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Abstract. In this paper, we study the following Schrédinger—Poisson system

—Au+u+pupu=Af(x,u)+u>  inR3

—Ap = yu? in R?,
where p, A > 0 are parameters and f € C(R® x R,R). Under certain general assump-
tions on f(x,u), we prove the existence and concentration of solutions of the above

system for each # > 0 and A sufficiently large. Our main result can be viewed as an
extension of the results by Zhang [Nonlinear Anal. 75(2012), 6391-6401].
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1 Introduction and main results

Consider the following Schrodinger-Poisson system

{—Au+u+y¢u:)\f(x,u)+u5 in R®, (L1)

—Ap = yu? in R?,

where 11, A > 0 are parameters and f € C(R3 x R, R). Equation (1.1) or the more general one

—Ap = K(x)u? in R3, (12

{—Au—f—V(x)u—i—K(x)cpu = f(x,u) in R3,
arise from several interesting physical fields, such as in quantum electrodynamics, describing
the interaction between a charged particle interacting with the electromagnetic field, and also
in semiconductor theory and in plasma physics. For more details in physical background we
refer to [5,8] and the references therein.
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There are many papers studying the existence of solutions of system (1.2), see [2—4,7-10,
12-14,16-22] and their references. A lot of works focus on the study of problem (1.2) with
the very special case V = K = 1 and f(x,u) = |u|’~2u, and existence and multiplicity of
positive solutions as well as radial or nonradial symmetric solutions are obtained, see e.g.
[2,3,7-10,13]. The Schrodinger-Poisson system with critical nonlinearity of the form

—Au+u+ ¢u = P(x)|ul*u +AQ(x)|u|"2u in R,
Ap=1u inR} 2<g<6, A>0,

has been studied in [22]. Besides some other conditions, Zhao et al. assume that P € C(IR%, R),
lim|y| e P(x) = Peo € (0, +00) and P(x) > P and prove the existence of one positive solution
for 4 < g < 6 and each A > 0. It is also proven the existence of one positive solution for g = 4
and A large enough. Zhang [18] considers the following type of Schrodinger-Poisson system

{—Au +u+ppu=f(u) inR3, L3)

_qu = ‘uuz in ]R?’,

where f € C(R*,R™) satisfies lim,_, o f(1)/u®> = K > 0 and f(u) > Ku® + Du?~! for some
D > 0, which exhibits a critical growth. Applying a combined technique consisting in a
truncation argument and a monotonicity trick, he proves that for y > 0 small, problem (1.3)
admits a positive solution for g € (2,4] with D sufficiently large or q € (4,6). In [20], the same
author studies problem (1.1) when V = 1 and f(x,u) = a(x)|u|P~2u + Ab(x)|u|72u + u5,
where p, g € (4,6), A > 0 is a parameter. Under certain decay rate conditions on K(x), a(x)
and b(x), he proves the existence of ground state solution and two nontrivial solutions for
A > 0 small. Recently, the Schédinger—Poisson system with nonconstant coefficient of the
following version

—Au+V(x)u+epu = Af(u) in RS,
—A¢ = u*in R?, limyy . ¢(x) =0,

has been discussed in Mao et al. [12]. Assuming that V is coercive, i.e. V(x) — oo as |x| — oo
and f is local subcritical and 4-superlinear at the origin, the authors prove the existence of
nontrivial solution and its asymptotic behavior depending on ¢ and A.

Motivated by the works described above, in this paper, we try to prove the existence of
solutions of problem (1.1) with a much more general nonlinearity in critical growth. Precisely,
we make the following hypotheses.

(f1) There exist co > 0 and 2 < p; < pa < 6 such that |f(x,s)| < co(|s|P1~! + |s|P2~1) for all
(x,5) € R¥x R.

(f2) F(x,s) > 0 for all (x,s) € R® x R, and there exist c1, po > 0 and g € (2,6) such that
F(x,8) > c1]s]7 for x € R3 and |s| > po.

(f3) There exists 6 € (2,6) such that f(x,s)s — 0F(x,s) > 0 for all (x,s) € R® x R.

Theorem 1.1. Assume that (f1)—(f3) are satisfied with p; > 3q — 4. Then, for any pu > 0, problem
(1.1) possesses a nontrivial solution uy for A > 0 sufficiently large. Moreover, uy — 0 as A — 4-oo.

Theorem 1.1 can be viewed as an extension of the main results in [18]. Note that, in [18],
the existence of solution is obtained by using the radially symmetric Sobolev space H}(IR?®),
where the embedding H; (R%) — L*(R%) (2 < s < 6) is compact. However, in our case since
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f is nonradially symmetric, we have to deal with (1.1) in H!(IR?) and the Sobolev embedding
H'(R3) < L*(R®) (2 < s < 6) is not compact any more. Moreover, the critical exponential
growth makes the problem more complicated. To overcome these difficulties, we use a trun-
cation argument (see [11]) together with careful analysis of the (PS)., sequence and prove the
(PS)., condition holds for a suitable range of c, indirectly.

Notations

L*(R3) (1 < s < 4o0) is a Lebesgue space whose norm is denoted by | - |[|s.

H'(R?) is the usual Hilbert space endowed with the norm ||u||? = [ (|Vu|* + u?)dx.

» D'2(R?) is the completion of C§°(IR?) with respect to the norm [|u|7,,, := [gs |Vu[*dx.

S denotes the best Sobolev constant

2

S = lnf DZLZ *
ueD12(RR3)\{0} ||u||6

]

¢ For every 2 < g < 6, denote

[Els

ueH (R*)\{o} |[u]|Z"

Sp =

Cand C; (i =1,2,...) denotes various positive constants, which may vary from line to
line.

2 Proof of Theorem 1.1

For simplicity, we assume # = 1 and denote H = H!(IR®). We first recall the following
well-known facts.

Lemma 2.1 (see [4]). For each u € H, there exists a unique ¢, € D?(R3) solution of
—A¢p, = u? in RS,
Moreover,
(i) ¢ > 0;
(il) P = Py, Yt > 0;
(iii) there exists Cy > 0 such that
I9ullprz < Collul? and [ guartdx < Colu,

where &« = 12/5.

Define the functional associated to problem (1.1)

1 1 ' 1
I(u) = EH”HZ + i /]R3 PuuPdx — /]R3 <AF(x,u) + 6u6> dx,
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where u € H. It is easy to check that I € C!(H,R) and (u,¢) € H x D*(IR%) is a weak
solution of problem (1.1) if and only if u € H is a critical point of I and ¢ = ¢,,.

We introduce the cut-off function y € C®(R4, R) satisfying x(s) = 1fors € [0,1], x(s) =0
fors € [2,+00),0 < x <1and |||« < 2. Consider the truncated functional I7 : H — R

1 1 1
r(u) = SlulP + ;Kr() /IR3 puiildx — /RS (AF(x,u) + 6u6> dx,

where, for each T > 0, Kr(u) = x ( H%#) For A sufficiently large, we will find a critical point

u, of It such that ||u, ||, < T and so we conclude that u, is also a critical point of I.

Lemma 2.2. The functional It possesses a mountain pass geometry:
(i) there exist constants «, p > 0 such that It(u) > « for all ||u|| = p;
(ii) there exists e € H such that |le|| > p and Ir(e) < 0.
Proof. Tt follows from (f;) that
|F(x,8)] < co(|s|P* + [s]F?), Y(x,s) € R®* x R.

Then, by Sobolev’s inequality, we have
1, o 1
z — p P2 _ - 6
Ir(u) = Sl = Aco [ (ul? + ul)dx — ¢ [ ubax
1 1.
> S lull® = C(llallPr+ full?2) = 2872 lull®

Since p1, p2 > 2, there exist a, p > 0 such that Ir|,—, > a.
Choose w € H\ {0} such that w > 0. By Lemma 2.1 and (f,), we have

t2 £
In(tw) < = || + Cof|w]4 - g/Swédx & —co ast— fco.
R

Hence there exists ty > 0 large enough such that I7(tpw) < 0 and ||fow]| > p. O

Therefore, according to the mountain pass theorem (see [1]), there exists a (PS)., sequence
(un) C H such that

It (1) == ¢y, () =0, (2.1)

where

= inf Ir(7(t
¢n = inf max r(v(t))

withT = {y € C([0,1], H) : 7(0) =0, I7(y(1)) < 0}.
For e > 0, let
1
x)es
o(x) = —PE
(e + [x[?)
where € CP(R?,[0,1]) such that ¢(x) = 1 for |x| < r and ¥ (x) = 0 for |x| > 2r. It is well

known that S is attained by the function ﬁ Direct calculation shows that (see [15]):

NI—=

29, _ |x[? 1) —
/IRS |Voe|dx = /RS it |x|2)3dx+O(82) =K1 +0O(e
)

1
6 = —_— =
/Rs [oc["dx = /Ra A5 s = et ol

), (2.2)

NI
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and
O(e1), t e (3,6),
/ [vel'dx = { O(ei|Ine|), t=3, (2.3)
O(et), te[2,3),

where Kj, K, are positive constants and S = K;/ K;/ 3 By the definition of c), we have
cx < sup,sq Ir(tve).

Lemma 2.3. There is a constant Dy > 0 independent of A such that c), < Dy

AT-2

Proof. Tt follows from (2.2) and (2.3) that there exists €1 > 0 such that for ¢ € (0,¢1),

3K,

K K
2 Rl <

— < < =
2 = HUSH ) 2 —

Since F > 0 for all (x,s), one sees that
2 L AP g 0 6
Ir(tve) < EHUEH + ZCOS12/5HU£H - gHUSH&

Thus, using (2.4), there exist #' > 0 small and t” > 0 large (independent of ¢ € (0,¢1)) such
that

q 2
—2 (3Ky\72 /172 1
Sup IT(tUg) S qT <21> <~> 2 (25)
tE[0,]U[H",+o0) q qa A2
where i = 2% f\x\gl dx.
Choose ¢ € (0,min {1,¢1,7*}) such that
1
t/304 - t//4C HU H4 < &tlé (2.6)
\/E - pO/ 4 0 Ellae —= 12 . .
By the definition of v, (x), we get
}
va(x) > =, Vx| <,
and then
_1
0, (x) > ey > po, Vt>t, Vx| < 8(1)/2
V2
so that, by (f2),
_1
/ F(x,tvg,)dx > ¢ / |tvg, |9dx > ¢ / 804t"dx—ﬁs Sy (2.7)
R A% - (1 ‘x|§€01/2 €0 = 1 ‘x|§€01/2 2% - 0 .

for all + > t, where i is the same constant as in (2.5). Hence, by (2.7), (2.6) and (2.4), we
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deduce that

) tl/4 4 Kzt/6
sup Irltee) < sup ( ol = [ PG toq)ax) + (O collo I~ <22

telt 1] telt "

3K 6-q
< sup 2y t= — Ade?* t”’)
ey \ 4
3K 6-q
< sup <1t2 — Adeg,* tq>
>0 \ 4

Combining this with (2.5) shows that

2

q—2
3K 1 1 D
cy <sup Ir(tog,) < =< <1> = - = LO.
t>0 2‘7 2 qaeT Aa-2 Aa—2

O]

Lemma 2.4. There is a constant Dy > 0 independent of A such that, for any (PS).,-sequence (u,)

with

D
Cc) € (0, 3) ,
Ari—2

(un) has a strongly convergent subsequence.

Proof. Tt follows from (2.1) and (f3) that

cx+oW)funll = Ir(un) -

I 1 2 |49 44 44
> - — — — « — — o
> (2 9) || 1 || 0 Co2: T 9C02 T?,

which implies that (#,),en is bounded in H. Thus, going if necessary to a subsequence, we

may assume for each bounded domain Q) C R3,
u, —u, inH, Uny(x) = up(x) ae x€ RS,
u, —uy inLI(Q)@2<t<6),
lun(x)] < w(x) for some w € L'(Q).

We claim that u, — u, in H. Take
14
/st P, uidx - A, Kr(up) == B, X (“”””“) - D,

where A, B, D are nonnegative constants, and define the functionals J7, Y1 on H by

_ L, B 2 AD 0y 16
Jr(u) = 2HuH + / puudx + 1T /1R3 |u|*dx /]R3 <AF(x,u) + oV )dx,
Yr(u) = 7Hu||2 / Put 2dx—/ (/\P(x,u)—l—éu6> dx.

(2.8)

(2.9)
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By (2.8), we see that, for any ¥ € C(R3),

/]R3 Vu, - Vipdx — /1R3 Vu, - Vipdx, /1R3 Uppdx — /1R3 updx, (2.10)
and

/]RSf(x,un)l/de = /Supplpf(x,un)lpdx — /Wf(x,u)\)lpdx, (2.11)

where we have used Lebesgue dominated convergent theorem in the last limit. From u,, — u,
a.e. in R3 and ¢, (x) — ¢y, (x) a.e. in R?, we know that ¢, (x)u,(x) — ¢y, (x)us(x) ae. in
R3. Using the fact

1.
1w, ttnll2 < N, lllunlls < CoS™25 3,5 llunl?[lunlls < C,

we get that ¢, u, € L2(IR®) and (¢u,1n)nen is bounded in L2(IR3). Therefore, up to a subse-
quence, ¢y, uy — ¢y, 4y in L2(R3) and

/ P, tnpdx — / Pu, uppdx. (2.12)
R3 R3
Moreover, observe that {|u,|* %u,} C L%/ (@=1)(R3) is bounded. This and the fact

1 ()| 21 () = Jup () 2up(x) ae. x €R®

implies that |u,|*2u, — |uy|*2u, in L (@D (R3). So

/]1{3 |t |* 2w pdx —— /1R3 |up |*2up pdx. (2.13)

Similarly, we deduce that as n — oo,

/]R3 udpdx — /11{3 uspdx. (2.14)
Combining (2.10)—(2.14), we achieve that
o(1) = (Ir(un), )
= o)+ [Ken) [ ot gron’ (V28 ) [ b Zups [ gu ]
= [ (F G+ ) dx
xAD

= (un9) +B [ gunngdx+ 5 [l 2

— [ () + ) dx+o(1)
= Jr(u)p+o(1),  Vp e CP(R?),

which implies that J}.(u,) = 0.
Denote vy, := u, — 1. By (f1) and [23, Lemma 2.2], one obtains that

/]R3 (F(x,un) — F(x,uy) — F(x,v,)) dx = 0(1) (2.15)
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and

/]123 (f (2, up)uy — f(x, up)up — f(x,04)0,) dx = 0(1). (2.16)
From the Brezis-Lieb lemma (see [6]), we have
/ (Jttn|® = |1a]® — [on]*) dx = 0(1), / (Junl® = |upl® = [0a]¢) dx = 0(1).  (2.17)
RR3 R3

Furthermore, by [21, Lemma 2.2], we get

[ (@ = 9,1 = 90,03) dx = o(1). .18)
Hence, using (2.15)—(2.18) and the fact J}.(u,) = 0, we deduce that

o(1) = (Jr(un), un) — (Jr(ur), ur)

AD
= ]|vn’|2+B/]R3 P, 02dx + D;Ta /1R3 IUn\“dx—/ (Af(x,00)0n + 05) dx + 0(1)

= (Jr(vn),vn) +o(1) (2.19)

and
cy+o(1) = IT(un)
= Ul + ol + 3 [ (ot + o, 03)
—/RSA(F(x,uA)—FF(x,vn))dx—f/ (1§ + 08)dx +o(1)
= ¥r(u) +¥r(oa) +o0(1). (2.20)
It follows from (2.19) that

anHz < }\/I[@]’(Jc,z)n)vndx—|—/]R3 vﬁdx%—o(l). (2.21)

Now we estimate the right-hand side of the above inequality. By (f1) and Young’s inequality,
we have that
3(p2—2)
)

!ﬂ%wwﬁm<M )™

SCl( O Py —l— psﬁ4pz)\u\2+C1<pl_2 ! +P2_2 14 )\uP

A 4

gri—2 gpr2—2

< Coe® Vl\u|2—|—C2 — |ul®

spl P12
1

6-p1/
(2/\C2) 4

for ¢ > 0 small. Hence, substituting this equality into (2.21) and taking & = we

deduce that for A > 0 large

S 6
5 </Rsvndx) <

< CAR 2 /3 (0 |dx + 0(1). (2.22)
R
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3
2_1_ Choose T > 0 such

AP1-2

4-0 aC 1/1 1
<‘ i e, + 52 )5121/5T2 2<2—9>. (2.23)

Let [ps [vn|®dx—1 > 0. If | > 0, then (2.22) implies that | > (2%3)
that

Then, by J7 (1)) = 0, we obtain that

r(in) = Fr(un) — 5 (), m)
> 1—1 |ual|® + 1—1 B/cp uidx — /\u |*dx
=\3 Uy Uur“a 49'1"04 A

1 1 4-6 aCo, 2
> [(2—9> <’ 0 |2 Co+ —5-2¢ >5121/5T2] [iN[&

> 0. (2.24)

Hence, using (2.24), (2.20) and (2.19), we deduce that

cx+o(1) = ¥(vn) +o(1)

=¥ (vn) - 1<I’T(vn),vn> +0(1)

) S )
+ (9 - é) /]R v8dx +0(1)

- K; - (D (|4499‘2 “Cot 06502 )5121/57"2} 012

+ <; - é) /WU?de‘*'O(l)

<2 - 2) /]R3 vbdx +o(1),

which implies that

3
1 1 1 1 S\2 1 D;
C > —_ — = Z > _— — _— . P
b= (9 6) = (9 6) <2c3> AR A
a contradiction. Therefore / = 0 and u,, — u in H. O

Proof of Theorem 1.1. In view of Lemmas 2.2 and 2.3, there is a sequence (u,) C H such that

D
It(uy) —c) € <O, S} and I7(u,) — 0.
ATz

Since p; > 3q — 4, we find A1 > 1 large enough such that

D D
o) < g < 61 for A > Ag.

A2 AP172
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Thus, by Lemma 2.4, one sees that 1, — u, in H, It(u,) = c) and I (1)) = 0. Next we show
that uy — 0 as A — +oo. It follows from the properties of x and (2.23) that

- > = Ir(uy) — S (Ip(up), un)
AP 0

1 1 1 1
(3-3) lml?+ (5= g) Knlm) [ gunsias
o o
~ e (T2 sl [ st
1 1 4—-0 2 aC
Kz_e> <’ o2t + 5 )Sﬁlﬁﬂ Jial?

1/1 1
> (2_2 2
>3 (5-5) Iml®

Since ¢y — 0 as A — +oo, the above inequality implies that uy — 0 as A — +oo. Hence there

exists A* > Ay such that [[up[la < Sps/luall < T for A > A*. So we also get that I(uy) = c)
and I'(u,) = 0, i.e., u, is a nontrivial solution of original problem (1.1). This completes the
proof. O
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