentioned in Section 2 our work is based on the results of the papers [4, 6–9]
where the classification theorems according to the configurations of invariant straight lines
for different subfamilies (i.e. systems with either 4 or 3 or 2 or 1 infinite distinct singularities)
of systems in CSL8 were proved. More precisely, our results could be described as follows:

• In [6] the investigation of the subfamily of cubic systems in CSL8 possessing 4 distinct
infinite singularities was done. As a result it was proved that a system in this class could
possess only one of the 17 configurations Config. 8.1–Config. 8.17 given in Figure 3.1.

• The subfamily of cubic systems in CSL8 possessing 3 distinct infinite singularities was
considered in [7]. It was proved that a system in this class could possess only one of the
5 configurations Config. 8.18–Config. 8.22 presented in Figure 3.1.

• In the articles [5] and [8] the subfamily of cubic systems in CSL8 with 2 distinct infinite
singularities was investigated. This class contains cubic systems which could possess
one of the 25 configurations Config. 8.23–Config. 8.47 given in Figure 3.1.

• And finally in [9] were examined the cubic systems in CSL8 possessing a single infinite
singular point (which is real). It was detected exactly 8 configurations Config. 8.48–
Config. 8.51 (see Figure 3.1) which could possess a cubic system belonging to this class.

We join here all these results (formulated as Main Theorems in the above mentioned arti-
cles) in the following classification theorem.

Theorem 3.1. Assume that a cubic system (1.1) is non-degenerate, i.e. ∑9
i=0 µ2

i 6= 0. Then this system
belongs to the family CSL8, i.e. it possesses invariant straight lines of total multiplicity 8 (including the
line at infinity with its own multiplicity), if and only if one of the sets of the conditions Cond. 1–Cond. 51
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given in Table 3.1 is satisfied. In addition, this system possesses exactly one of the 51 configurations
Config. 8.j (j ∈ {1, . . . 51}) of invariant straight lines shown in Figure 3.1. Furthermore the quotient
set under the action of the affine group and time rescaling on CSL8 is formed by:

(i) a discrete set of 22 orbits;

(ii) a set of 29 one-parameter families of orbits. A system of representatives of the quotient set is given
in Table 4.1 (column 1).

4 Main results

In this section we state and prove the main results of this article.

Main Theorem. Consider a non-degenerate cubic system (2.1), i.e. the condition ∑9
i=0 µ2

i 6= 0 holds
and assume that it belongs to the family CSL8. More precisely we assume that this system possesses
one of the configurations Config. 8.j (j = 1, . . . , 51) (see Figure 3.1), i.e. the corresponding set of the
conditions Cond. j given in Table 3.1 is satisfied. Then:

(A) this system is integrable and it has the first integral Fj of generalized Darboux type (1.3)and
the corresponding rational integrating factorRj ∈ R(x, y) (j = 1, . . . , 51) as it is indicated in Table 4.1
(column 3). This table also lists the corresponding invariant lines and their multiplicities, see column 2;

(B) the phase portrait of this system corresponds to one of the 52 phase portraits P. 8.1–P. 8.5,
P. 8.6(a), P. 8.6(b), P. 8.7–P. 8.51 (see Figure 4.1) if and only if the associated affine invariant conditions
given in Table 4.1 (column 4) are satisfied.

(C) Among the 52 phase portraits given in Figure 4.1 there are exactly 30 topologically distinct
phase portraits as at is indicated in Diagram 4.1 using the geometric invariants defined in Remark 4.2.

Corollary 4.1. All the systems in CSL8 have elementary real first integrals. We only list below in
Table 4.2 all real first integrals which correspond to those in the column 3 of Table 4.1 which are given
there in complex form.

Remark 4.2. In order to distinguish topologically the phase portraits of the systems we ob-
tained, we use the following geometric invariants:
• The number ISR of real infinite singularities.

• The number FSR of real finite singularities.

• The number Sep f of separatrices beginning or ending at a finite singularity.

• The number Sep ∞ of separatrices beginning or ending at an infinite singularity.

• The number FSep of separatrices connecting finite singularities.

• The number SC of separatrix connections.

• The maximum number ES ∞ of elliptic sectors in the vicinity of an infinite singularity.

Proof. (A) The expressions for the integrating factors and the first integrals presented in Ta-
ble 4.1 (see column 3) follow, after some easy calculations, by using Theorems 3.1 and 1.4.

(B) We split the proof of this statement in three parts in accordance with the following
three groups of the configurations (see Figure 3.1) :

(α) Configurations 8.1– 8.17: x = 2 the corresponding phase portraits are constructed in [36];

(β) Configurations 8.18–8.23, 26, 31, 32, 33, 36, 38, 42, 47–51: the corresponding canonical
systems do not depend on parameters;
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Table 3.1: Conditions for the realization of the configurations

(γ) Configurations 8.24, 8.25, 27–30, 34, 35, 37, 39, 40, 41, 43–46: each one of the corresponding
canonical systems depends of one parameter.
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Table 3.1 (continuation): Conditions for the realization of the configurations
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Figure 3.1: Configurations of invariant lines for systems in CSL8
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Figure 3.1 (continuation): Configurations of invariant lines for systems in CSL8
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We examine each one of these three groups of configurations.

(α) We remark that Config. 8.1–Config. 8.17 correspond to systems in CSL8 which possess
4 distinct infinite singularities (real or/and complex). In the article [36] the authors have
detected 17 configurations of invariant lines denoted by (I.1)–(I.17) and have determined 18
phase portraits corresponding to these configurations. We mention that the configurations
(I.1)–(I.17) from [36] coincide with the first 17 configurations Config. 8.1–Config. 8.17 and we
have the following correspondence:

Config. 8.1⇔ (I.1); Config. 8.2⇔ (I.3); Config. 8.3⇔ (I.2);
Config. 8.4⇔ (I.7); Config. 8.5⇔ (I.8); Config. 8.6⇔ (I.9);
Config. 8.7⇔ (I.12); Config. 8.8⇔ (I.16); Config. 8.9⇔ (I.13);
Config. 8.10⇔ (I.4); Config. 8.11⇔ (I.5); Config. 8.12⇔ (I.6);
Config. 8.13⇔ (I.11); Config. 8.14⇔ (I.10); Config. 8.15⇔ (I.14);
Config. 8.16⇔ (I.17); Config. 8.17⇔ (I.15).

(4.1)

As it is proved in the article [36], each one of the configurations (I.1)–(I.17) leads to a single
phase portrait with the exception of configuration (I.9), which leads to 2 topologically distinct
phase portraits. We observe that (I.9) corresponds to Config. 8.6. So we conclude that the affine
invariant conditions provided by Theorem 3.1 for the realization of configuration Config. 8.j
for j = 1, . . . , 5, 7, . . . , 17 guarantees the realization of the corresponding phase portrait P. 8.j,
too. It remains to examine the two phase portraits given by Config. 8.6 and to determine the
necessary and sufficient conditions for their realization.

According to [36] a cubic system possessing the configuration (I.9) could be brought via
an affine transformation and time rescaling to the form

ẋ = x3, ẏ = y2[ax + (1− a)y
]
, a ∈ R \ {0, 1, 3/2, 2, 3}. (4.2)

As it was proved in [36] these systems have the phase portrait given by Figure 1.9a if a < 1
and by Figure 1.9b if a > 1 in [36].

On the other hand according to [6] a cubic system possessing the configuration Config. 8.6
could be brought via an affine transformation and time rescaling to the form

ẋ = rx3, ẏ = y2[(r− 1)x + y
]
, (r + 2)(r + 1)(2r + 1)r(r− 1) 6= 0. (4.3)

Remark 4.3. We observe that the rescaling (x, y, t) 7→ (x,−ry, t/r2) brings these systems to the
same form with r1 = 1/r. Therefore we may assume −1 < r < 1 and r 6∈ {−1/2, 0}. Anal-
ogously considering systems (4.2) with parameter a we observe that the rescaling (x, y, t) 7→
((a− 1)x, y, t/(a− 1)2) brings these systems to the same form with a1 = a/(a− 1). So in this
case we may consider 0 < a < 2 and a 6∈ {1, 3/2}.

It remains to observe that via the rescaling (x, y, t) 7→ (x,−ry, t/r) systems (4.3) become

ẋ = x3, ẏ = y2[(1− r)x + ry
]
,

which coincide with (4.2) for r = 1− a. Therefore considering the above remark we obtain that
the condition a < 1 (respectively a > 1) for systems (4.2) is equivalent to r > 0 (respectively r <
0) for systems (4.3). On the other hand evaluating for systems (4.3) the invariant polynomial
K7 we obtain K7 = 4r and hence sign (r) = sign (K7).

Thus we arrive at the phase portrait P. 8.6(a) if K7 < 0 and P. 8.6(b) if K7 > 0 (see Fig-
ure 4.1). We remark that the phase portrait P. 8.6(a) (respectively P. 8.6(b) corresponds to
Figure 1.9a (respectively Figure 1.9b) from [36].
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Canonical form
Invariant

lines and their
multiplicities

First integrals (Fi)
Inverse integrating Factors (Ri)

Condi-
tions

Phase
portr.

1)
ẋ = x(x + 1)(x− r),
ẏ = y(y + 1)(y− r),

0 < r 6= 1

x(1), x + 1(1), y(1),
y− r(1), x− y(1),
x− r(1), y + 1(1)

F1 = y−r
x−r
( x

y
)r+1( y+1

x+1
)r,

R1 =
[
xy(x + 1)(y + 1)×
(x− r)(r− y)

]−1
Cond.1 P. 8.1

2)
ẋ = x

[
(x + r)2 + 1

]
,

ẏ = y
[
(y + r)2 + 1

]
,

r 6= 0

x(1), r + x± i(1),
x− y(1), y(1),

r + y± i(1)

F2 =
( r+y+i

r+x+i
)1+ir×

x2

y2

( r+y−i
r+x−i

)1−ir,

R2 =
[
xy(1 + (r + x)2)

]−1×[
1 + (r + y)2]−1

Cond.2 P. 8.2

3)
ẋ = x2(1 + x),
ẏ = y2(1 + y)

x(2), x + 1(1),
x− y(1), y(2),

y + 1(1)

F3 = y(x+1)
x(y+1) exp[ x−1

xy ],

R3 =
[
x2y2(x + 1)(y + 1)

]−1 Cond.3 P. 8.3

4)
ẋ = x(x− 1)(x + r),
ẏ =

[
(1−r)x+ry+r

]
×

y(y− 1), 0 < r 6= 1

x− 1(1), x(1), y(1)
x + r(1), x− y(1),
y− 1(1), x + ry(1)

F4 = (x−1)(x+r)ryr+1

(x−y)(x+ry)r

R4 = x
[
(x− 1)(r + x)

]−1×[
(x− y)y(x + ry)

]−1

Cond.4 P. 8.4

5)

ẋ= x(x−1)(x+r),
ẏ=
[
(1−r)x+ry+r

]
×

y(y− 1), −1 6= r<0,
(2r + 1)(r + 2) 6= 0

x− 1(1), x(1), y(1)
x + r(1), x− y(1),
y− 1(1), x + ry(1)

F5 = (x−1)(x+r)ryr+1

(x−y)(x+ry)r

R5 = x
[
(x− 1)(r + x)

]−1×[
(x− y)y(x + ry)

]−1

Cond.5 P. 8.5

6)
ẋ = rx3, r 6= ±1,
ẏ = y2(rx− x + y),
r(2r + 1)(r + 2) 6= 0

x(3), x− y(1)
y2, rx + y(1)

F6 = (x−y)r(rx+y)
(xy)1+r

R6 =
[
xy(x− y)(rx + y)

]−1

Cond.6
K7<0
K7>0

P.8.6(a)
P.8.6(b)

7)

ẋ = (rx + 2y + ry)×
(x2 − 1), r 6= 0,±1

ẏ = (x + 2rx + y)×
(y2 − 1), r 6=−2,−1

2

x± 1(1), y± 1(1),
rx + y± (1 + r)(1),

x− y(1)

F7 = y+1
y−1
( x+1

x−1
)r( rx+y−r−1

rx+y+r+1
)r+1

R7 = (x−y)
[
(x2− 1)(y2− 1)×

((rx + y)2 − (1 + r)2)]−1
Cond.7 P. 8.7

8)

ẋ = (rx + 2y + ry)×
(x2 + 1), r 6= 0,±1

ẏ = (x + 2rx + y)×
(y2 + 1), r 6=−2,−1

2

x± i(1), y± i(1),
rx + y± i(1 + r)(1),

x− y(1)

F8=
y+i
y−i
( x+i

x−i
)r( rx+y−i(r+1)

rx+y+i(r+1)

)r+1

R8 = (x−y)
[
(x2+ 1)(y2+ 1)×

((rx + y)2 + (1 + r)2)]−1
Cond.8 P. 8.8

9)
ẋ = x2(rx+2y+ry),
ẏ = y2(x + 2rx + y),
r 6= 0,±1,−2,−1

2

x(2), x− y(1),
y(2), rx + y(2)

F9 = xy(rx+y)
(x−y)2

R9 =
[
xy(x− y)(rx + y)]−1

Cond.9 P. 8.9

10)

ẋ = 1−r2

4 x+x2−y2+
x3 − 3xy2, r 6= 0

ẏ = 1−r2

4 y + 2xy+
3x2y− y3, r2 6=1, 1

9

y(1), y± ix(1),
2y±i(1+r+2x)(1),
2y±i(1−r+2x)(1)

F10 =
(

2y+i(1−r+2x)
2y−i(1−r+2x)

) 1+r
2 ×( y−ix

y+ix
)r
(

2y−i(1+r+2x)
2y+i(1+r+2x)

) 1−r
2

,

R10 = (x2 + y2)−1×[
(1 + r + 2x)2 + 4y2]−1×[
(1− r + 2x)2 + 4y2]−1

Cond.10 P. 8.10

Table 4.1: First integrals and integrating factors

Remark 4.4. We remark that Theorem 1.1 of [36] states: “. . . we give the 18 topologically
distinct phase portraits on the Poincaré disk . . . ”. However as it follows from Diagram 4.1
among 18 phase portraits given by Configurations (I.1)–(I.17) in [36] only 13 are topologically
distinct. More precisely, considering the above mentioned correspondence (4.1) we have the
following topological equivalence of the phase portraits in [36]:
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Canonical form
Invariant

lines and their
multiplicities

First integrals (Fi)
Inverse integrating Factors (Ri)

Condi-
tions

Phase
portr.

11)

ẋ = 1+r2

4 x+x2−y2+

x3 − 3xy2,

ẏ = 1+r2

4 y + 2xy+
3x2y− y3, r 6= 0

y(1), y± ix(1),
2y+ r±i(1+2x)(1),
2y− r±i(1+2x)(1)

F11 =
(

2y−r+i(1+2x)
2y+r−i(1+2x)

) 1+r
2 ×( y−ix

y+ix
)r
(

2y−r−i(1+2x)
2y+r+i(1+2x)

) 1−r
2

,

R11 = (x2 + y2)−1×[
(2x + 1)2 + (r + 2y)2]−1×[
(2x + 1)2 + (r− 2y)2]−1

Cond.11 P. 8.11

12)

ẋ = x/4 + x2 − y2+
x3 − 3xy2,

ẏ = y/4 + 2xy+
3x2y− y3

y(1), y± ix(1),

2y± i(1 + 2x)(2)

F12 = (y−ix)[2y+i(1+2x)]
(y+ix)[2y−i(1+2x)]×

exp[− 4iy
(1+2x)2+4y2 ],

R12 = (x2 + y2)−1×[
(2x + 1)2 + 4y2]−2

Cond.12 P. 8.12

13)

ẋ = (1 + r2)x×[
(x + r)2+ 1

]
, r 6= 0,

ẏ = (1+ r2)2y+
2r(1+ r2)xy− rx3+
y(r2x2 − rxy− y2)

x(1), x + r± i(1),
rx + y + 1 + r2(1)

rx+ y(1), y± ix(1)

F13 = (rx + y)2( x+r+i
x−iy

)1−ir×( x+r−i
x+iy

)1+ir,

R13 = x
[
(x + r)2 + 1

]−1×[
(rx + y)(x2 + y2)

]−1

Cond.13 P. 8.13

14)
ẋ = (1 + r2)x3,
ẏ = r2x2y− y3−
rx(x2 + y2), r 6= 0

x(3), x + r± iy(1),
rx + y(2)

F14 = x2(rx+y)2

x2+y2

( x−iy
x+iy

)ir,

R14 =
[
x(rx + y)(x2 + y2)

]−1 Cond.14 P. 8.14

15)

ẋ = x(x− 1)×
(1 + r2 − 2x + 2ry),
ẏ =−(1+r2)y−rx3+
(3 + r2)xy− 3x2y−
y2(2r−rx+y), r 6=0

x(1), rx + y(1),
y + r± i(x− 1)(1),

(x−1)(1), y± ix(1)

F15 = (x−1)2

x2

( y+ix
y+r+i(x−1)

)1+ir×( y−ix
y+r−i(x−1)

)1−ir

R15 = (rx+y)(x2+y2)−1

x(x−1)[(x−1)2(y+r)2]

Cond.15 P. 8.15

16)

ẋ = 2(1+x2)(ry−x),
ẏ = r(r2+3)x−rx3+
(1− r2)y− 3x2y+
rxy2 − y3, r 6=0

x± i(1), rx + y(1),
y + 1± i(x + r)(1),
y− 1± i(x− r)(1)

F16=
( x+i

x−i
)2i( y−1+i(x−r)

y+1+i(x+r)

)r−i×( y−1−i(x−r)
y+1−i(x+r)

)r+i

R16 =
(rx+y)

[
(x−r)2+(y−1)2

]−1

(1+x2)
[
(x+r)2+(y+1)2

] Cond.16 P. 8.16

17)
ẋ = −2x2(x− ry),
ẏ = rx3 − 3x2y+

rxy2 − y3, r 6= 0

x(2), x± i(2),
rx + y(1)

F17 = x(x2+y2)
(rx+y)2

R17 =
[
x(rx + y)(x2 + y2)

]−1 Cond.17 P. 8.17

18)
ẋ = x3 − 9x2−

x2y− xy2,
ẏ = −y2(9 + y)

x(2), x− y(1),
y(2), y + 9(1)
x− y− 9(1)

F18 = y(x−y−9)
x ×

exp[ 9y−9x+y2

xy ],

R18 = (y+9)
x2y2(x−y−9)

Cond.18 P. 8.18

19)
ẋ= x(x2− xy− y2),
ẏ = −y3

x(2), y(3),
x− y(2)

F19 = y
y(x−y) exp[−y

x ],

R19 =
[
x2(x− y)y

]−1 Cond.19 P. 8.19

20)
ẋ=(1− x)x(1+ y),
ẏ=y(1−x+y−x2)

x(2), x− 1(1),
y(1), x− y(1),

x− y− 1(1)

F20 = x(x−y−1)
y e

x2+y−xy
x ,

R20 = (x−1)x−2

y(x−y−1)

Cond.20 P. 8.20

Table 4.1 (continuation): First integrals and integrating factors
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Canonical form
Invariant

lines and their
multiplicities

First integrals (Fi)
Inverse integrating Factors (Ri)

Condi-
tions

Phase
portr.

21)
ẋ=(x2 − 1)(x + y),
ẏ=2x(y2 − 1)

x± 1(2), y± 1(1),
x− y(1)

F21 = (x−1)(y+1)
(x+1)(y−1) e

2(y−x)
x2−1 ,

R21 = (x−y)(x2−1)−2

y2−1

Cond.21 P. 8.21

22)
ẋ=(x2 + 1)(x + y),
ẏ=2x(y2 + 1)

x± i(2), y± i(1),
x− y(1)

F22 = (x−i)(y+i)
(x+i)(y−i) e

2i(y−x)
x2+1 ,

R22 = (x−y)(x2+1)−2

y2+1

Cond.22 P. 8.22

23)
ẋ=(x− 1)x(1 + x),
ẏ= x−y + x2+ 3xy

x(2), x + 1(1),
x− 1(3)

F23 = x exp[ y+2xy+x2(4+y)
x(1−x) ],

R23 = (x+1)x−2

(x−1)2

Cond.23 P. 8.23

24)
ẋ= x

[
(x + 1)2 − b2],

ẏ=y(1− b2 + 2x),
b > 1

x(3), x + 1 + b(1),
y(1), x + 1− b(1)

F24 =
( x

y
)2b (x+1−b)1−b

(x+1+b)1+b ,

R24 =
[
x
(
(x + 1)2 − b2)y]−1

Cond.24 P. 8.24

25)
ẋ= x

[
(x + 1)2 − b2],

ẏ=y(1− b2 + 2x),
0 < b < 1, b 6= 1/3

x(3), x + 1 + b(1),
y(1), x + 1− b(1)

F25 =
( x

y
)2b (x+1−b)1−b

(x+1+b)1+b ,

R25 =
[
x
(
(x + 1)2 − b2)y]−1

Cond.25 P. 8.25

26)
ẋ = x(x + 1)2,
ẏ = y(1 + 2x)

x(3), y(1),
x + 1(2)

F26 = x
(x+1)y exp[ x

x+1 ],

R26 =
[
x(1 + x)2y

]−1 Cond.26 P. 8.26

27)
ẋ= x

[
(x + 1)2 + b2],

ẏ=y(1 + b2 + 2x),
b > 0

x(3), x + 1 + ib(1),
y(1), x + 1− ib(1)

F27 =
( x

y
)2b (x+1+ib)i−b

(x+1−ib)i+b ,

R27 =
[
x
(
(x + 1)2 + b2)y]−1

Cond.27 P. 8.27

28)
ẋ= x

[
(x− 1)2 − b2],

ẏ=2y(x− 1 + b2),
b > 1

x(1), x− 1 + b(2),
y(1), x− 1− b(2)

F28 = (x−1)2−b2

x2y ,

R28 =
[
x
(
(x− 1)2 − b2)y]−1 Cond.28 P. 8.28

29)
ẋ= x

[
(x− 1)2 − b2],

ẏ=2y(x− 1 + b2),
0 < b < 1, b 6= 1/3

x(1), x− 1 + b(2),
y(1), x− 1− b(2)

F29 = (x−1)2−b2

x2y ,

R29 =
[
x
(
(x− 1)2 − b2)y]−1 Cond.29 P. 8.29

30)
ẋ= x

[
(x− 1)2 + b2],

ẏ=2y(x− 1− b2),
b > 0

x(1), x− 1 + ib(2),
y(1), x− 1− ib(2)

F30 = (x−1)2+b2

x2y ,

R30 =
[
x
(
(x− 1)2 + b2)y]−1 Cond.30 P. 8.30

31)
ẋ = x(x2 − 1),
ẏ = x + 2y

x(1), x + 1(2),
x− 1(2)

F31 = x−1
x+1 exp[ 2x(1+2xy)

1−x2 ],
R3 = x(x2 − 1)−2 Cond.31 P. 8.31

32)
ẋ = x(x2 + 1),
ẏ = x− 2y

x(1), x + i(2),
x− i(2)

F32 = x−i
x+i exp

[ i[(x−1)2−4yx2]
1+x2

]
,

R3 = x(x2 + 1)−2
Cond.32 P. 8.32

33) ẋ = x3, ẏ = x + 1 x(5) F33 = 1+2x+2x2y
2x2 , R3 = x−3 Cond.33 P. 8.33

34)
ẋ= x

[
(2x+1)2−b2],

ẏ=4 + (1− b2)y,
b > 1

x(2), 2x + 1 + b(1),
2x + 1− b(1),
(b2 − 1)y− 4(1)

F34 = x2b(2x+1+b)1−b

(2x+1+b)1−b(b2y−y−4)2b ,

R34 =
[
(b2 − 1)y− 4

]−1×[
x
(
(2x + 1)2 − b2)]−1

Cond.34 P. 8.34

Table 4.1 (continuation): First integrals and integrating factors
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Canonical form
Invariant

lines and their
multiplicities

First integrals (Fi)
Inverse integrating Factors (Ri)

Condi-
tions

Phase
portr.

35)
ẋ= x

[
(2x+1)2−b2],

ẏ=4 + (1− b2)y,
0 < b < 1, b 6= 1/3

x(2), 2x + 1 + b(1),
2x + 1− b(1),
(b2 − 1)y− 4(1)

F35 = x2b(2x+1+b)1−b

(2x+1+b)1+b(b2y−y−4)2b ,

R35 =
[
(b2 − 1)y− 4

]−1×[
x
(
(2x + 1)2 − b2)]−1

Cond.35 P. 8.35

36)
ẋ = x(1 + 2x)2,
ẏ = 4 + y

x(2), 2x + 1(2),
y + 4(1)

F36 = (1+2x)(4+y)
2x exp[ −1

1+2x ],

R36 =
[
x(1 + 2x)2(4 + y)]−1

Cond.36 P. 8.36

37)
ẋ= x

[
(2x+1)2+b2],

ẏ=4 + (1 + b2)y,
b > 0

x(2), 2x + 1 + ib(1),
2x + 1− ib(1),
(b2 + 1)y + 4(1)

F37 = x2b(2x+1−ib)i−b

(2x+1+b)i+b(b2y+y+4)2b ,

R37 =
[
(b2 + 1)y + 4

]−1×[
x
(
(2x + 1)2 + b2)]−1

Cond.37 P. 8.37

38) ẋ= x2(1 + x), ẏ=1 x(3), x + 1(1)
F38 = x

x+1 exp[ 1+xy
x ],

R38 =
[
x2(1 + x)]−1

Cond.38 P. 8.38

39)
ẋ= x

[
b2−(2x+1)2],

ẏ=y(b2 − 1− 8x)−
12x2y, 0 <b 6= 1

3 , 1

x(2), 2x + 1 + b(2),
y(1), 2x + 1− b(2)

F39 = x
[
(2x + 1)2 − b2]y−1,

R39 =
[
x
(
(2x + 1)2−b2)y]−1 Cond.39 P. 8.39

40)
ẋ= x

[
b2+(2x+1)2],

ẏ=y(b2 + 1 + 8x)+
12x2y, b > 0

x(2), 2x + 1 + b(2),
y(1), 2x + 1− b(2)

F40 = x
[
(2x + 1)2 + b2]y−1,

R39 =
[
x
(
(2x + 1)2+b2)y]−1 Cond.40 P. 8.40

41)
ẋ = x(x2 − 1),
ẏ = 1− y + 3x2y

x(3), x + 1(2),

x− 1(2)

F41 = (1−x)3

(1+x)3×

exp
[ 2(2−3x2−2y)
(1−x)x(1+x)

]
,

R41 =
[
(1− x)2x2(1 + x)2]−1

Cond.41 P. 8.41

42) ẋ= x3, ẏ=1+3x2y x(7) F42 = 1+5x2y
5x5 , R42 = x−6 Cond.42 P. 8.42

43)
ẋ = x(x2 + 1),
ẏ=1 + y + 3x2y

x(3), x + i(2),
x− i(2)

F43 = (x+i)3

(x−i)3×

exp
[ i(4+x+6x2+x3+4y)

−x(x2+1)

]
,

R43 =
[
x2(x2 + 1)

]−1

Cond.43 P. 8.43

44)

ẋ = x(1 + x)×
(2 + r + x + rx),
ẏ=y(2 + r + 3x)+
rx(2+x)y, r 6=−3/2
−2 < r < −1

x(3), y(1), x + 1(2),

(r + 1)x + r + 2(1)

F44 = [x(x+1)]1+r

y1+r(2+r+x+rx)2+r ,

R44 =
[
xy(x + 1)

]−1[
(2 + r + x + rx)

]−1

Cond.44 P. 8.44

45)

ẋ = x(1 + x)×
(2 + r + x + rx),
ẏ= xy(3+2r+rx)+
(2+r)y, −3 6= r<−2

x(3), y(1), x + 1(2),

(r + 1)x + r + 2(1)

F45 = [x(x+1)]1+r

y1+r(2+r+x+rx)2+r ,

R45 =
[
xy(x + 1)

]−1[
(2 + r + x + rx)

]−1
Cond.45 P. 8.45

46)

ẋ = x(1 + x)×
(2 + r + x + rx),
ẏ= xy(3+2r+rx)+
(2+r)y, 0 6= r>−1

x(3), y(1), x + 1(2),

(r + 1)x + r + 2(1)

F46 = [x(x+1)]1+r

y1+r(2+r+x+rx)2+r ,

R46 =
[
xy(x + 1)

]−1[
(2 + r + x + rx)

]−1
Cond.46 P. 8.46

Table 4.1 (continuation): First integrals and integrating factors
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Canonical form
Invariant

lines and their
multiplicities

First integrals (Fi)
Inverse integrating Factors (Ri)

Condi-
tions

Phase
portr.

47)
ẋ = x,
ẏ = y(1 + x− x2)

x(3), y(1),
x + 1(3)

F47 = y
x(1+x) exp[x],

R47 =
[
x(x + 1)y

]−1 Cond.47 P. 8.47

48) ẋ = x, ẏ = −2y− x3 x(1) F48 = x2(x3 + 5y), R48 = x Cond.48 P. 8.48

49) ẋ = x, ẏ = y− x2− x3 x(3) F49= 3x2+ 2x3+ 6y, R49 = 1/x Cond.49 P. 8.49

50)
ẋ = x(1 + x),
ẏ = y− x2 − x3 x(4), x− 1(1) F50 = exp[ x2+y

x ]/(x + 1),
R50 =

[
x2(1 + x)

]−1 Cond.50 P. 8.50

51)
ẋ = x2(1 + x),
ẏ = −1− 3x + x2y− x3 x(3), x + 1(4)

F51 = x exp[−1+x(2+y)
x(1+x) ],

R51 =
[
x2(1 + x)2]−1 Cond.51 P. 8.51

Table 4.1 (continuation): First integrals and integrating factors

F̃2 = exp
[
2r arctan[ 1

r+x ]− 2r arctan[ 1
r+y ]

]
x2(1 + (r + y)2)

[
y2(1 + (r + x)2)

]−1;

F̃8 = [(x−y)2+(1+r+rx2+xy)2]r

(1+x2)r(1+y2)[(1+r)2+(rx+y)2]r+1

{[
(1 + r + rxy + y2)2 − r2(x− y)2]×

cos
[
2r arctan[ x−y

1+r+rx2+xy ]
]
+ 2r(x− y)(1 + r + rxy + y2) sin

[
2r arctan[ x−y

1+r+rx2+xy ]
]}

;

F̃10 = cos
[
(1 + r) arccot [ 2y

1−r+2x ] + (r− 1) arccot [ 2y
1+r+2x ]− 2r arctan[ x

y ]
]
;

F̃11 = cos
[
r arctan[ 1+2x

r−2y ] + 2r arctan[ x
y ]− r · arctan[ 1+2x

r+2y ] +
1
2 ln

[ (1+2x)2+(r+2y)2

(1+2x)2+(r−2y)2

]]
;

F̃12 =
[[
(x + 2x2 + 2y2)2 − y2] cos[ 4y

(1+2x)2+4y2 ] + 2y(x + 2x2 + 2y2) sin[ 4y
(1+2x)2+4y2 ]

]
×

(x2 + y2)−1[(1 + 2x)2 + 4y2]−1;

F̃13 = exp
[
2r arctan[ 1

r+x ] + 2r arctan[ y
x ]
][

1 + (r + x)2](rx + y)2(x2 + y2)−1;

F̃14 = x2(rx + y)2 exp
[
2r arctan[ y

x ]
]
(x2 + y2)−1;

F̃15 = exp
[
r arctan[ r+y

1−x ] + r arctan[ y
x ]
]
(x− 1)

√
x2 + y2 x−1[(x− 1)2 + (r + y)2]−1/2;

F̃16 = exp
[
− 4 arctan[ 1

x ] + 2 arctan[ 1−y
x−r ] + 2 arctan[ 1+y

r+x ]
][

(r−x)2+(y−1)2

(r+x)2+(1+y)2

]r
;

F̃22 =
[[
(xy + 1)2 − (x− y)2] cos[ 2(x−y)

1+x2 ] + 2(x− y)(xy + 1) sin[ 2(x−y)
1+x2 ]

][
(1 + x2)(1 + y)2]−1;

F̃27 = exp
[
− 2 arctan[ u

1+x ]
]
x2u[u2 + (1 + x)2]−uy−2u;

F̃32 = x(1 + 2xy)(1 + x2)−1 − arctan[x];

F̃37 = exp
[
2 arctan[ u

1+2x ]
]
x2u[u2 + (1 + 2x)2]−u

(4 + y + u2y)−2u;

F̃43 =
{
(u2 − x2)

[
(u2 + x2)2 − 16u2x2] cos[ u(4u2+u2x+6x2+x3+4u4y)

x(u2+x2)
]−

−2ux(u2 − 3x2)(3u2 − x2) sin[ u(4u2+u2x+6x2+x3+4u4y)
x(u2+x2)

]
}
(u2 + x2)−3.

Table 4.2: Real First integrals
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Figure 1.7 ∼= Figure 1.1; Figure 1.12 ∼= Figure 1.8; Figure 1.13 ∼= Figure 1.9b;
Figure 1.9a ∼= Figure 1.3; Figure 1.5 ∼= Figure 8.

We continue the proof of the Main Theorem.

(β) We point out that each one of the 20 configurations Config. 8.18–8.23, 26, 31, 32, 33,
36, 38, 41–43, 47–51 corresponds to a system without parameters. The phase portraits of
polynomial differential equations are usually presented in the Poincaré disc using the so called
Poincaré compactification, see for details Chapter 5 of [15]. The existence of the 8 invariant
straight lines taking into account their multiplicities and the knowledge of the real elementary
first integrals allows us to draw the 18 phase portraits corresponding to the above mentioned
configurations as presented in Figure 4.1.

We note that the study of the phase portraits of systems without parameters can also be
done using the algebraic program P4, see for details Chapters 9 and 10 of [15].

(γ) Among the 34 Config. 8.18–Config. 8.51 there are 14 configurations Config. 8.24, 8.25,
8.27–8.30, 8.34, 8.35, 8.37, 8.39, 8.40, 8.44–8.46 corresponding to one-parameter families of
cubic systems. In what follows we examine each one of these canonical systems applying the
following steps:

(i) detect the finite real singularities of the systems and their types;

(ii) examine if the information about the invariant straight lines and the types of finite
singularities as well as the types of simple infinite singularities determine univocally the
behavior of the trajectories at infinity;

(ii) construct the corresponding phase portraits on the Poincaré disk.

However first we prove the next lemma.

Lemma 4.5. The one-parameter families of cubic systems which correspond to the configurations Con-
fig. 8.24–8.30, 8.34-8.38 possess at infinity exactly one simple and one multiple singularities. Moreover
the simple singular point is a star node.

Proof. According to [8] if a quadratic system possesses one of the mentioned configurations
then via an affine transformation it could be brought to one of the following canonical forms,
respectively:

- for the configurations Config. 8.24–8.27⇒

ẋ = x(r + 2x + x2), ẏ = y(r + 2x), r(9r− 8) 6= 0; (4.4)

- for the configurations Config. 8.28–8.30⇒

ẋ = x(r− 2x + x2), ẏ = 2y(x− r), r(r− 1)(9r− 8) 6= 0; (4.5)

- for the configurations Config. 8.34–8.38⇒

ẋ = x(r + x + x2), ẏ = 1 + ry, 9r− 2 6= 0. (4.6)

For each one of the canonical systems (4.4)–(4.6) we calculate C3 = x3y. Therefore all
these 3 families have at infinity two singularities: N1(1, 0, 0) and N2(0, 1, 0). Considering The-
orem 3.1 (see the configurations under examination presented in Figure 3.1) we conclude that
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N1(1, 0, 0) is a simple singularity whereas N2(0, 1, 0) has multiplicity 9 (six finite singularities
coalesced with three infinite ones on the line Z = 0).

Examining the Jacobian matrix corresponding to the simple singularity N1(1, 0, 0) for each
one of the above families of systems we detect that it equals

(
1 0
0 1

)
. Therefore this singularity

for any of systems (4.4)–(4.6) is a star node and this completes the proof of the lemma.

γ1) Config. 8.24, 8.25, 8.27. According to Lemma 4.5 we consider the family of systems
(4.4) which possesses Config. 8.24 (respectively, 8.25; 8.27) if r < 0 (respectively, 0 < r < 1;
r > 1).

We observe that the invariant straight lines r + 2x + x2 = 0 of systems (4.4) are real if
Discrim[r + 2x + x2, x] = 4(1− r) > 0 and they are complex if 1− r < 0 (these invariant lines
could not coincide due to r− 1 6= 0). So in what follows we examine these two cases.

1) The case 1− r > 0. We set 1− r = b2 > 0 where b is a new parameter and we get:
r = 1− b2 < 1. We may consider b > 0 due to the change b→ −b and we arrive at the family
of systems

ẋ = x
[
(x + 1)2 − b2), ẏ = y(1− b2 + 2x), b(b− 1)(3b− 1) 6= 0. (4.7)

These systems possess the following invariant affine lines:

L1 : x = 0 (triple); L2 : x = −(b + 1) (simple);

L3 : x = b− 1 (simple); L4 : y = 0 (simple).
(4.8)

In addition the line at infinity Z = 0 is a double one. All these invariant lines are distinct due
to the condition 0 < b 6= 1 and by the relation L1 < L2 < L3 we mean that the invariant line
L2 is located between invariant lines other two parallel lines L1 and L3.

We detect that systems (4.7) possess three finite singularities: M1(0, 0), M2,3(−1∓ b, 0).
For a singularity Mi(xi, yi) we denote by λ

(i)
1 and λ

(i)
2 the eigenvalues of the corresponding

Jacobian matrix. For the mentioned finite singularities of the above systems we have

λ
(1)
1 = 1− b2 = λ

(1)
2 ; λ

(2)
1 = 2b(1 + b), λ

(2)
2 = −(1 + b)2;

λ
(3)
1 = 2b(b− 1), λ

(3)
2 = −(b− 1)2.

Considering the conditions 0 < b 6= 1 we conclude that the singularity M1(0, 0) is a star
node and M2(−1− b, 0) is a saddle. On the other hand we observe that the singular point
M3(−1 + b, 0) is a (stable) node if 0 < b < 1 and it is a saddle if b > 1.

We observe that the singular point M1 (respectively M2; M3) is located at the intersection
of invariant line y = 0 with L1 (respectively L2; L3).

If 0 < b < 1 then the singular point M3 (located on the line L3) is a node. Taking into
account that in this case we have L2 < L3 < L1 and the fact that by Lemma 4.5 the infinite
singular point N1(1, 0, 0) is a node, we obtain the phase portrait given by P. 8.25.

Assume now b > 1. In this case the singularity M3 is a saddle and we have L2 < L1 < L3.
Since N1(1, 0, 0) is a node we arrive in this case at the phase portrait given by P. 8.24.

2) The case 1− r < 0. Then we can set 1− r = −b2 < 0 and we get: r = 1+ b2 > 1. We may
consider again b > 0 due to the change b→ −b and we arrive at the family of systems

ẋ = x
[
(x + 1)2 + b2), ẏ = y(1 + b2 + 2x), b 6= 0. (4.9)
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These systems possess the unique real finite singular point M1(0, 0) which is located at the
intersection of the (unique real) invariant lines x = 0 and y = 0. For this real finite singularity
we determine λ1 = 1 + b2 = λ2, i.e. systems (4.9) possess a star node.

As by Lemma 4.5 the infinite singular point N1(1, 0, 0) is a star node it is clear that the
unique possible phase portrait in this case corresponds to P. 8.27 (see Figure 4.1).

γ2) Config. 8.28, 8.29, 8.30. Considering Lemma 4.5 we examine the family of systems (4.5)
which possesses Config. 8.28 (respectively, 8.29; 8.30) if r < 0 (respectively, 0 < r < 1; r > 1).

Since these systems possess invariant straight lines r− 2x + x2 = 0 and Discrim[r− 2x +

x2, x] = 4(1− r) we again consider two cases: 1− r > 0 and 1− r < 0.

1) The case 1− r > 0. Then as in the previous case we can set 1− r = b2 > 0, i.e. r = 1− b2

(where we may consider b > 0 due to the change b→ −b). This leads to the family of systems

ẋ = x
[
(x− 1)2 − b2), ẏ = 2y(x− 1 + b2), b > 0, (b− 1)(3b− 1) 6= 0, (4.10)

which possess the following invariant affine lines:

L1 : x = 0 (simple); L2 : x = 1− b (double);

L3 : x = 1 + b (double); L4 : y = 0 (simple).
(4.11)

In addition the line at infinity Z = 0 is a double one. All these invariant lines are distinct due
to the condition 0 < b 6= 1.

On the other hand systems (4.10) possess three finite singularities, located at the intersec-
tions these invariant lines: M1(0, 0) and M2,3(1∓ b, 0). For these singularities we obtain

λ
(1)
1 = 1− b2, λ

(1)
2 = −2(1− b2);

λ
(2)
1 = 2b(b− 1) = λ

(2)
2 ; λ

(3)
1 = 2b(b + 1) = λ

(3)
2 .

It is clear that due to the condition 0 < b 6= 1 the types of these singularities are well deter-
mined, and namely: the singularity M1(0, 0) is a saddle whereas M2(1− b, 0) and M3(1+ b, 0)
are both star nodes.

On the other hand the position of the invariant lines (and consequently of these singulari-
ties) depends on the value of the parameter b. More exactly we have L1 < L2 < L3 if 0 < b < 1
and L2 < L1 < L3 if b > 1. As a result, considering that the infinite singularity N1(1, 0, 0) is a
node (see Lemma 4.5) we arrive at the phase portrait given by P. 8.28 if b > 1 and by P. 8.29 if
0 < b < 1.

2) The case 1− r < 0. Then we can set 1− r = −b2 < 0 and we get: r = 1+ b2 > 1. We may
consider again b > 0 due to the change b→ −b and we arrive at the family of systems

ẋ = x
[
(x− 1)2 + b2), ẏ = −2y(1 + b2 − x), b 6= 0. (4.12)

These systems possess the unique real finite singular point M1(0, 0) which is located at the
intersection of the (unique real) invariant lines x = 0 and y = 0. For this real finite singularity
we determine λ1 = 1 + b2 and λ2 = −2(1 + b2), i.e. systems (4.12) possess a saddle at the
origin of coordinate.

As by Lemma 4.5 the infinite singular point N1(1, 0, 0) is a star node, clearly we obtain the
unique possible phase portrait in this case and it corresponds to P. 8.30 (see Figure 4.1).

γ3) Config. 8.34, 8.35, 8.37. Taking into account Lemma 4.5 we have to consider systems
(4.6), which possess Config. 8.34 (respectively, 8.35; 8.37) if r < 0 (respectively, 0 < r < 1/4;
r > 1/4).
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Figure 4.1: Phase portraits of systems in CSL8

Since the types (real or complex) of the invariant straight lines of systems (4.6) are deter-
mined by the sign of Discrim[r + x + x2, x] = 1− 4r, we examine two cases: 1− 4r > 0 and
1− 4r < 0.



Cubic systems with invariant lines 27

Figure 4.1 (continuation): Phase portraits of systems in CSL8

1) The case 1− 4r > 0. We set 1− 4r = b2 > 0 where b is a new parameter and we get:
r = (1 − b2)/4 < 1/4. We may consider b > 0 due to the change b → −b and after an
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Figure 4.1 (continuation): Phase portraits of systems in CSL8

additional time rescaling we arrive at the family of systems

ẋ = x
[
(2x + 1)2 − b2), ẏ = 4 + (1− b2)y, 0 < b 6= 1, 1/3. (4.13)

These systems possess the following invariant affine lines:

L1 : x = 0 (double); L2 : x = −(b + 1)/2 (simple);

L3 : x = (b− 1)/2 (simple); L4 : y = 4/(b2 − 1) (simple).
(4.14)

In addition the line at infinity Z = 0 is a triple one. All these invariant lines are distinct due
to the condition 0 < b 6= 1.

We detect that systems (4.13) possess three finite singularities: M1
(
0, 4/(b2 − 1)

)
and

M2,3
(
(−1∓ b)/2, 4/(b2− 1)

)
, located at the intersections of the line L4 with invariant lines Li

(i = 1, 2, 3), respectively. For these singularities we obtain

λ
(1)
1 = 1− b2 = λ

(1)
2 ; λ

(2)
1 = 2b(1 + b), λ

(2)
2 = 1− b2;

λ
(3)
1 = 2b(b− 1), λ

(3)
2 = 1− b2.

We observe that

λ
(2)
1 λ

(2)
2 = 2b(1 + b)2(1− b), λ

(3)
1 λ

(3)
2 = −2(b− 1)2b(1 + b).
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Diagram 4.1: Topologically distinct phase portraits
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Therefore considering the condition 0 < b 6= 1 we conclude that the singularity M1 is a star
node and M3 is a saddle. On the other hand we observe that the singular point M2 is a
(unstable) node if 0 < b < 1 and it is a saddle if b > 1.

Assume first 0 < b < 1. Then the singular point M2 (located on the line L2) is a node.
Taking into account that in this case we have L2 < L3 < L1 and the fact that by Lemma 4.5 the
singular point N1(1, 0, 0) is a node, we obtain the phase portrait given by P. 8.35.

Suppose now b > 1. In this case the singularity M2 is a saddle and we have L2 < L1 < L3.
Since N1(1, 0, 0) is a node we arrive in this case at the phase portrait given by P. 8.34.

2) The case 1− 4r < 0. Then we can set 1− 4r = −b2 < 0, i.e. r = (1 + b2)/4 and due to a
time rescaling systems (4.6) become

ẋ = x
[
(2x + 1)2 + b2), ẏ = 4 + (1 + b2)y, b > 0. (4.15)

These systems possess the unique real finite singular point M1
(
0,−4/(b2 + 1)

)
which is lo-

cated at the intersection of the (unique real) invariant lines x = 0 and y = −4/(b2 + 1). For
this real finite singularity we determine λ1 = (1+ b2)/4 = λ2. So systems (4.15) possess a star
node.

Since by Lemma 4.5 the infinite singular point N1(1, 0, 0) is a star node and the existence
of exactly three real singularities (M1, N1(1, 0, 0) and N2(0, 1, 0)) of the above systems clearly
this leads to the unique possible phase portrait which corresponds to P. 8.37 (see Figure 4.1).

γ4) Config. 8.39. According to Table 4.1 we consider the family of systems

ẋ = x
[
b2 − (2x + 1)2], 0 < b 6= 1, 1/3,

ẏ = (b2 − 1− 8x− 12x2)y,
(4.16)

which possess the following invariant affine lines:

L1 : x = 0 (double); L2 : x = −(b + 1)/2 (double);

L3 : x = (b− 1)/2 (double); L4 : y = 0 (simple).
(4.17)

We also detect that systems (4.16) possess three finite singularities:
On the other hand systems (4.16) possess three finite singularities, located at the intersec-

tions of the invariant line L4 with L1, L2 and L3, respectively: M1(0, 0) and M2,3((−1∓ b)/2, 0).
For these singularities we obtain

λ
(1)
1 = b2 − 1 = λ

(1)
2 ; λ

(2)
1 = −2b(1 + b) = λ

(2)
2 ; λ

(3)
1 = 2b(1− b) = λ

(3)
2

It is clear that due to the condition 0 < b 6= 1 the types of these singularities are well deter-
mined, and namely, all three are star nodes.

Next we examine the infinite singularities of (4.16) for which we have C3 = 8x3y. Hence
at infinity we have two singularities: N1(1, 0, 0) and N2(0, 1, 0). Considering Theorem 3.1
(see Config. 8.39 from Figure 3.1) we conclude that N1(1, 0, 0) is a simple singularity whereas
N2(0, 1, 0) has multiplicity 9 (six finite singularities coalesced with three infinite on the line
Z = 0).

Constructing the corresponding systems at infinity, possessing the point N1(1, 0, 0) at the
origin of coordinates, we get the systems

u̇ = 8u + 4uz, ż = −4z− 4z2 − z3 + b2z3. (4.18)
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Evidently the singular point (0, 0) of these systems (which corresponds to the infinite singu-
larity N1(1, 0, 0) of systems (4.16)) is a saddle for any value of the parameter b.

Thus considering the types of the finite singularities and of the simple infinite singular
point N1(1, 0, 0) as well as the existence of three four invariant lines (4.17) we arrive at the
unique phase portrait which corresponds to P. 8.39 (see Figure 4.1).

γ5) Config. 8.40. Considering Table 4.1 we have to examine the family of systems

ẋ = x
[
b2 + (2x + 1)2], b > 0,

ẏ = (b2 + 1 + 8x + 12x2)y,
(4.19)

which possess the unique real finite singular point M1(0, 0) for which λ1 = 1 + b2 = λ2.
Hence this singularity is a star node located at the intersection of unique real invariant affine
line y = 0 and x = 0.

For systems (4.19) we have C3 = −8x3y and considering Config. 8.40 from Figure 3.1 (see
Theorem 3.1) we get the same two infinite singularities: N1(1, 0, 0) (simple) and N2(0, 1, 0)
(of multiplicity 9). We detect that N1(1, 0, 0) corresponds to the singular point (0, 0) of the
systems

u̇ = −8u− 4uz, ż = 4z + 4z2 + z3 + b2z3 (4.20)

and hence this singular point is a saddle for any value of the parameter b.
Thus considering the existence of exactly three real singularities (M1, N1(1, 0, 0) and

N2(0, 1, 0)) of the above systems as well as of two real invariant lines x = 0 and y = 0 we
get the unique possible phase portrait which corresponds to P. 8.40 (see Figure 4.1).

γ6) Config. 8.44, 8.45, 8.46. Considering Table 4.1 we observe that each one of these three
configuration corresponds to the same one-parameter family of systems

ẋ = x(1 + x)(2 + r + x + rx),

ẏ = (2 + r + 3x + 2rx + rx2)y, r(r + 3)(r + 2)(3 + 2r) 6= 0
(4.21)

for different value of the parameter r. More exactly we have Config. 8.44 (respectively, 8.45;
8.46) if −2 < r < −1 (respectively, r < −2; r > −1).

The above systems possess the following invariant affine lines:

L1 : x = 0 (triple); L2 : x = −1 (double);

L3 : x = − r + 2
r + 1

(simple); L4 : y = 0 (simple).
(4.22)

All these invariant lines are distinct due to the condition (r + 2) 6= 0.
We detect that systems (4.21) possess three finite singularities: M1(0, 0), M2(−1, 0) and

M3
(
− r+2

r+1 , 0
)
, located at the intersections of the line L4 with invariant lines Li (i = 1, 2, 3),

respectively. For these singularities we obtain

λ
(1)
1 = 2 + r = λ

(1)
2 ; λ

(2)
1 = −1 = λ

(2)
2 ;

λ
(3)
1 =

r + 2
r + 1

, λ
(3)
2 = − (r + 2)2

(r + 1)2 .

Therefore we conclude that the singularities M1 and M2 are star nodes, whereas the type of
M2 depends on the the sign of the expression (r + 2)(r + 1). More precisely we have a node if
−2 < 3 < −1 and we have a saddle if either r < −2 or r > −1.
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On the other hand for systems (4.21) we have C3 = x3y, i.e. at infinity we have two sin-
gularities: N1(1, 0, 0) and N2(0, 1, 0). Considering Theorem 3.1 (see Config. 8.44 – 8.46 from
Figure 3.1) we conclude that N1(1, 0, 0) is a simple singularity whereas N2(0, 1, 0) has multi-
plicity 9 (six finite singularities coalesced with three infinite on the line Z = 0).

Constructing the corresponding systems at infinity, possessing the point N1(1, 0, 0) at the
origin of coordinates, we get the systems

u̇ = u, ż = (1 + r)z + (3 + 2r)z2 + 2z3 + rz3. (4.23)

Evidently the type of the singular point (0, 0) of these systems (which corresponds to the
infinite singularity N1(1, 0, 0) of systems (4.21)) is a node if r > −1 and it is a saddle if r < −1.

Since the singular points M1 and M2 are both star nodes, it remains to examine the cor-
responding intervals of the variation of the parameter r and to determine the types of the
singularities M3 and N1(1, 0, 0). Moreover it is necessary to detect the position of the invari-
ant line L3 with respect to L1 and L2. This information is sufficient to get in unique mode the
corresponding phase portrait.

If r < −2 then M3 and N1(1, 0, 0) are both saddles and we get L2 < L3 < L1. As a result
we arrive at the phase portrait given by P. 8.45 (see Figure 4.1).

Assume now −2 < r < −1. In this case M3 is a node and N1(1, 0, 0) is a saddle. On the
other hand we have L2 < L1 < L3 and this leads to the phase portrait which corresponds to
P. 8.44.

Admit finally, r > −1. Then M3 is a saddle, N1(1, 0, 0) is a node and L3 < L2 < L1. In this
case we get the phase portrait given by P. 8.46 in Figure 4.1 and this completes the proof of the
statement (B) of Main Theorem.

(C) To prove that only 30 among 52 obtained phase portrait are topologically distinct it is
sufficient to evaluate for each one of them the geometrical invariants presented in Remark 4.2.
In such a way we get Diagram 4.1 which proves this statement of the theorem and therefore
completes the proof of Main Theorem.
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