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Abstract. In this paper, we study the following Schrödinger–Poisson system{
−∆u + u + µφu = λ f (x, u) + u5 in R3,
−∆φ = µu2 in R3,

where µ, λ > 0 are parameters and f ∈ C(R3 ×R, R). Under certain general assump-
tions on f (x, u), we prove the existence and concentration of solutions of the above
system for each µ > 0 and λ sufficiently large. Our main result can be viewed as an
extension of the results by Zhang [Nonlinear Anal. 75(2012), 6391–6401].
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1 Introduction and main results

Consider the following Schrödinger–Poisson system{
−∆u + u + µφu = λ f (x, u) + u5 in R3,

−∆φ = µu2 in R3,
(1.1)

where µ, λ > 0 are parameters and f ∈ C(R3 ×R, R). Equation (1.1) or the more general one{
−∆u + V(x)u + K(x)φu = f (x, u) in R3,

−∆φ = K(x)u2 in R3,
(1.2)

arise from several interesting physical fields, such as in quantum electrodynamics, describing
the interaction between a charged particle interacting with the electromagnetic field, and also
in semiconductor theory and in plasma physics. For more details in physical background we
refer to [5, 8] and the references therein.
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There are many papers studying the existence of solutions of system (1.2), see [2–4, 7–10,
12–14, 16–22] and their references. A lot of works focus on the study of problem (1.2) with
the very special case V = K = 1 and f (x, u) = |u|p−2u, and existence and multiplicity of
positive solutions as well as radial or nonradial symmetric solutions are obtained, see e.g.
[2, 3, 7–10, 13]. The Schrödinger–Poisson system with critical nonlinearity of the form{

−∆u + u + φu = P(x)|u|4u + λQ(x)|u|q−2u in R3,

−∆φ = u2 in R3, 2 < q < 6, λ > 0,

has been studied in [22]. Besides some other conditions, Zhao et al. assume that P ∈ C(R3, R),
lim|x|→∞ P(x) = P∞ ∈ (0,+∞) and P(x) ≥ P∞ and prove the existence of one positive solution
for 4 < q < 6 and each λ > 0. It is also proven the existence of one positive solution for q = 4
and λ large enough. Zhang [18] considers the following type of Schrödinger–Poisson system{

−∆u + u + µφu = f (u) in R3,

−∆φ = µu2 in R3,
(1.3)

where f ∈ C(R+, R+) satisfies limu→+∞ f (u)/u5 = K > 0 and f (u) ≥ Ku5 + Duq−1 for some
D > 0, which exhibits a critical growth. Applying a combined technique consisting in a
truncation argument and a monotonicity trick, he proves that for µ > 0 small, problem (1.3)
admits a positive solution for q ∈ (2, 4] with D sufficiently large or q ∈ (4, 6). In [20], the same
author studies problem (1.1) when V = 1 and f (x, u) = a(x)|u|p−2u + λb(x)|u|q−2u + u5,
where p, q ∈ (4, 6), λ > 0 is a parameter. Under certain decay rate conditions on K(x), a(x)
and b(x), he proves the existence of ground state solution and two nontrivial solutions for
λ > 0 small. Recently, the Schödinger–Poisson system with nonconstant coefficient of the
following version {

−∆u + V(x)u + εφu = λ f (u) in R3,

−∆φ = u2 in R3, lim|x|→∞ φ(x) = 0,

has been discussed in Mao et al. [12]. Assuming that V is coercive, i.e. V(x)→ ∞ as |x| → ∞
and f is local subcritical and 4-superlinear at the origin, the authors prove the existence of
nontrivial solution and its asymptotic behavior depending on ε and λ.

Motivated by the works described above, in this paper, we try to prove the existence of
solutions of problem (1.1) with a much more general nonlinearity in critical growth. Precisely,
we make the following hypotheses.

( f1) There exist c0 > 0 and 2 < p1 < p2 < 6 such that | f (x, s)| ≤ c0(|s|p1−1 + |s|p2−1) for all
(x, s) ∈ R3 ×R.

( f2) F(x, s) ≥ 0 for all (x, s) ∈ R3 ×R, and there exist c1, ρ0 > 0 and q ∈ (2, 6) such that
F(x, s) ≥ c1|s|q for x ∈ R3 and |s| ≥ ρ0.

( f3) There exists θ ∈ (2, 6) such that f (x, s)s− θF(x, s) ≥ 0 for all (x, s) ∈ R3 ×R.

Theorem 1.1. Assume that ( f1)–( f3) are satisfied with p1 > 3q− 4. Then, for any µ > 0, problem
(1.1) possesses a nontrivial solution uλ for λ > 0 sufficiently large. Moreover, uλ → 0 as λ→ +∞.

Theorem 1.1 can be viewed as an extension of the main results in [18]. Note that, in [18],
the existence of solution is obtained by using the radially symmetric Sobolev space H1

r (R
3),

where the embedding H1
r (R

3) ↪→ Ls(R3) (2 < s < 6) is compact. However, in our case since
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f is nonradially symmetric, we have to deal with (1.1) in H1(R3) and the Sobolev embedding
H1(R3) ↪→ Ls(R3) (2 < s < 6) is not compact any more. Moreover, the critical exponential
growth makes the problem more complicated. To overcome these difficulties, we use a trun-
cation argument (see [11]) together with careful analysis of the (PS)cλ

sequence and prove the
(PS)cλ

condition holds for a suitable range of cλ indirectly.

Notations

• Ls(R3) (1 ≤ s ≤ +∞) is a Lebesgue space whose norm is denoted by ‖ · ‖s.

• H1(R3) is the usual Hilbert space endowed with the norm ‖u‖2 =
∫

R3(|∇u|2 + u2)dx.

• D1,2(R3) is the completion of C∞
0 (R3) with respect to the norm ‖u‖2

D1,2 :=
∫

R3 |∇u|2dx.

• S denotes the best Sobolev constant

S := inf
u∈D1,2(R3)\{0}

‖u‖2
D1,2

‖u‖2
6

.

• For every 2 ≤ q < 6, denote

Sq := inf
u∈H1(R3)\{0}

‖u‖2

‖u‖2
q

.

• C and Ci (i = 1, 2, . . . ) denotes various positive constants, which may vary from line to
line.

2 Proof of Theorem 1.1

For simplicity, we assume µ = 1 and denote H = H1(R3). We first recall the following
well-known facts.

Lemma 2.1 (see [4]). For each u ∈ H, there exists a unique φu ∈ D1,2(R3) solution of

−∆φu = u2 in R3,

Moreover,

(i) φu ≥ 0;

(ii) φtu = t2φu, ∀t > 0;

(iii) there exists C0 > 0 such that

‖φu‖D1,2 ≤ C0‖u‖2
α and

∫
R3

φuu2dx ≤ C0‖u‖4
α,

where α = 12/5.

Define the functional associated to problem (1.1)

I(u) =
1
2
‖u‖2 +

1
4

∫
R3

φuu2dx−
∫

R3

(
λF(x, u) +

1
6

u6
)

dx,
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where u ∈ H. It is easy to check that I ∈ C1(H, R) and (u, φ) ∈ H × D1,2(R3) is a weak
solution of problem (1.1) if and only if u ∈ H is a critical point of I and φ = φu.

We introduce the cut-off function χ ∈ C∞(R+, R) satisfying χ(s) = 1 for s ∈ [0, 1], χ(s) = 0
for s ∈ [2,+∞), 0 ≤ χ ≤ 1 and ‖χ′‖∞ ≤ 2. Consider the truncated functional IT : H → R

IT(u) =
1
2
‖u‖2 +

1
4

KT(u)
∫

R3
φuu2dx−

∫
R3

(
λF(x, u) +

1
6

u6
)

dx,

where, for each T > 0, KT(u) = χ
(
‖u‖α

α
Tα

)
. For λ sufficiently large, we will find a critical point

uλ of IT such that ‖uλ‖α ≤ T and so we conclude that uλ is also a critical point of I.

Lemma 2.2. The functional IT possesses a mountain pass geometry:

(i) there exist constants α, ρ > 0 such that IT(u) ≥ α for all ‖u‖ = ρ;

(ii) there exists e ∈ H such that ‖e‖ > ρ and IT(e) < 0.

Proof. It follows from ( f1) that

|F(x, s)| ≤ c0(|s|p1 + |s|p2), ∀(x, s) ∈ R3 ×R.

Then, by Sobolev’s inequality, we have

IT(u) ≥
1
2
‖u‖2 − λc0

∫
R3
(|u|p1 + |u|p2)dx− 1

6

∫
R3

u6dx

≥ 1
2
‖u‖2 − C (‖u‖p1 + ‖u‖p2)− 1

6
S−3‖u‖6.

Since p1, p2 > 2, there exist α, ρ > 0 such that IT|‖u‖=ρ ≥ α.
Choose w ∈ H\ {0} such that w ≥ 0. By Lemma 2.1 and ( f2), we have

IT(tw) ≤ t2

2
‖w‖2 + C0t4‖w‖4

α −
t6

6

∫
R3

w6dx → −∞ as t→ +∞.

Hence there exists t0 > 0 large enough such that IT(t0w) < 0 and ‖t0w‖ ≥ ρ.

Therefore, according to the mountain pass theorem (see [1]), there exists a (PS)cλ
sequence

(un) ⊂ H such that

IT(un)
n−→ cλ, I′T(un)

n−→ 0, (2.1)

where
cλ = inf

γ∈Γ
max
t∈[0,1]

IT(γ(t))

with Γ = {γ ∈ C([0, 1], H) : γ(0) = 0, IT(γ(1)) < 0}.
For ε > 0, let

vε(x) =
ψ(x)ε

1
4

(ε + |x|2) 1
2

,

where ψ ∈ C∞
0 (R3, [0, 1]) such that ψ(x) = 1 for |x| ≤ r and ψ(x) = 0 for |x| ≥ 2r. It is well

known that S is attained by the function ε1/4

(ε+|x|2)1/2 . Direct calculation shows that (see [15]):∫
R3
|∇vε|2dx =

∫
R3

|x|2
(1 + |x|2)3 dx + O(ε

1
2 ) := K1 + O(ε

1
2 ), (2.2)∫

R3
|vε|6dx =

∫
R3

1
(1 + |x|2)3 dx := K2 + O(ε

3
2 )
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and

∫
R3
|vε|tdx =


O(ε

6−t
4 ), t ∈ (3, 6),

O(ε
3
4 | ln ε|), t = 3,

O(ε
t
4 ), t ∈ [2, 3),

(2.3)

where K1, K2 are positive constants and S = K1/K1/3
2 . By the definition of cλ, we have

cλ ≤ supt≥0 IT(tvε).

Lemma 2.3. There is a constant D0 > 0 independent of λ such that cλ ≤ D0

λ
2

q−2
.

Proof. It follows from (2.2) and (2.3) that there exists ε1 > 0 such that for ε ∈ (0, ε1),

K1

2
≤ ‖vε‖2 ≤ 3K1

2
,

K2

2
≤ ‖vε‖6

6 ≤
3K2

2
. (2.4)

Since F ≥ 0 for all (x, s), one sees that

IT(tvε) ≤
t2

2
‖vε‖2 +

t4

4
C0S−2

12/5‖vε‖4 − t6

6
‖vε‖6

6.

Thus, using (2.4), there exist t′ > 0 small and t′′ > 0 large (independent of ε ∈ (0, ε1)) such
that

sup
t∈[0,t′]∪[t′′,+∞)

IT(tvε) ≤
q− 2

2q

(
3K1

2

) q
q−2
(

1
qã

) 2
q−2 1

λ
2

q−2
, (2.5)

where ã = c1
2q/2

∫
|x|≤1 dx.

Choose ε0 ∈ (0, min
{

1, ε1, r2}) such that

t′ε−
1
4

0√
2
≥ ρ0,

t′′4

4
C0‖vε0‖4

α ≤
K2

12
t′6. (2.6)

By the definition of vε0(x), we get

vε0(x) ≥
ε
− 1

4
0√

2
, ∀|x| ≤ ε1/2

0 ,

and then

tvε0(x) ≥
t′ε−

1
4

0√
2
≥ ρ0, ∀t ≥ t′, ∀|x| ≤ ε1/2

0 .

so that, by ( f2),

∫
R3

F(x, tvε0)dx ≥ c1

∫
|x|≤ε01/2

|tvε0 |qdx ≥ c1

∫
|x|≤ε01/2

ε
− q

4
0

2
q
2

tqdx = ãε0
(6−q)

4 tq (2.7)

for all t ≥ t′, where ã is the same constant as in (2.5). Hence, by (2.7), (2.6) and (2.4), we
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deduce that

sup
t∈[t′,t′′]

IT(tvε0) ≤ sup
t∈[t′,t′′]

(
t2

2
‖vε0‖2 − λ

∫
R3

F(x, tvε0)dx
)
+

(
t′′4

4
C0‖vε0‖4

α −
K2t′6

12

)
≤ sup

t≥t′

(
3K1

4
t2 − λãε

6−q
4

0 tq
)

≤ sup
t≥0

(
3K1

4
t2 − λãε

6−q
4

0 tq
)

=
q− 2

2q

(
3K1

2

) q
q−2

 1

qãε
6−q

4
0

 2
q−2

1

λ
2

q−2
.

Combining this with (2.5) shows that

cλ ≤ sup
t≥0

IT(tvε0) ≤
q− 2

2q

(
3K1

2

) q
q−2

 1

qãε
6−q

4
0

 2
q−2

1

λ
2

q−2
=:

D0

λ
2

q−2
.

Lemma 2.4. There is a constant D1 > 0 independent of λ such that, for any (PS)cλ
-sequence (un)

with

cλ ∈
(

0,
D1

λ
6

p1−2

)
,

(un) has a strongly convergent subsequence.

Proof. It follows from (2.1) and ( f3) that

cλ + o(1)‖un‖ = IT(un)−
1
θ
〈I′T(un), un〉

≥
(

1
2
− 1

θ

)
‖un‖2 +

(
1
4
− 1

θ

)
KT(un)

∫
R3

φun u2
ndx

− α

4θTα
χ′
(
‖un‖α

α

Tα

)
‖un‖α

α

∫
R3

φun u2
ndx

≥
(

1
2
− 1

θ

)
‖un‖2 − |4− θ|

4θ
C02

4
α T4 − α

θ
C02

4
α T4,

which implies that (un)n∈N is bounded in H. Thus, going if necessary to a subsequence, we
may assume for each bounded domain Ω ⊂ R3,

un ⇀ uλ in H, un(x)→ uλ(x) a.e. x ∈ R3,

un → uλ in Lt(Ω) (2 ≤ t < 6),

|un(x)| ≤ w(x) for some w ∈ Lt(Ω).

(2.8)

We claim that un → uλ in H. Take∫
R3

φun u2
ndx n−→ A, KT(un)

n−→ B, χ′
(
‖un‖α

α

Tα

)
n−→ D, (2.9)

where A, B, D are nonnegative constants, and define the functionals JT, ΨT on H by

JT(u) =
1
2
‖u‖2 +

B
4

∫
R3

φuu2dx +
AD
4Tα

∫
R3
|u|αdx−

∫
R3

(
λF(x, u) +

1
6

u6
)

dx,

ΨT(u) =
1
2
‖u‖2 +

B
4

∫
R3

φuu2dx−
∫

R3

(
λF(x, u) +

1
6

u6
)

dx.
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By (2.8), we see that, for any ψ ∈ C∞
0 (R3),∫

R3
∇un · ∇ψdx →

∫
R3
∇uλ · ∇ψdx,

∫
R3

unψdx →
∫

R3
uλψdx, (2.10)

and ∫
R3

f (x, un)ψdx =
∫

supp ψ
f (x, un)ψdx →

∫
R3

f (x, uλ)ψdx, (2.11)

where we have used Lebesgue dominated convergent theorem in the last limit. From un → uλ

a.e. in R3 and φun(x) → φuλ
(x) a.e. in R3, we know that φun(x)un(x) → φuλ

(x)uλ(x) a.e. in
R3. Using the fact

‖φun un‖2 ≤ ‖φun‖6‖un‖3 ≤ C0S−
1
2 S−1

12/5‖un‖2‖un‖3 ≤ C,

we get that φun un ∈ L2(R3) and (φun un)n∈N is bounded in L2(R3). Therefore, up to a subse-
quence, φun un ⇀ φuλ

uλ in L2(R3) and∫
R3

φun unψdx n−→
∫

R3
φuλ

uλψdx. (2.12)

Moreover, observe that
{
|un|α−2un

}
⊂ Lα/(α−1)(R3) is bounded. This and the fact

|un(x)|α−2un(x)→ |uλ(x)|α−2uλ(x) a.e. x ∈ R3

implies that |un|α−2un ⇀ |uλ|α−2uλ in Lα/(α−1)(R3). So∫
R3
|un|α−2unψdx n−→

∫
R3
|uλ|α−2uλψdx. (2.13)

Similarly, we deduce that as n→ ∞,∫
R3

u5
nψdx →

∫
R3

u5
λψdx. (2.14)

Combining (2.10)–(2.14), we achieve that

o(1) = 〈I′T(un), ψ〉

= (un, ψ) +

[
KT(un)

∫
R3

φun unψdx +
α

4Tα
χ′
(
‖un‖α

α

Tα

) ∫
R3
|un|α−2unψdx

∫
R3

φun u2
ndx
]

−
∫

R3

(
λ f (x, un)ψ + u5

nψ
)

dx

= (uλ, ψ) + B
∫

R3
φuλ

uλψdx +
αAD
4Tα

∫
R3
|uλ|α−2uλψdx

−
∫

R3

(
λ f (x, uλ)ψ + u5

λψ
)

dx + o(1)

= J′T(uλ)ψ + o(1), ∀ψ ∈ C∞
0 (R3),

which implies that J′T(uλ) = 0.
Denote vn := un − uλ. By ( f1) and [23, Lemma 2.2], one obtains that∫

R3
(F(x, un)− F(x, uλ)− F(x, vn)) dx = o(1) (2.15)
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and ∫
R3

( f (x, un)un − f (x, uλ)uλ − f (x, vn)vn) dx = o(1). (2.16)

From the Brezis–Lieb lemma (see [6]), we have∫
R3

(|un|α − |uλ|α − |vn|α) dx = o(1),
∫

R3

(
|un|6 − |uλ|6 − |vn|6

)
dx = o(1). (2.17)

Furthermore, by [21, Lemma 2.2], we get∫
R3

(
φun u2

n − φuλ
u2

λ − φvn v2
n
)

dx = o(1). (2.18)

Hence, using (2.15)–(2.18) and the fact J′T(uλ) = 0, we deduce that

o(1) = 〈J′T(un), un〉 − 〈J′T(uλ), uλ〉

= ‖vn‖2 + B
∫

R3
φvn v2

ndx +
αAD
4Tα

∫
R3
|vn|αdx−

∫
R3

(
λ f (x, vn)vn + v6

n
)

dx + o(1)

= 〈J′T(vn), vn〉+ o(1) (2.19)

and

cλ + o(1) = IT(un)

=
1
2
(‖uλ‖2 + ‖vn‖2) +

B
4

∫
R3

(
φuλ

u2
λ + φvn v2

n
)

dx

−
∫

R3
λ (F(x, uλ) + F(x, vn)) dx− 1

6

∫
R3
(u6

λ + v6
n)dx + o(1)

= ΨT(uλ) + ΨT(vn) + o(1). (2.20)

It follows from (2.19) that

‖vn‖2 ≤ λ
∫

R3
f (x, vn)vndx +

∫
R3

v6
ndx + o(1). (2.21)

Now we estimate the right-hand side of the above inequality. By ( f1) and Young’s inequality,
we have that

| f (x, u)u| ≤ c0

(
|u|

6−p1
2 |u|

3(p1−2)
2 + |u|

6−p2
2 |u|

3(p2−2)
2

)
≤ C1

(
6− p1

4
ε

4
6−p1 +

6− p2

4
ε

4
6−p2

)
|u|2 + C1

(
p1 − 2

4
1

ε
4

p1−2
+

p2 − 2
4

1

ε
4

p2−2

)
|u|6

≤ C2ε
4

6−p1 |u|2 + C2
1

ε
4

p1−2
|u|6

for ε > 0 small. Hence, substituting this equality into (2.21) and taking ε = 1

(2λC2)
6−p1

4
, we

deduce that for λ > 0 large

S
2

(∫
R3

v6
ndx
)1/3

≤ 1
2
‖vn‖2

≤
(

C2λ

ε
4

p1−2
+ 1

) ∫
R3
|vn|6dx + o(1)

≤ C3λ
4

p1−2

∫
R3
|vn|6dx + o(1). (2.22)
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Let
∫

R3 |vn|6dx−→l ≥ 0. If l > 0, then (2.22) implies that l ≥
( S

2C3

) 3
2 1

λ
6

p1−2
. Choose T > 0 such

that (
|4− θ|

4θ
2

2
α C0 +

αC0

θ
2

2
α

)
S−1

12/5T2 ≤ 1
2

(
1
2
− 1

θ

)
. (2.23)

Then, by J′T(uλ) = 0, we obtain that

ΨT(uλ) = ΨT(uλ)−
1
θ
〈J′T(uλ), uλ〉

≥
(

1
2
− 1

θ

)
‖uλ‖2 +

(
1
4
− 1

θ

)
B
∫

φuλ
u2

λdx− αAD
4θTα

∫
|uλ|αdx

≥
[(

1
2
− 1

θ

)
−
(
|4− θ|

4θ
2

2
α C0 +

αC0

θ
2

2
α

)
S−1

12/5T2
]
‖uλ‖2

≥ 0. (2.24)

Hence, using (2.24), (2.20) and (2.19), we deduce that

cλ + o(1) ≥ Ψ(vn) + o(1)

= Ψ(vn)−
1
θ
〈J′T(vn), vn〉+ o(1)

≥
(

1
2
− 1

θ

)
‖vn‖2 +

(
1
4
− 1

θ

)
B
∫

R3
φvn v2

ndx− αAC
4θTα

∫
R3
|vn|αdx

+

(
1
θ
− 1

6

) ∫
R3

v6
ndx + o(1)

≥
[(

1
2
− 1

θ

)
−
(
|4− θ|

4θ
2

2
α C0 +

αC0

θ
2

2
α

)
S−1

12/5T2
]
‖vn‖2

+

(
1
θ
− 1

6

) ∫
R3

v6
ndx + o(1)

≥
(

1
θ
− 1

6

) ∫
R3

v6
ndx + o(1),

which implies that

cλ ≥
(

1
θ
− 1

6

)
l ≥

(
1
θ
− 1

6

)(
S

2C3

) 3
2 1

λ
6

p1−2
=:

D1

λ
6

p1−2
,

a contradiction. Therefore l = 0 and un → u in H.

Proof of Theorem 1.1. In view of Lemmas 2.2 and 2.3, there is a sequence (un) ⊂ H such that

IT(un)→ cλ ∈
(

0,
D0

λ
2

q−2

]
and I′T(un)→ 0.

Since p1 > 3q− 4, we find λ1 ≥ 1 large enough such that

cλ ≤
D0

λ
2

q−2
<

D1

λ
6

p1−2
for λ > λ1.
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Thus, by Lemma 2.4, one sees that un → uλ in H, IT(uλ) = cλ and I′T(uλ) = 0. Next we show
that uλ → 0 as λ→ +∞. It follows from the properties of χ and (2.23) that

D0

λ
2

q−2
≥ cλ = IT(uλ)−

1
θ
〈I′T(uλ), uλ〉

≥
(

1
2
− 1

θ

)
‖uλ‖2 +

(
1
4
− 1

θ

)
KT(uλ)

∫
R3

φuλ
u2

λdx

− α

4θTα
χ′
(
‖uλ‖α

α

Tα

)
‖uλ‖α

α

∫
R3

φuλ
u2

λdx

≥
[(

1
2
− 1

θ

)
−
(
|4− θ|

4θ
C02

2
α +

αC0

θ
2

2
α

)
S−1

12/5T2
]
‖uλ‖2

≥ 1
2

(
1
2
− 1

θ

)
‖uλ‖2.

Since cλ → 0 as λ → +∞, the above inequality implies that uλ → 0 as λ → +∞. Hence there

exists λ∗ ≥ λ1 such that ‖uλ‖α ≤ S−
1
2

12/5‖uλ‖ ≤ T for λ ≥ λ∗. So we also get that I(uλ) = cλ

and I′(uλ) = 0, i.e., uλ is a nontrivial solution of original problem (1.1). This completes the
proof.
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